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ISOTROPIC RIEMANNIAN MAPS AND HELICES ALONG
RIEMANNIAN MAPS

Gézde Ozkan Tiikel', Bayram Sahin?, Tunahan Turhan®

This work has two main aims. The first aim is to study isotropic Riemannian
maps as a generalization of isotropic immersions. The notion of isotropic Riemannian
map is presented, an example is given and a characterization is obtained. The second
aim is to study the helices along Riemannian map. By using the notion of isotropic
Riemannian map and helices on the manifold, a characterization is obtained for the
transportation of helices on the total manifold to the target manifold along a Riemannian
map.

Keywords: isotropic Riemannian map, Riemannian map, helix, umbilical map, Rie-
mannian manifold,

MSC2020: 53B20, 53A04, 53B21.

1. Introduction

Since curves are basic structures of geometry, it is an important technique to arrive at
geometric conclusions by looking at their behavior under certain maps. This approach was
first used by Nomizu and Yano for circles and isometric immersions in [15]. They showed that
when a circle on the submanifolds is carried along the immersion to the ambient manifold,
such submanifolds are umbilical and their mean curvature vector field is parallel. Tkawa in
[11] obtained similar characterization for helices. Later this result has been extended to the
semi-Riemannian case [2] and [12], see also: [1], [3], [4], [5], [6], [13], [21]. These papers show
that the behavior of a given curve under transformation will give us important information
when comparing the geometry of two manifolds.

The basic properties of Riemannian submersions were firstly given by Gray [8] and
O’Neill [18]. Riemannian submersions and isometric immersions are special maps between
Riemannian manifolds. So, Fischer [10] defined Riemannian maps which is a generalization
of Riemannian submersions and isometric immersions in 1992 as follows. Assume that 7 :
(M1, Gon, ) — (M2, gy, ) is @ C°° map from the Riemannian manifold M; with dim My = m
to the Riemannian manifold 9y with dim 9y = n, where 0 < rankT < min{m,n}. Thus, we
represent the kernel space of T, by ker T, and H = (ker 7,)* is orthogonal complementary
space to ker T,. So, we have

M, = ker T, @ (ker T,)*,

where T9); is the tangent bundle of ;. rangeT. denotes the range of T, and (rangeT,)*
denotes the orthogonal complementary space to rangeT, in T95. The tangent bundle 79,
of My is given by

TM, = (rangeT,) @ (rangeT,) .
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Now, a smooth map T : (M7, g, ) — (M3, gy, ) is called Riemannian map if T, satisfies
Gony (T X1, TuX2) = g4y, (X1, X2), for X1, X3 vector fields tangent to 3 [10].

Comparing Riemannian maps with immersions and Riemannian submersions, there
are few results for the characterization of such transformations with the help of curves.
Indeed, there are no other studies in the literature, except for the results regarding the
geodesics at reference [9] for Riemannian submersions and the results about circles at ref-
erence [19] for Riemannian maps. Since curves are the basic notion of differential geometry
and their useful role in immersion theory is taken into account, obtaining new results on the
characterization of Riemannian submersions and Riemannian maps by means of curves is a
subject that needs to be investigated.

Also, isotropic immersions were defined by O’Neill [17] and later it has been shown
that this notion is an important tool in geometric characterization [14]. The concept of
isotropic submersions has been introduced by Sahin and Erdogan in [7]. As far as we know,
the notion of isotropic Riemannian maps has not yet been introduced in the literature.

We first define the concept of an isotropic Riemannian map and obtain a condition
for isotropicity of a Riemannian map in terms of second fundamental form. Then by us-
ing characterization of an ordinary helix in a Riemannian manifold, we generalize Ikawa’s
theorem.

In the second section, the basic notions to be used in the paper are presented. First,
the concept of helix on the manifold is given. Then, Gauss and Weingarten formulas are
introduced for Riemannian maps with connections defined along a map and are presented in
some detail, especially considering that the readers who study the submanifold theory may
not be familiar with these notions. In the third section, the concept of isotropic Riemannian
map is presented and characterization of such maps is obtained. We give the following
result in the last section; if there is a helix on the base manifold of a Riemannian map, we
investigate what this property tells for the Riemannian map when a helix is transformed by
the Riemannian map on the target manifold.

