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INPUT RETRIEVAL FOR STATE STEERING USING LYAPUNOV

MATRIX DIFFERENTIAL EQUATION

Cristian Flutur1

For a continuous linear time invariant system (LTI) we approach
the matter of numerically computing an input function that steers the state tra-
jectory from the initial state x(0) = 0 to a prescribed final state in finite time.
The method relies on the numerical solution of a Lyapunov matrix differential
equation. Numerical algorithms are provided for the computation of both the solu-
tion of this equation and the input function. We prove that all matrices involved
in the algorithms are obtained from a 2n × 2n matrix exponential (n is the state
space dimension). For the subclass of systems with no symmetric eigenvalues with
respect to the imaginary axis we develop a method that relies on a n × n matrix
exponential and we provide the numerical algorithm.

Keywords: Lyapunov matrix differential equation, numerical algorithm, dynam-
ical system, input retrieval

1. Introduction

Matrix differential equations appear in flieds like optimal control (Riccati dif-
ferentiual equations) or model reduction (Sylvester and Lyapunov differential equa-
tions). Recent research addressed both closed form formulas and solution compu-
tation for matrix differential equations, either through the Sylvester operator ([1]),
ODE integrators with LDLT factorizations ([2]) or Krylov projection followed by
the backward differentiation formula ([3]). In this paper, we use the Lyapunov ma-
trix differential equation (LMDE) to compute suitable input functions that ensure
desired state space trajectory steering for dynamical systems.

State trajectory steering has played a central role in control engineering ever
since Kalman first addressed the issues of control function computation and con-
trollability ([4]). For a given dynamical system, the question of how to retrieve the
adequate input to generate a certain behavior of either the output or state of said
system has drawn the interest of many researchers. Some of these research efforts
have approached the matter of input retrieval through the inverse of the transfer
matrix function ([5]). More recent work has also addressed the case in which in-
vertibility of the transfer matrix is not necessary, but rather lateral invertibility is
exploited ([6]). In [7] the output measurement is known and the unknown input is
reconstructed via an estimator, exploiting the observability of the system.
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Input function computation is of major importance to optimal control theory,
where the goal is to minimize certain criteria involving state variables and/or in-
put functions ([4]). Recent work ([9]) focuses on minimum-energy input functions,
computed using only measurement data, without knowing the system dynamics.

Controllability and observability gramians play a key part in many control
theory issues, such as model reduction ([10], [11], [12]), optimal control ([4], [13]),
network systems ([14], [15]). Whether it is involved in balanced truncation ([16]),
optimal control or the investigation of the controllability property, the numerical
computation of the controllability gramian plays a key role in many of these appli-
cations.

Finite time gramians are, essentially, solutions to LMDEs. Most efforts have
focused on the numerical computation of the infinite time gramians ([17], [18]),
rather than the finite time gramians. The lack of such a numerical method is due,
in part, to the existence of a certain integral term, whose computation by numerical
integration (see [19]) is avoided. This is one aspect that we remedy in this paper.

Contributions. We present two distinct numerical methods for the compu-
tation of the integral term, one involving a 2n × 2n matrix exponential and one
involving a n× n matrix exponential and a symmetric Lyapunov equation (n is the
dimension of the system). Furthermore, the iterative construction of the solution of
the LMDE does not require the system to be stable, as is the case of Lyapunov ma-
trix algebraic equations. The proposed algorithms are compared with IVP (initial
value problem) solvers (see [19]). Our methods for input retrieval do not require the
inversion or invertibility of the matrix transfer function (as in [6] or [5], nor do they
require observability and the construction of an estimator (as in [7]). The input we
compute is guaranteed to minimize a certain energy function cost, therefore it has a
physical meaning as the minimum energy required to steer the state trajectory from
the initial null state to a desired final state, in a given time span.

