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ON THE OPTIMAL DESIGN OF  HELICAL SPRINGS OF AN 

AUTOMOBILE SUSPENSION 
 

                                    Aurel P. STOICESCU1 
 

 
In lucrare se prezintă metoda de proiectare optimală a arcurilor elicoidale 

din suspensia automobilelor dupa criteriul masei lor minime. Pentru aceasta, la o 
rigiditate dată a arcului, sunt luate în considerare solicitarea corespunzătoare forţei 
maxime preluate de arc, solicitarea la oboseală, condţia de stabilitate la flambaj, 
restricţiile privitoare la indicele şi diametrul exterior ale arcului. Exemplul numeric 
tratat în lucrare permite să se tragă concluzii cu caracter mai general. 
 

The paper presents the optimal design method of the helical springs of the 
automobile suspensions according to the criterion of the minimum mass. For this 
purpose, at a given spring rate,  the torsional stress corresponding to the maximum 
force applied to the spring, the fatigue stress, the buckling stability condition and 
the constraints relating to the spring index and to the outer coil diamete are 
considered. The work  example allows also to draw more general conclusions. 
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1. Introduction 
 

 In most cases, the main spring element of the independent wheel 
suspension is the helical (coil) spring. This should ensure a given suspension 
stiffness that determines the natural frequency of the oscillations of the 
automobile sprung mass. It is a fundamental quantity that characterizes 
smoothness of the ride [1- 9]. At the same time, the coil spring should ensure 
large deflections in order to corresponde to the highest allowed displacements of 
the wheels in the relative movement to the body. The all above mentioned items 
are rendered evident on the elastic characteristic of the suspension. The 
establishing of the elastic characteristic parameters is made according to the 
literature indications (see especially [5] and [9]) that rely in part on theoretical 
considerations and to a great extent on numerous empirical data. 
 If we know the coil spring stiffness and the maximum deflection we can 
determine the coil spring dimensions by making use of the known methods for the 
stress and displacement calculation [10, 11,12]. As a rule, in textbooks and other 
bibliographical sources [1, 2, 13] mentions are made of the above given kind 
without dwelling upon the peculiarity of the given case. There are works however 
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[3,5,9] that render these peculiarities evident and present concretely how to 
calculate the helical spring dimensions. But even in this case it is necessary to 
choose initialy two quantities in the following variants: the mean spring diameter 
D and the spring index i=D/d (d-coil or wire diameter) [3]; the mean spring 
diameter D and roughly the coil diameter d [5]; the coil diameter and the spring 
index; the number of working coils and the gear ratio of the spring to the wheel 
[9]. The values of these quantities are chosen in accord with one of the following 
cases: a) taking into account the available space (in this case, one chooses the 
mean spring diameter}; b) one chooses the spring index that belongs to a given 
interval; c) one uses the specifications of the similar automobiles. But, in general, 
the literature does not show how to rationally choose the above mentioned 
quantities. For example, it is important to know if it is really  justified to choose  
the maximum value of the mean spring diameter in the way that is suggested in 
[3] (it is assumed that there is a given known available space). 
 Still it is necessary to add the fact that because of the nonliniarities of the 
used expressions the spring calculation is iterativ. In general, the strategy of the 
iteration performing is not enough justified. 
 From all those facts it results that and an additional condition may be 
posed or that certain optimization criteria may be considered. One of those criteria 
could be the spring mass. The condition consists in the minimization of this mass. 
In general, the problem of mass minimization of a helical spring is briefly 
formulated in [13], where the complete solution of  a torsional spring is presented. 
Also, in [12] some works are refered that deal with a similar problem in the case 
of the valve springs of the internal combustion engines. 
 The objective of this paper is to describe a method of the optimal design of 
an automobile suspension coil spring according to mass minimization criterion. 
Therefore, one uses the theory of the nonlinear programming with constraints. As 
a preliminary, a series of  correction coefficients that are ordinarely given by 
diagrams are expressed analytically. At that same time one discusses the bearings 
of different imposed constraints, drawing more general conclusions. The method 
yields the high accuracy results. 
 