2. Preliminaries

A regular curve o = «a(s) parametrized by arc lengh s is called an ordinary helix if
there exist unit vector fields V5 and V3 along a such that

VWi =kVa, Vy Vo =—kVi+7V5, Vy Vi =—7V5,

where V7 denotes the tangent vector field of «, x is the curvature and 7 is the torsion of a.
An ordinary helix satisfies the following equation

V3. Vi + KV, Vi =0, (1)
where K? is a constant. If 7 = 0, helix reduces to the circle [11].
Assume that (90, g,, ) and (9Ma, g,,,) are Riemannian manifolds, T : (M4, g,, ) —
(M2, gyn, ) @ smooth map between them and v a curve on 90;. v is called a horizontal curve
if 4(t) € (kerT,)* for any t € I. If v is a helix with 4(¢) € (kerT,)* for any ¢ € I, then it
is called as horizontal helix.
Let T be a Riemannian map between the manifolds (9, g,, ) and (Ma, gy, ), P, =

T (p1) for each p; € ;. Suppose that V™2 and V™' represent the connections on (M, Ion,)
and (MM, 9om, ), respectively. The second fundamental form of T can be given as follows

N 0,
(VT)(X1, X)) = V7 x, To(X2) — Tu(Vix, X2) (2)

Mo
for X1, Xo € T'(T9,), where V7 is the pullback connection of V™2, For VX, X, €
['((ker Tup,)H), (VT,) is symmetric and has no components in range7.. So, we can write
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the following
Ion, ((VT*)(X1’X2)7T*(X3)) = 0, (3)
VXl,XQ,Xg € F((kerﬂ'*pl)l-) [20}

Now we give some basic formulas for Riemannian maps defined from the total man-
ifold (9M1, gy, ) to the target manifold (Mg, g,, ). For Xy, Xy € I((ker Ty, )*t) and Uy €

I'((rangeT,)"*), we have
Mo
V75, Ut = =S, X1 + V3, U, (4)

N2
where Sy, T, X1 is the tangential component of V7 x, U; and v;@j is the orthogonal projection
My
V7 x, on I'((rangeT,)*), then we have

Jony (S0, T X1, Tu X2) = gy, (Ut, (VTL) (X1, X2)). (5)

Since (V7T,) is symmetric, Sy, is a symmetric linear transformation of rangeT,. On the
other hand, we have the following covariant derivatives

(V. (V72)) (X2, Xs) = VE, (V) (X, Xa) o
(V) (V 3, X, X3) — (VT)(Xa, V 3, Xs)

and

~ Ny
(VauS) | TolXa) = To(V x, "To(S0, To(X2)))
Uy
93723_ (7)
=S gy, T+ (X2) — 50, PV T (),
where P denotes the projection morphism on rangeT, and *T, is the adjoint map of T, [20].
In the following lemma we give a relation obtained from (6) and (7).

Lemma 2.1. Let (91, g,y ), (M2, 9oy, ) be Riemannian manifolds and T a Riemannian map
between them. For VX1, X € T'((ker Typ,)t) and Uy € T((rangeT,)1), we have

9ony (Vi (V7)) (X2, X). U1) = g, (VxS ) | T(X0), To(Xa)): (8)
Proof. Taking inner product (6) with Uy, we have

9on, (V3 (VT2)) (X, X5). U1) = gy, (T, (V) (X, Xo), U1)
o (VT (V 3, X2, X3), T1) — g, (VT (X, ¥ 0, Xa), T).

If we take inner product (7) with T,(X3), we obtain

9oy (V5,5), TolX2), T (X)) = g, (T0(V x, 050,72 (X2))), T2 (Xs)

My
Yo, (S T (X2)7 ‘I*(X?))) = Yom, (SUl Pvgﬁ‘)’* (X2)7 T*(X?)))