Notation. The sets of real and complex numbers are denoted by R and C,
respectively, while Rn and Cn denote the vector spaces of n-dimensional vectors with
real and complex elements, respectively. A ∈ Rm×n denotes a m × n real matrix,
AT denotes its transpose. For a square invertible matrix A ∈ Rn×n the inverse is
denoted by A−1 and A−T denotes the transpose of the inverse, i.e., (A−1)T . The
Moore-Penrose pseudoinverse of square matrix A is denoted by A† (see [20]). λ(A)
denotes the spectrum of A, i.e., the set of its n eigenvalues. The n−dimensional
identity matrix is denoted by In and 0n denotes the n× n null matrix. The matrix
exponential of a square matrix A is denoted by eA. The vector subspace spanned
by the the columns of matrix A is denoted by Im A. The real and imaginary parts
of a complex number λ ∈ C are denoted by Real(λ) and Imag(λ), respectively. The
vector norm in the Hilbert space ℓ2 is denoted by || · ||2 (see [21]).

Overview. The paper is organised as follows. In Section 2 we recall basic
notions related to LTI systems, controllability of a state, Lyapunov matrix differ-
ential equations, controllability gramian and how it hinges on input retrieval for
specific state trajectory steering. Section 3 presents the main results, consisting of
two methods of the computation of the integral term, the algorithms that compute
the solution of the LMDE and the input function, respectively. These results are
illustrated on a numerical example in section 4. Section 5 presents the concluding
remarks and some directions for future work.
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2. Preliminaries

In this section we recall theoretical notions and technical details, necessary
throughout the paper. The setup where the discussion takes place is that of LTI
systems, described by state-space equations

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rp

is the output vector. Indices n, m and p indicate the dimensions of the system:
the number of state variables, the number of inputs and the number of outputs,
respectively. Matrices A,B,C and D are constant and have appropriate dimensions.
The solution of the first equation in (1) is

x(t) = eAtx(0) +

∫ t

0
e(t−τ)ABu(τ)dτ. (2)

2.1. Controllability gramian

For a continuous LTI system (1) we have the finite-time controllability gramian
defined as

W (t) =

∫ t

0
e(t−τ)ABBT e(t−τ)AT

dτ, (3)

i.e., the solution of the LMDE

Ẇ (t) = AW (t) +W (t)AT +BBT . (4)

Matrix W (t) is square, symmetric and semipositive definite, for all t > 0. If the
system is controllable, then W (t) is strictly positive definite, for all t > 0 (see [22]).

2.2. State controllability

We present on the notions of state controllability used in [22].

Definition 2.1. For a LTI continuous-time system (1) a state x(tf ) ∈ Rn is called
controllable if there exists an input function u(τ) that steers the state trajectory
from the initial state x(0) = 0 to the final desired state xf := x(tf ) in tf time. More
precisely, plugging u(τ) in (2), yields x(tf ),

x(tf ) =

∫ tf

0
e(tf−τ)ABu(τ)dτ. (5)

Such an input function is expressed as (see [22, Theorem 2.13.1])

u(τ) = BT e(tf−τ)AT
[W (tf )]

†x(tf ), (6)

where W (tf ) is the solution of the LMDE (4) evaluated at tf . The use of the
pseudoinverse here is due to the fact that, even if x(tf ) is controllable, system (1)
may not be controllable and, consequently, W (tf ) may not be invertible. If all states
are controllable (i.e., system (1) is controllable) then the pseudoinverse is substituted
by the inverse. For a n−dimensional system (1) we call the pair (A,B) controllable
if controllability matrix R =

[
B AB A2B . . . An−1B

]
has full row rank.

Equation (6) is a direct consequence of the fundamental result given by [22,
Lemma 2.13.1], stating that a state x(tf ) ∈ Rn is controllable in a finite time span
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[0, tf ] if and only if it belongs to the column space of the solution of the LMDE (4)
evaluated at tf , i.e., x(tf ) ∈ Im W (tf ).

The input function in (6) minimizes the energy cost function

E(u) =

∫ ∞

−∞
|u(τ)|2dτ

and thus it is called optimal with respect to the energy cost function (see [22] and
[4]).

2.3. Problem formulation

We approach the matter of numerically computing u(τ) that steers system (1)
from the initial state x(0) = 0 to a prescribed finite x(tf ) =: xf in tf time. In other
words, we compute u(τ) from (6) such that (5) holds. Thus, we need to numerically
compute

W (tf ) = eAtfW (0)eA
T tf +

∫ tf

0
e(tf−τ)ABBT e(tf−τ)AT

dτ, ∀tf > 0. (7)

3. Main result

Let the interval [0, tf ] be divided in N equal subintervals, each of length h and
assume W (t) is constant on each of these subintervals, i.e.,

W (t) = Wk, for t ∈ [kh, (k + 1)h).