2. Formulation of the optimization problem 
Say Fa [N] is the force applied to the coil spring. Then the maximum 

torsional stress is given by the relation [10] 
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where k is the shape coefficient of the spring that depends on the spring index. In 
accordance with [10], the expressions of this coefficient suggested by some 
authors are presented in table 1. 

 
                                                                                                              Table 1 
The shape coefficient of the spring as a function of the spring index 
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In the specialized references the use of the shape coefficient expressions are not  
uniform: Göhner [5], Wahl [3,9,12], Gross[1]. In the monograph [11] the 
proposed expression is i511 .+ , close to that of the Romanian standard. 
 The number of the working coils is determined by the relation 
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where ka [N/m2] is the spring stiffness and G [N/m2] represents the shear modulus. 
Knowing the suspension stiffness or derivative sag  z0 that corresponds to the 
automobile capacity load (see Fig.1), one can calculat the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              Fig.1. Characteristic elastic of suspension (corresponding to a single wheel)      
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stiffness of the main spring ka or its rated sag  fn [3, 5, 7, 9] (In Fig. 1 the 
following notations are made: z [m]-the vertical displacement of the tyre contact 
area centre; zn [m]-the sag corresponding to the capacity load; Δz [m]-the 
maximum variation of the wheel displacement that is limited by jounce buffer; Zr 
[N], Zrmax [N]-the normal reaction of the road acting on the wheel, respectively its 
maximum value corresponding to the maximum displacement (travel)). The 
variations of the spring sag that corresponds to the extreme inferior position and 
the superior position of the wheel are Δfi and Δfs,  respectively. Taking into 
account suspension gear ratios corresponding to those positions and starting from 
the values of zn and Δz one can determine Δfi and Δfs [5,7]. The maximum force 
acting on the spring is:  
 
                                              ,.max saana fkFF Δ+=                                                (3) 
 
and  the spring force amplitude that is necessary to determine the fatigue stress is 
given by the following relation according to [8] : 
 
                                                      .2)(9.0 asia kffF Δ+Δ=Δ                                                (4) 
The allowable tangential stress under static load of the spring steel is [8]: 
 
                                                  ,/)(0 sca cdbqστ =                                               (5) 
 
where σc [N/m2] represents the limited creep stress, q [-]-coefficient less than 1 (in 
general, q=0.63), b0 [-]-coefficient depending of the wire diameter, cs [-]-the 
safety factor. The allowable fatigue tangential stress is determined by the relation 
[5]: 
 
                                                  ,/)(11 sra cdbq στ =Δ                                            (6) 
 
where σr [N/m2] is the ultimate tensile strength of the spring steel, q1 represents a 
coefficient with less than 1 values (in general, q1=0.24) and b1(d) is a coefficient 
depending of  the coil diameter. 
 The minimum length of the coil spring is [5] : 
 
                                           sb ndddDLL ))((min Δ++= χ                                   (7) 
with 
                                                   ,))(1.1( ddnL sb Δ++=                                      (8) 
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where Δd represents the tolerable superior deviation of the coil of nominal 
diameter d and χ is a coefficient used to determine the minimum gap between the 
spring coils when the spring is maximally compressed. The length of the coil 
spring under nominal load is 
 
                                                  ,min sn fLL Δ+=                                                    (9) 
 
and the length of  the coil spring in the free state is given by  
 
                                                  ./0 aann kFLL +=                                              (10) 
 
From the condition that the tangential stresses corresponding to Famax and ΔFa do 
not exceede the allowable values we obtain the inequalities : 
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The coil spring should not lose the buckling stability and consequently the 
condition of the stability is written as: 
 
                                   ,0)/(/)(),,( 0003 ≤−−= DLfLLLDdnF lbs                  (13) 
 
where  fl is a function presented into a diagramm [5]. 
 Besides the above conditions we may add  the following conditions: 
 