(V&)
Using (5), we can write the following equalites

el Mo
Gom, ((VT*)( V x, Xo, XS)’ Ul) = o, (SUI Pvilir* (XQ)’ X3) (9)

and
Gom, (SUIT* (XQ)’ T (XB)) = YGon, ((V(I*)(X% XS)v U1)~
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If we take derivative of the last equation and use (3), we get

o, (T (¥ s, *T (50,7 (X2))), T (X)) + g, (VT) (X, V x, X3), T)
= Gon, (V% (VT2 (X2, Xa), U1) + Gon, (S g1, T+(X2), T2 (X)),

If we take into consideration (9) and (10), we have (8). O

(10)

We consider that T is a Riemannian map from a connected Riemannian manifold
(M4, Gon, ) dimMy > 2 to a Riemannian manifold (9My, g,,, ). We know that T is an umbilical
Riemannian map at p; € 9y, if the following is satisfied

SU17*P1 ((Xl)pl) = Yon, (HQ, UI)T*M ((Xl)pl)

for X; € T(rangeT.), Uy € T'((rangeT,)*) and Hy € (rangeT,)*. If T is umbilical for
Vp1 € My, we know that T is umbilical [20].

3. Isotropic Riemannian maps

Now, we present the notion of isotropic Riemannian map and get a characterization
for such maps.

Definition 3.1. (h-isotropic Riemannian map). A Riemannian map T : M; — My
1s said to be h-isotropic at p € My if

AXy) = (VT (X, X))/ 1T X |

doesn’t depend upon the selection of X1 € T'((ker T,.)*. If the map is h-isotropic at all points,
the map is called as h-isotropic. Also, if A = X(p) is constant along T, T is called a constant
(Ah—)isotropic map.

Remark 3.1. [t is easy to see that the above notion is generalization of isotropic immer-
ston, however there is no inclusion relation between isotropic Riemannian submersions and
h—isotropic Riemannian maps.

Proposition 3.1. Let ¢ : M — MY be a Riemannian submersion and ¢ : My — ML a
h—isotropic immersion. Then the Riemannian map T =) o ¢ is a h—isotropic map.

Proof. We consider that T = 1 o ¢ is a Riemannian map, where ¢ : M — MY is a
Riemannian submersion and v : 93 — MY is a h—isotropic immersion. Then we have for
X1, Xz € (kerT,)*

(V(h 0 0).) (X1, X2) = 9 ((Veou ) (X1, X2)) + (Vb ) (04 (X1), 04 (X2)). (11)
On the other hand, we get
gom, (¥ 0 9)w(X1), (¥ 0 9)x(X2)) = g, (¢ (X1), ¥ (X2)) = gom, (X1, X2).  (12)

From ( 11 ), we obtain

1(V (1 00):) (X1, X)II* = [|9u ((Veps) (X1, X1)) ||
+2g0m; (Y (Vipu) (X1, X1)), (Vi) (94 (X1), 04 (X1)) (13)
HI(Veh) (0 (X1), u (X1

Because v is a h—isotropic immersion and due to Riemannian submersion ¢, (V. ) (X1, X;1) =
0 for X; € (kerT,)%, (13) and (12) show that T is h—isotropic map. O

The following example can be given as an application of Proposition 3.1.
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Example 3.1. Let T be a Riemannian map given by T : R* — R3

2
xr1 — X
(x1, 22, w3, 74) — (% — 3, V2(z1 — 22)23,0).

Since ¢ : R* — R?) (21,2, 73,74) — (%,xg) is a Riemannian submersion and 1) :
R? — R3, (21,72) — (22 — 23,22172,0), where (23 + 23)? = 1 (see, [16]), a h—isotropic
immersion, the Riemannian map T = 1 o ¢ is a h—isotropic Riemannian map.

The following lemma gives a criteria for a h-isotropic Riemannian map.

Lemma 3.1. Let T : My — My be a Riemannian map. T is h-isotropic at p € My iff the
second fundamental form VT, satisfies

Iom, (VT (X1, X1), (VT (X1, X2)) =0 (14)
for an arbitrary orthogonal couple X1, Xo € T'((ker T.p,)b).