The dynamic of W (t) on the k-th subinterval has t = kh as starting time and W (kh)
as initial condition (see [8, Section 3.1]). Thus, W (t) becomes

W (t) = e(t−kh)AW (kh)e(t−kh)AT
+

∫ t

kh
e(t−τ)ABBT e(t−τ)AT dτ .

Writing the dynamics on the entire interval, i.e., taking t = (k + 1)h, yields (after
some manipulation on the integrating variable) the discrete version of equation (7),

W [(k + 1)h] = ehAW (kh)ehA
T
+

∫ h

0
eηABBT eηA

T
dη. (8)

Hence that W (tf ) can be numerically computed by iterating formula (8), with the
initial condition W (0) = 0. The aim is to avoid the computation of

G :=

∫ h

0
eηABBT eηA

T
dη (9)

in (8) by numerical integration. The method we propose for the computation follows
arguments in [23] and is formulated in the following theorem.

Theorem 3.1. Consider a continuous time dynamical system (1) and a time in-
terval [0, tf ] with N equal subintervals, each of dimension h. Consider now the
solution of equation (4) evaluated at tf , i.e., formula (7) and its discretized version
with respect to the equally spaced time interval [0, tf ], (8). Denote

A0 :=

[
A BBT

0n −AT

]
, F := ehA and F0 := ehA0 =

[
F M
0n F−T

]
. (10)
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Then the integral term in (9) satisfies G = MF T , where F and M are submatrices
of F0, partitioned as in (10).

Proof. The non-homogeneous n−dimensional dynamic in (4) is immersed in a 2n−dimensional
homogeneous dynamic. We denote

X(t) :=

[
W (t) 0n
In 0n

]
,

In terms of this notation, equation (4) is rewritten as

Ẋ(t) = A0X(t) +X(t)AT
0 .

This equation describes homogeneous (free) dynamics with solution

X(t) = eA0tX(0)eA
T
0 t,

where the matrix exponential

eA0t =

[
eAt M(t)

0n e−AT t

]
keeps the upper block-triangular structure of A0, its diagonal blocks are the matrix
exponentials of the diagonal blocks of A0 (see [24]) and M(t) ∈ Rn×n denotes the
right upper block, corresponding to the BBT block in A0. Now, considering the
dynamics of X(t) on the k-th subinterval of the interval [0, tf ] and following similar
arguments as with equations (7) and (8), we obtain

X[(k + 1)h] = ehA0X(kh)ehA
T
0 ,

which, written explicitly, becomes[
W [(k + 1)h] 0n

In 0n

]
=

[
ehA M(h)

0n e−hAT

] [
W (kh) 0n

In 0n

] [
ehA

T
0n

MT (h) e−hA

]
.

Matrix M(h) will be referred to as M . With notations (10) we obtain F−1 = e−hA,

F T = ehA
T
and F−T = e−hAT

. We check the equality in block-position (1, 1) and
get

W [(k + 1)h] = FW (kh)F T +MF T . (11)

Equations (11) and (8) allow us to identify the integral term in (9), i.e.,

G =

∫ h

0
eηABBT eηA

T
dη = MF T . (12)

This concludes the proof. □

We are now able to formulate the algorithm to numerically compute the LMDE
solution.

Algorithm 3.1. Given a LTI system (1) and a time interval with N equal subinter-
vals, each of dimension h, compute the LMDE solution defined in (3) at tf = Nh.
(1) Construct A0 according to (10) ;
(2) Compute F0 := ehA0 using the Padé approximation (see [26]);
(3) Extract matrices F = F0(1 : n, 1 : n) and M = F0(1 : n, n : 2n) and compute

G = MF T .
(4) Initialise W = 0;
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(5) For k = 0 : N − 1
(a) W = FWF T +G;

The computation of the matrices F and G = MF T in Algorithm 3.1 relies on
the matrix exponential of the 2n × 2n matrix A0. We now provide a method that
computes matrix G from the matrix exponential of a n× n matrix and the solution
of a continuous algebraic matrix Lyapunov equation.