                                        ,0,0,0 max ≤−+≤−≤− eDdDDd                          (14) 
 
where   Demax represents the maximum outward diameter of the spring, that must 
not be override due to the limited space. 
 Finally, one takes into account that values of the spring index belong to a 
certain interval: 
 
                                              .0,0 maxmin ≤−≤+− iiii                                      (15) 
 
In the general case, one recommends imin=4, imax=12 [10,11] and in the case of the 
automobile suspension imin=7 and imax=12, according to [3]. 
 The spring mass is given by the relation 



Aurel P. Stoicescu 86

 
                                                                       (16) ,][4/)( 22 kgDdnnm scsa ρπ +=

 
where nsc=1.5÷2 represents the nonactive coil number and ρ [kg/m3] is the density 
of the spring steel. Taking into account the relation (2), the preceding relation 
becomes 
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The optimization problem  consists of  minimizing  the spring mass, namely  the 
objective function F0 with the following constraints: (11), (12), (13), (14) and 
(15). 
 

3. Solving the problem of the spring mass minimization 
 
The concrete approach of the optimization problem requires to know 

the analytical expressions of the coefficients b0, b1, χ and fl.  Mention is made that 
there are  diagramms for these coefficients [5]. Starting from these diagramms and 
using the smallest square method we obtain the following expressions: 
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As it has been found , the constraints number of the optimization problem 

is 8, consequently it’s large enough. In view of the present automobile 
construction it is possible to start with a more reduced constraints number. One 
solves the optimization problem and  verifies if the other constraints are satisfied 
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thereafter. If the constraints are not satisfied  the problem is resumed with the 
additional constraints. 

By examining the conditions (11) and (12) we observe that these are of 
similar structure. It is possible that if one of the conditions is satisfied the other be 
also satisfied. If, for example, the static strength condition (11) is more severe 
than the fatigue strength condition (12), then by comparing of these inequalities 
we obtain: 
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The variation interval of  d that satifies the inequality (22) is easilly to find. In this 
case we use  the condition (11) only. If d does not belong to this interval, we use 
the constraint (12) only. 

 If we consider the constraints (11) and (14), then the Lagrange’s 
function may be written 

 
                  ,(),(),( 43max2110 DdDdDDdFDdF e λλλλ ++−+++=          (24) 

 
where λj (j∈{1,2,3,4} are the Lagrange’s  multipliers. The condition of Kuhn-
Tucker is expressed as [13]: 
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Using the Göhner’s expression of the shape coefficient we obtain the following 
relations of the partial derivatives 
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If d≤0.01m, then the second term of the square bracket of the first relation (26) 
is equal to zero. 
 If λ3>0 and λ4>0 then d=0 and D=0. Therefore, the results for the function 
F0 are absurd. Consequently, λ3=0 and λ4=0. If λ1=0 and λ2=0, from (26) we obtain 
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that could not be simultaneously satisfied if d>0, D>0. As a result, the objective 
function does not have a local minimum in the first quadrant of the coordinate 
system and the optimum point belongs to the border of the admissible domain.  
 Finally, we will examine the following conditions: a) λ1=0, λ2>0; b) λ1>0, 
λ2=0; c) λ1>0, λ2>0. If the condition a) is satisfied it is easy to observe that the first 
relation of (26) could not be fulfilled, so that the cases b) and c) are only 
considered. Therefore, the optimum point cannot exclusively belong to the border 
given by the third relation (14). Consequently, a necessary condition for the 
minimum of the spring mass is F1(d, D)=0, namely the stress should have the 
allowable prescribed value.  In the case b) there are three equations and three 
unknown quantities: d, D and λ1. Eliminating λ1 between relations (26) we obtain 
(it is assumed that d>0.010m): 
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If d≤0.010m then the second term of the square bracket is zero. The nonlinear 
system of the equations (28) and F1(d, D)=0 may be solved by known numerical 
methods. So the solution of the optimization problem is obtained. In the case c)  
the conditions appear: 
 