Proof. Let f : T'((kerT,p,)~) — R be a quadrilinear function such that for Va1, 2, ui,
uz € T'((ker Tup, ) L)

f(@1, w9, u1,u2) = gon, (VT (@1, 22), (VT (U1, u2))
NG, (Te(@1), Tu(2)) g (T (1), T (u2)).
If a Riemannian map T is h—isotropic, we have for Vuz € I'((ker T.p, ) )

B(uz) = f(us,us,u3,us3),
= gN((V{J:r)(U:g,’LLg), qu*)(ug,ug)) - )\ng (u37u3)gM (’LL3,U31),
= A lus" = X*|us||” = 0.

If we use B(z1 + x2) + B(z1 — z2) = 0, we get
flz1, @1, 0, 2) 4+ 2f (21, T2, 21,22) = 0.
Changing x5 into x1 + z2, we have
f(z1, 2, 2, 22) = 0.
In the last equation, if we change x; into us and x5 into w; where uy Lus, we obtain

fluz, ur,ur, ur) = gon, (VT (2, u1), (VT (ur, ur))
= N Gan, (U2, 1) gy, (ur,u1) = 0.

So, we have
Gon, (VT) (uz, ur), (VT) (u1,u1)) = 0.

Conversely, we suppose that (11) is satisfied along the Riemannian map T. For an arbitrary
orthogonal pair z1,z2 € T'((ker Ty, )T), we have

f(@1, 21,21, 22) = g, (VT) (21, 21), (VTS (21, 22))
Ao, (Tu(21), Tu(21)) Gon, (Ti(1), Ti(22)) = 0.
If we write 1 4+ x2 instead of x5, we have
flz1,x1,21,21) = 0.
So we have
Ion, (VT) (@1, 21), (VT ) (1, 21)) = Mg, (Tu(21), T (21))95 (Tu(21), T (1)),
that is, T is h—isotropic. O
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Let (91, g,y, ) and (M, g,,, ) be Riemannian manifolds and suppose that T : (M4, g,, ) —

(M, gsmz) is a Riemannian map between them. Let o be a horizontal curve with curvature
k in My and v = Toa a curve with curvature £ in My along T. Using (2) and (3), we obtain
for Vt € R

m

o= g (VIT.(6), VIT.(@),
DJT1 fn’tl
= 0 (T (Vo) + (V7)(6,6), 7.V a) 4 (V72)(6,0),

%JVm%<mﬂmwmmwﬁ
ITT )@ @),

Mo
where V7 denotes the pullback connection of V So, we can write

R=R(t) = \/ff(t)2 + (VT (@), &) (15)

We suppose that T : 9, — 9y is a Riemannian map and o = «(s) is a horizontal circle
parametrized by arc length s with

ml EInl
Vaa=rY, VY =—kaq, (16)

where Y = Y, of unit vector along o and « is the curvature of a on 91;. For each point
p € My, each orthonormal couple uy,us € I'(kerT,)* at p and each constant x > 0, there
is locally a unique horizontal circle @ = a(s) on 9 with initial condition that «(0) = p,

My
&(0) = uq and V 4&(0) = Kkug (see, [14, 19]).

Theorem 3.1. Let T : 9y — Mo be a smooth map between Riemannian manifolds (9, Gom, )
and (M2, g,,, ). The following are equivalent:

(i) T is h—isotropic Riemannian map,
(ii) There is k > 0 satisfying that for each horizontal circle a with curvature k on My,
=T oa on My has constant curvature k along ~.