3.1. The case of non symmetric eigenvalues

The method works for systems where matrix A has no symmetric eigenvalues
with respect to the imaginary axis. This class of systems also includes strictly stable
systems and strictly antistable systems, for which input retrieval and the finite time
controllability gramian are often required. For instance, after a stabilizing control
law has designed and implemented, the input for a certain trajectory of the (now
stable) closed loop system is required ([25]). The result is presented in the following
theorem.

Theorem 3.2. Consider a system (1) with no symmetric eigenvalues with respect
to the imaginary axis (λ(A)∩λ(−A) = ∅). Let W (kh) be the solution to the discrete
dynamic Lyapunov equation (8). The integral term G in (9) is the unique symmetric
solution of the continuous matrix algebraic Lyapunov equation

AG+GAT = (FB)(FB)T −BBT . (13)

Proof. The product between a square matrix and its matrix exponential is commu-
tative (see [24, Theorem 1.3]). We apply this property on matrix A0 from (10) and
its matrix exponential ehA0 , i.e., A0e

hA0 = ehA0A0. Writing this explicitly yields
(with the same notations as in (11))[

A BBT

0 −AT

] [
F M
0 F−T

]
=

[
F M
0 F−T

] [
A BBT

0 −AT

]
.

More specifically, for block-position (1, 2), we obtain AM + MAT = F (BBT ) −
(BB)TF−T , which multiplied to the right by F T and substituting G = MF T (see
equation (12)) yields

AG+G(F−TATF T ) = (FB)(FB)T −BBT . (14)

We now look at the second term of the left hand side. The product between matrix
A and its matrix exponential F is commutative, i.e., AF = FA, which can be
written as A = FAF−1 or (after transposing) AT = F−TATF T . Thus, equation
(14) becomes

AG+GAT = (FB)(FB)T −BBT ,

a continuous algebraic matrix Lyapunov equation, where solution G is unique, since
λ(A)∩λ(−A) = ∅. Solution G is symmetric, since the free term (FB)(FB)T −BBT

is also symmetric (see [17]). This concludes the proof. □
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3.2. Input computation

We now tackle the numerical explicit computation of the input function u(τ)
that steers the state trajectory of a given system (1) from the initial state x(0) = 0
to the prescribed final state xf = x(tf ) in tf time. The detailed steps are given in
the following algorithm.

Algorithm 3.2. Given a LTI system (1), a prescribed final state xf = x(tf ) ∈ Rn,
a time span [0, tf ] divided in N subintervals, each of length h, compute the input

matrix U ∈ Rm×N , with U(:, k) = u(kh) = u(t), for t ∈ [kh, (k + 1)h].
(1) Compute matrices F = ehA and G from (9) either by following the steps in

Algorithm 3.1, or by solving equation (13) if conditions of Theorem 3.2 are
met;

(2) Compute W (tf ) using Algorithm 3.1;
(3) If the system is controllable and W (tf ) is invertible, solve the system of linear

equations W (tf )z = xf for z ∈ Rn;
Alternatively, use the Moore-Penrose pseudoinverse to compute
z := [W (tf )]

†xf ;
(4) Initialise U = 0m×N ;
(5) For k = 1 : N

(a) z = F T z;
(b) U(:, N − k + 1) = BT z.

4. Numerical results

The section is divided into two parts. In the first part we present a 3−state
numerical example, suitable for graphic representation and interpretation. For such
an example the LMDE solution in (3) can be computed by hand and so the results
of the algorithms can be verified. In the second part we compare the proposed
algorithms with Runge-Kutta methods (see [19]) for different simulation steps and
different state space dimensions. All simulations have been done on a machine with
Apple M2 Pro processor, 16 GB of RAM and MATLAB® R2023b.

4.1. Graphical illustration

Let system (1) be defined by matrices

A =

 −2 6 0
−6 −2 0
0 0 −1

 B =

 1
0
1

 .