                                         .0,0),( max1 =−+= eDdDDdF                                (29) 
 
The solution of the problem is the numerical solution of the system (29). 
 It stands to reason that in a certain specific case one of the two situations 
b) or c) could only appear. In order to establish what situation is   really involved, 
the two systems are separately solved determining the values of the objective 
function (the spring mass). The solution of the optimization problem corresponds 
to the least value of the objective functions. Of course, in the same time, one 
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verifies if the constraints are fulfilled in accordance with the given situation. After 
that, one can pass to the check up the constraints (13) and (15). 
 In a similar way to that above presented, it is proved that the optimum 
point does not exclusively belong to the border corresponding to the minimum 
value of the spring index (see first condition (15)). This point could even be the 
intersection point of the border given by (11) and the first relation of (15). Its 
coordinate are obtained by the solving the system of the equations that correspond 
to two borders. In general, one can say nothing regarding the fact that the 
optimum point belongs or not to the border corresponding to the maximum spring 
index exclusively. If after the equations are solved according to the situation b) 
and c) it is found that the second constraint of (15) is not fulfilled, then we 
consider the system of the equations corresponding to the equalities of (11) and 
second condition of (15). Its solving leads to the optimum solution. 
 When the constraints (13) are not fulfilled, the Lagrange’s function is 
properly completed. After that a nonlinear system should be solved, that requires   
knowing the expressions of the partial derivatives of the function F3 with respect 
to d and D. These expressions are enough intricate so that it is recommended to 
approach the problem differently, namely in connection with the plotting of the 
constraints. In the present case, when there are two variables d and D, the plotting 
is easilly to make, being very suggestive. In a concrete case it makes evident the 
above mentioned situations and the problem solving is easier. 
 

4. Working optimization example 
 
In [5] it is minutely presented a work example of the calculation of a 

suspension helical spring of a car front axle. In order to make a comparison, in the 
present exemplification the initial necessary data for calculation of the spring are 
taken over from the above mentioned work example. The specifications are the 
followings: Fan=4400N, ΔFa=2600N, ka=42800N/m, σr=1600MPa, σc=1450MPa, 
q=0.63, q1=0.24, G=80000MPa, ρ=7800kg/m3, cs=1.1, Δd=0.08mm, nsc=1.5. We 
consider further: imin=7, imax=12 and Dex=200mm. 

The plotting of the borders given by constraints (14) and (15) are achieved 
without intricacy. Relating to the constraints (11), (12) and (13), in MATLAB the 
functions F1, F2 and F3 are defined and using function Contour the zero level 
lines are plotted. The obtained results are shown in fig. 2. In this Figure the 
conditions corresponding to the shown curves are specified. It is found that, in the 
present case, the constraint relating to the stress corresponding to the maximum 
load of the spring is more severe than the constraint in connection with the fatigue 
stress. The condition of buckling avoidance  defines a domain that is included in 
the feasible fatigue domain, but  not included in the feasible domain of the 
maximum load. So we obtain the intersecting points A and B of the borders 
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corresponding to the maximum stress and the buckling. It is to observe that these 
points are situated in the feasible domain defined by the maximum value the 
minimum value of the spring index. Therefore, at least in the present case, the 
spring index is not drawn near to the mentioned values, particularly to the 
minimum value. In exchange, the condition regarding the maximum spring 
diameter is restrictive and the point C (see Fig. 2) is located between the points A 
and B. As it has been shown, the optimum point can’t be situated on the straight 
line corresponding to the maximum diameter. Therefore it belongs to the border 
CAF.  