Proof. Assume that T : 9 — My is h—isotropic Riemannin map. From (16) and (15),

curvature of ~y
R(t) = VK2 + A2 (17)

is a constant. Conversely, we suppose that there is k > 0 satisfying that for each circle «
with curvature x on 9, the curve v = Toa on My has constant first curvature & along this
curve. Let uy,uy € I'(kerd,)* be arbitrary orthonormal pair of vectors at p € 90t;. Suppose
that o = a(s), s € I be a circle with x on 9%, with initial conditions «(0) = p, &(0) = uy

Ny
and V 4&(0) = Kug. From (2), we have
. Cooy2
R = k2 4 (VT (@ &)

Since & is a constant and « is a circle on My, ||(VT,)(&, &)|| is a constant on I. Then, we
have

0= V3 (gon, (VT (&, &), (VT (&, &))) = 200, (V) (VT (&, ), (VT (&, &)
Using (16) and (6), we get
oy (VE(VT) (@, 4), (VT (&, &) + 2605, (VT (6, Y5), (VTL) (6, @) = 0. (18)
Evaluating equation (18) at s = 0, we get
Gon, (Vo (VT (ur,u1), (VT (w1, u1)) + 26G 0, (VT (ur,uz), (VT)(u1,u2)) = 0. (19)
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Also, for another horizontal circle f = f(s) of the same curvature x on 9; with initial
conditions 3(0) = p, £(0) = u; and %/36(0) = —Kug, we have

Gomy (Vir, (VT (ur, 1), (VT (1, u1)) = 2600, (VT) (u1,u2), (V) (ug,u1)) =0, (20)
which corresponds to (19). Then from (19) and (20), we obtain

Ko, (VT (w1, u2), (VTi)(u1,u1)) = 0.
Taking into consideration Lemma 3.1, we can see that T is h— isotropic Riemannian map. O
Corollary 3.1. A totally umbilical Riemannian map T is h-isotropic at the point p1. Con-
versely a h-isotropic Riemannian map T is a totally umbilical at py if it satisfies
(VI (X, Y)=0

for two orthonormal vector fields X and Y at py in T'((ker Typ,)b).

Proof. Assume that T is a totally umbilical Riemannian map at the point p;. Then for
X1, X2 € T((ker Tup, ) L), we have

(VI)(X,Y) = gy, (X, Y) Ha.
Especially, we obtain

(VT.)(X,Y) =0,

if X and Y are orthogonal. Then 7 is h-isotropic. Conversely we suppose that T is h-
isotropic Riemannian map at p;. Then VT, satisfies (14) for an arbitrary orthogonal couple
X,Y € T((ker Tup,)1). Since (VT,)(X,Y) = 0 and V7T, is linear, we have for the orthogonal
couple %(X +Y) and %(X -Y)

(VI)(X, X) = (VT)(Y,Y).
Let {X1, X2,...X,} denote an orthonormal frame in I'((ker T,p, ) 1), then we get

(VT )(X1,X1) = (VT ) (X2, Xo) = ... = (VT) (X0, Xin).
Thus we have
Hy = (VT (X1, X1),

where Hs is the mean curvature vector field of distribution range7T,. Moreover, choosing
X =3 a;X;and Y =} b;X;, we obtain
i J

0= (VI)(X,Y) = > aibj(VT)(Xi, X;) = ga, (X, Y) Ho,
4,7
which shows that T is umbilical. O

4. A characterization of Riemannian maps in terms of helices

We prove the following theorem which shows the effect of transforming helices to the
base manifold along Riemannian maps in this section.

Theorem 4.1. Let T be a Riemannian map from a connected Riemannian manifold (M, Yom, ),
dim9My > 2 to a Riemannian manifold (Ma, g, ). Let o be a horizontal heliz with curvature
k and torsion T on My, then T is umbilical and the mean curvature vector field Hy satisfies
the following equation

2
(vgj) Hy = —72H,,

if and only if for every horizontal helix o on the base manifold My, the corresponding curve
Toa is a heliz on Ms.
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Proof. We consider that p € M, and «a(s) is a horizontal helix with curvature s and torsion
7 on the base manifold My, Toa : I — My is the corresponding curve and we can define a
vector field T,.£ along T o a by

T*g(s)) = “T*a(s)é-(s)a

for each vector field &, along «, where &, is the unit tangent vector field along « and s is
the arc length parameter. Now we assume that T o « is a helix with the curvature s and
torsion 7 on My. From (1), we have

Ny 3 _omy
(vi) To(&s) + K2V T.(&) = 0, (21)

where K2 = &2 4+ 72. Using (2), we get

Mo My
VI T(&) = Tu(V &) + (VT (. &) (22)

From (2) and (22), we obtain

Dﬁ% M, Ny 9 Ny
VIV &) = Tal((V )6 + (VI)(E, V  60).