Matrices C andD are not involved in our discussion. The system is controllable, with
3 states and 1 input channel. The system is also stable, with one pair of complex-
conjugate eigenvalues and one real eigenvalue. We want the state trajectory to be

steered towards the final state xf =
[
3 11 20

]T
in tf = 10 time. The chosen

simulation step is h = 10−5, resulting in N = 106 subintervals. The LMDE solution
evaluated at tf is

W (10) =

 0.137 −0.037 0.066
−0.037 0.112 −0.133
0.066 −0.133 0.499


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with an invertibility condition number κ(W (10)) = 8.318. This value allows for a
numerically safe solution of the linear equations system W (10)z = xf and the use of
the Moore-Penrose pseudoinverse is not required. We get the sampled version of the
input function u(τ), namely U(kh). With this input we compute and simulate the
state trajectory, using the zero order hold discretisation on the original system (the
numerical method is described in [27]). The final state obtained with this simulation

is x̂f =
[
2.998 11 19.998

]T
, with an error equal to ||xf − x̂f ||2 = 0.002. The

solution of the LMDE was computed in t∗ = 0.25 seconds. We provide the graphical
representations of both the input function and the state trajectory (Figure 1).

(a) Input function u(τ)
(b) State trajectory x(t) from x(0) = 0

to x̂f =
[
2.998 11 19.998

]T
Figure 1. Input function and state trajectory

For this example we compute the solution to the LMDE (4) using the 4 stage
Runge-Kutta method and the obtained error is ||xf − x̂fRK4

||2 = 0.002, while the
computation time was tRK4 = 10.13 seconds.

4.2. Comparison with IVP solver

We now consider solutions of LMDE (4), computed with both the proposed
algorithms based on matrix exponential (reffered to as EXPM in Table 1) and IVP
solvers (reffered to as IVPS in Table 1), for different values of dimension n and of
simulation step h. The system is generated with MATLAB function rss. We use
execution time as a performance measure, denoted t∗ for our algorithms and t for
the IVP solver. The results are presented in Table 1.

HHH
HHn
h

10−3 10−4 10−5

Method EXPM IVPS EXPM IVPS EXPM IVPS

n = 10 t∗ = 0.01 t = 0.21 t∗ = 0.08 t = 1.75 t∗ = 0.84 t = 17.42
n = 30 t∗ = 0.07 t = 0.91 t∗ = 0.67 t = 6.60 t∗ = 6.50 t = 115.41
n = 200 t∗ = 6.19 t = 42.81 t∗ = 62.47 t = X t∗ = 635 t = X

Table 1. Execution times of simulations for simulation steps h =
10−k, k = 3, 4, 5 and dimensions n = 10, n = 30, n = 200.
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Entries marked ′X ′ in Table 1 are execution times which the computer was
unable to compute due to ”out of memory” errors. The results obtained with our
proposed algorithm are far superior to the ones obtained with IVP solvers. Both
methods return similar distances between the desired final state and the final state
obtained with the computed input function.

5. Conclusions

In this paper, we have derived numerical methods for the input retrieval and
the computation of Lyapunov matrix differential equation solutions. The compu-
tation of the LMDE solution is based on an iterative process and we provided two
distinct ways to compute the integral term (9), avoiding numerical integration. The
first method relies on the matrix exponential of A0 in (10), while the second uses
the matrix exponential of matrix A and the Lyapunov equation (13). The second
approach is based on the Schur-Parlett method for function of matrices (see [24])
and avoids the matrix exponential of A0, whose spectrum is comprised of both the
spectrum of A and of (−A), and thus may generate an ill-conditioned matrix expo-
nential F0. The input given by equation (6) and computed by Algorithm 3.2 has
the minimum energy required to steer the state trajectory from the initial null state
to a desired final state, in a given time span.

The numerical results have shown that, in terms of execution time, the pro-
posed algorithms outperform traditional IVP solvers.

The current work provides the setup for investigating how state feedback re-
lates to certain input functions and state trajectories. More precisely, it would be
interesting to see if a feedback parameter K, aside from placing the eigenvalues
of A − BK, is able to enforce certain state trajectories, through the finite time
controllability gramian of the closed loop system.
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