           
                   Fig.2. The borders of the constraints and the feasible domain 
 

Solving the system of the Equations (28) and F1(d, D) =0, we get the 
solution: d=14.81mm and D=100.98mm. This solution defines the optimum point 
Op (Fig. 2), located on the border AC. In this way, in the case that has been 
examined here, the optimization problem has been solved. 
 To clearly represent the optimum conditions, in Figure 3 the level lines of 
the objective function are shown. On the level lines the values of the spring mass, 
inclusively the minimum value (5.298kg) are inscribed. 
Also, on the same figure one shows and the border relating to the maximum 
loading (the other borders are not shown). In general, it can proved that the 
solution of the mentioned system corresponds to the point of tangency between a 
level line and the border defined by F1=0. The representation on the figure 
confirms this affirmation. Following the position and the aspect of the level lines 
one finds that the optimum point can’t belong to the border AF, so that the 
solution of the problem is that mentioned above. In further specific cases, the 
representation of the same kind allows to make evident the border on which the 
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optimum point can be situated. It is necessary to observe that, according to the 
location of the level lines, in the feasible domain the sprung mass increases in 
proportion as the figurative point moves away from the constraint curve for the 
maximum stress. In spite of all these, there are points inside of the domain where 
the spring mass is less than the mass corresponding to the same points situated on 
the constrained curve. Therefore, the calculation corresponding to the maximum 
load does not always lead to the reduced mass. 
 
 
 
 
                  
 
 
                  
 
 
 
 
 
 
 Fig.3. Level lines of the objective function and the string mass 
 The optimization problem may be also solved in a direct way using TOOL 
BOX-Optimization from MATLAB. In the present case, using this mean, we get a 
result similar to the above mentioned result, namely: d=14.81mm, D=100.98mm, 
ma=5.543kg, ns=5.39. Therefore, in comparison with the optimum solution, in [8] 
there is a mass increase of 4.6%. It is noticed that there are large enough 
differences for the spring diameter and the working coil number. It is interesting 
to investigate the variation of the spring parameters as a function of the coil (wire) 
diameter when the calculation is made for the condition of the maximum loading 
(for a given spring stiffness). With that in view, considering d as a parameter we 
solve equation F1(d, D)=0 using a adequate program in MATLAB (we consider 
d∈[dA, dB], where dA and dB are the values of the coil diameters corresponding to 
the points A and B at the buckling limit). The obtained results are concentrated in 
the Figs. 4, 5, 6 and 7. 

The relative variation of the spring mass in comparison with minimum 
mass is plotted in Figure 4. It is found that in the case maximum coil diameter we 
get a mass increase of 16% (the values nearer to dA ensure a reduced mass). 
Together with that, the spring diameter has an important increase.  

The recommendation of [3] with regard to the choice of the spring 
diameter as large as possible leads to a signifiant mass increase, even if spring 



Aurel P. Stoicescu 92

length decreases. For the diameters nearer to the optimum value the working coil 
number is  great. This decreases considerably for the large coil diameters. Taking 
into account possible design constraints relating to the spring diameter and to the 
lengths the mass variation in comparison with the minimum value by means of the 
Fig. 4  may be estimated. 
 
 

                                       
 
 
                                                                      

Fig.4. The relative variation of the spring mass as a function of the wire diameter 

 
 
 
 
 
 
                                         
 
                             
       
 Fig.5. The spring diameter as a function of the wire diameter 
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      Fig.6. The free length and the nominal spring length as a functions of the coil diameter 

 

                
 
Fig.7. The working spring coil number as a function of the wire diameter 
 

 Finally, it is to observe that in another concrete case the relative placing of 
the points B, C and E may be different from that of the present example. So we 
should consider the corresponding situations that have been analysed in section 3 
and the optimization problem can be completely solved.                                                                           
 

 5. Conclusions 
 

Expressing analytically the coefficients that are necessary to calculate certain 
helical spring stresses of an automobile suspension we have elaborated a 
nonlinear programming model with constraints for the optimal design of an 
automobile spring suspension according to the criterion of the minimum mass. 

The optimization method is associated with the solving of certain algebraical 
systems by means of  usual computer programs. These systems are minutely 
presented in the paper. 
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The reduction of the spring mass by optimal design may be of  16%. 
The choice of a large spring diameter as one recommends sometimes in 

literature has as a result  large value of the spring mass. 
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