Using (22) and (4) in the last equation, we find
o5 : gt T2
Vgs (‘T*(Eé) = _S(v:r*)(gs,gs)r‘r*(fs) +V§s (VT*)(févgé) +“T*((Vgs) gé)

Ny
+(VT)(Ess Vi, &s)- (23)

Using (2) and (23), we arrive at

s

2\ m W B
<vgs> T(&) = ‘T*(V§S€S)+(VT*)(557((V53) &) *Vg (S(vm)(gﬁ,gs)‘y*(gs})

My N Mo el
+VI(VE (VT (s, &) + VI (VT (s, YV &6))-

So, we obtain from (2) and (4)

zm% ’ il L
<v§s> T.(6) = To(VE 6) + (VIE (V%) = Sors e e T-(6)

W, (24)
_(VT*)(£S7 S(vn)(ss,ss>7* (59)) B 7*( v €s T*S<VT*)(55,55>T*(§S))
1 2 1 9311
+ (VL) (V)€€ - S my Tu(€) + VIN(VT)(E, V. 6.
(VT V ¢ €s)

Substituting (24) and (22) into (21), we obtain

9)”(1 ED’tl 9JI1
Tu(V3 €) + (VT (6 V2 &) = Tu( Ve, *TuSan e e Te(€)
7(V‘J‘*)(£€7 S(vj*)(gsés)j‘*(ﬁs)) - SngL (VT*)(ES,ES)‘I*(&)

1\ 2
+(V2) (VT &) - S m o Ta(E)
(VT)(E, V¢, &)

n My . Ny -
VL (VT Vi, &) + K2T(V &) + K2 (VT)(6s,6) = 0.

(25)
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By looking at rangeT, and (rangeJ,)* components of (25), we have
mé ~o 9311 E):nl
‘I*(Vgsés) + KTV ssfs) —T.(V €s *{‘T*S<V'f*>(ss,ss>(‘T*(§S)>
~S0rt (w7 enen T+ (8) S(W*)(&’s@&&)‘h(§s) =0
and
(VT (V)6 — (VT o Sioren T )+ (V) (V76 6
+VET (VT (&, V L)+ Kz(V‘T )(&s,€s) = 0.
Considering (7), we arrive at
Ve 7.5 S
TV, TS wren T ) = (Ve8) oo To(E)
Djt2g'
T (&s PV; T.(&). 2
7 rpenen *68) THETIEE) PVET-(E) (26)
Using (26) and Frenet formulas in rangeT, components of (25) we get
(K2 = K2 = KT (V2) = K8 gy, vy To(66) = (Ve ) T. (&)
(VT (€s:82)
Mz (27)
-2 T (&) — PV; T.(&) =0.
Svgf(vzr*)(as,as) (&) = Swr)e.e Vi, (&) =0
From (6), we have
gL ~ Ny
2V (VT (€0 6) =2 (Ve (VTL)) (€0 6) + 4ATT (€, V &), (28)
Substituting (28) into (27), we find
~ mz
(K? = k% = 7)T.(Va) = 56S(v7. ) (6,,v2) T« (€5) = S(vr) (g6 PVE Tu(€5) (29)
=250 wreneace &)+ (V§SS) (VT2)(Ee:65) Tul&):
Taking inner product with T,.(&;), both of two sides of (29) we obtain
(kz — K = 7_2),{997{2 (T (V2), Tu(€s)) — 9K Yo, (S(Vfr*)@S,VQ)T* (€5): T (&5))
mz
g?ﬁz (S(V‘I )(5575 )Pv€ (55) (55)) = gzmz (25(655(V7*>)(55v§s)7* (55)7 7*(55)) (30)
+ s V S T* S 7T* S .
gm2(< o >(th)(55,£5) (), 74(8))
Since « is a horizontal curve, we have
9)?1 ml
Gom, ((‘T* (63)7 (‘T*( \Y% £s gs)) = 9o, (657 \Y s 68) = KOs, (657 ‘/2) =0 (31)

Taking into consideration (31) and (5), (30) reduces to
Mo

—5hgan, (VT (€5, V2), (VT) (65, 65)) = Gom, (Sv7.) (60,60 PVE, Til€s), Tu(65))
= 2gm2 ((v& (VT*))(£S7 Es)v (V(I*)(f.% gs))

0, (Ve) o ToE, 7)),

Using (5) and (8), we get

g, (T (€ V) (VT (€01 £2)) = gy (VT)(E6r V' €0), (VT (601 )
= 399112 ((VES (V(.T*))(fs, 55)7 (VT*)(587 55))
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By using (28), we obtain

—6hGan, (VT) (Ess Vo), (VT) (5, €0)) = 3G, (VI (VT (Ee &), (VT (66, E4))
- 6'%99312 ((VT*)(fsa ‘/2)’ (VT*)(§S7 fs))

Hence, we yield
VE (o, (VT (6, 6), (VT (6, E6))) = 0.

So, we can see that
[(VT,)(&s, &s)|| = const..
On the other hand, from (4.9), we infer
Mo
(K? = &% = 7°)rT.(Va) = 5KS Tol&s) + Svm60 PVETE) - (32)

(VTx)(Es,Va) “ *
so that
gDRQ((VT*)(557§S)7 (VT*)(fs"/é)) =0. (33)

Taking derivative of (28) and using (rangeJ,)* components of (25) and (7), we obtain

56(Ve, (VT)) (&, Va) + 362(VT,) (Va, Va) + 467(VT,) (&, Vs)
= (VT (& S(vm) 60,60 T (Es)) + 487 (VT (65, &) (34)
—V2 (VT)) (&, &) — K2H(VT)(E, &)

Changing V3 into —V3 into (34) we arrive at
(VT.)(&s: Va) = 0. (35)
From (4.13), (35) and Corollary 3.1, we have that T is umbilical map. If we change Vo with
—V5 into (34), we get
5(Ve, (VTL)) (&, V2) = 0. (36)
Taking inner product (32) with T.(V2), we have
(K2 =k =19k = 5hgy, (VT)(E, V2), (VL) (€ V2))
+Hgimz ((VT*)(§Sa fs)v (VT*)(%? ‘/2))’
that is
(K% = &* = 7°) = | Ha|*. (37)
Substituting (35) and (36) into (34), we get
362 (VT (Va, Va) = (VT)) (€ss S(va.) e T (€s))
+4R2 (VT)(8s,8s) — VE (VT)) (&6, &) — K2(VTL)(6s, 6s)-
From umbilicity and derivative of (28), we have
3k2Hy = (VT*))(fs, S(V'J'*)(ES,ES){I* (55)2 +4Kk2Hy — (VZ-)2H2
+2I’\32H2 — 2/’132H2 — K2H2.

From (5), we can see that

(K? = K2 H = g, (VT)(Es. &), (VT (&, €))Hz — (VI )2 Ho.
So, we get
(K* = & — | Ha|[*) Hy = ~(V ) Ha.
Using (37), we have
(VI )2Hy = —r2H,.
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Conversely, we assume that T is a umbilical map and mean curvature vector field satisfies
2
(ng) Hy = —7%Hy. Then we calculate

m, \ 3 m, m,
VI Tu&) = Tul(Ve)?6s) = Tl Ve, "Tu(Sy, Tul(60))) (38)

N2
—(K2 4+ | Hy|* o = S, Tu(€)+ (V) Ha.
gs 2

If we use (38), we have

mz 3 mQ

VI Tu&) + (8 + 72 + | He | ) V] Tu(&) = 7*((9%155)355)

T 2 2 2 L=
—Tu( Ve, "Tu(Sy,T:(&s))) — 9 LHZ‘T*(fs)+(F«' + 7+ [[H2||) T (V&)

T
Ve

Then we get
DUTRING s g M
(V) e+ (24 (Ve =0
Since « is a horizontal helix on 97, then we find v = T o « is a helix on IMs. O
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