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ISOPERIMETRIC INEQUALITIES IN MINKOWSKI
SPACE M,

Radu F. CONSTANTIN!

In prima parte a acestei lucrari sunt prezentate doud formule variationale
in spagiul My, obtinute de O. Biberstein in ([1]). Acestea conduc la problema
izoperimetricd rezolvata de H. Busemann in ([2]), ([3]).

Autorul obtine inegalitatea, aZL% 2 AA- Ap , unde I este o curba convexa,

inchisa de clasa C' in spatiul My, cu lungimea L si aria Ap. Curba I este un
anti-cerc in spafiul My, cu raza a >0 si aria Ar..
Dacai a=1 si I"= T, unde T este izoperimetrica spatiului My, se obtine

. . . . L. L2 . . Lo
inegalitatea izoperimetricd, L~ > 4AF AT, unde AT este aria izoperimetricel.

In partea a doua a lucrarii, aceastd inegalitate este generalizatd pentru curbe
inchise din spatiul M,, care nu sunt convexe.

In the first part of this paper are presented two variational formulas in the
space My, obtained by O. Biberstein in ([1]). These lead to the isoperimetric
problem solved by H. Busemann in ([2]), (/3]).

The author obtain the inequality, ale% > 4Ap Ap, where 1 is a convex, closed

curve of class C' in My space, with the length L and the area Al—. The curve T
is a anti-cercle in My space, with the radius a > 0 and area Ar' .
If a=1 and I''= T, where T is the isoperimetric in M space, we obtain the

isoperimetric inequality, 1% > 44r Ar , where AT is the area of isoperimetric T.
In the second part of the paper, this inequality is generalized for closed curves in

M,, which are not convex.

1. Introduction

Let V,, be a differentiable manifold of class C' and let F be a family of
submanifolds of dimension p <n, which depend on » real parameters.
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An arbitrary submanifold S, eF is given by a submersion which is
represented with respect to two local maps (Hl;xl,...,x”) on V, and
(Hz;ul,...,up)on S, as follows:

x! =xi(u1,...,up,al,...,(xr) i=ln (1)

Ki=Lpk=1r.

where the functions x’ ar of class C* relative to u/, o
Let @ be a differentiable p - form of class C' on V,, an @e Vv the inner
product of the vector field v defined on V|, with the differentiable form .

For each S p € F we consider functional
| = j ®. @)
SP

Throughout this paper, the manifold V,, will be replaced with Minkowski
space Mg, and instead of relation (1) we shall use the vectorial notation,
m=M(ul,...,up,ocl,...,ocr). (3)
We denote
r r N7
SI:Za—IkSOLk, 5M=Za—'v]'€5a" .
k=100 k=100
The variation of the functional (2) will be:
ol = deOéR_A+ jm-aﬂ, (4)
S, s,
where S, is the boundary of the manifold S, and dw is the exterior
differential of the form w.

It is known ([1], [5]) that fixing in space R? a closed, convexe curve U of
class C%, without stationary points, with area m and central simmetric with respect
to the origin O, it can be defined minkowskian norm in M.

The curve U named indicatrix has the parametric equation:

t=t((p),0£(p£2n,
where ¢ represents the double of the area of the sector (O,tg,t), named the

amplitude of t.
The vector ty corresponds to a fixed point on U.
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The curve T, x=—-n(¢), where n(¢)= :—t is named the isoperimetric of
¢
the space M ([3]).
Minskowian frames will be those affine frames with respect to whom the
area of the indicatrix U is «.
The geometrical interpretation of the parameter ¢ leads to the relation:

[t,n] =1,
where by [x, y] we denote the determinant constructed on the vectors x, y € My,

relative to a minkowskian basis.
Minkowskian curvature of the curve T will be denoted by x(q)) and

satisfies the relation:
dn

-1
ﬁ -\ ((P)L (5)

where A (¢)>0.
Let {M,el, e2} be a minkowskian frame. Then the motion equations are ([1]):
dM = G116 +0oé9, del =éey d(p, de2 =—7»_1((p)eld(p,

where ¢ is the amplitude of the vector ¢; on the indicatrix U.
Structure equations will be:

doy =7L_1((p)02 ~de, dop =c1 Ade.
2. Isoperimetric problem in the space M,

Let ', be a family of closed curves in the space My, depending on the

differentiable parameter o R?, given by the vectorial equation:
M=M(s,a),

where M is a function of class C* relative to minkowskian arc s .
We consider the functionals:

L((x) = J‘(Dl )

that represent the length of a curve from the family I, , where ©; =c1 =ds and

A((x): Icoz \

that represent the area of a curve from the family I,
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@3 =%[ﬁ,dﬁ].
Using relation (4) for closed curves we obtain o
dL oM d4 oM
—:Idwlo—, —:—Idmzo ,
da oo da oo
r |

o

because both integrals in (4) extended to JI", will be zero.
Along the curve T';, we have,

ﬂ = ay(s)er + az(s)ey,

oo
where {M,ej,e,} is Frenet frame associated to the curve T', in the point
M(s,00).
We obtain,
dog o Z8=37(0)oz nd0)e =1 (p) oz e S do+
oo oa oo

Al doe
+ ((P)(cp -

aM]
02.
o

Along the curve T', , we have o, =0 and when we pass from a curve to
another curve from the family ', , a € R, the value of the form o5 is

62 [ ] 8M =a2(s).
oo
It results the variational formula:
dz =—Ik_laz(s)i—(pds=—J%(s)az(s)ds, (6)
S

do

a o

where i = x-l((p)‘;_‘ﬁ’ — 3 Yok
S

: —— : d ~ .
The curvature of the curve T', in the point M(s,a) is & =d—(P, and k is
N
its anti-curvature in the same point.

In the same way, we obtain the second variational formula,

j_jz_IGZ(S)dS' (7
F(X
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Theorem 1. Let be a curve from the family I, which varies such that
g—Azo. In order that such a curve satisfies the condition j—Lzo it is
o o

necessary and sufficient that along this curve its anti-curvature k should be
constant, i.e. ", is anti-circle.

The anti-circle with the center in the origin of the space M, and radius 1 is
the isoperimetric T.

3. Isoperimetric inequality in the space M,

Let {0,7,n} be minkowskian frame with respect to whom we consider the
family of straight lines Ag:x=-H(p)n+pt, peR.
The function H(e) is a positive, periodic function with the period 27, of

class C? and is called the support function ([1], [2]) for the convex envelope T of
the family of straight lines. This will have the tangential equation T":

x=—H(ph+H M (o).

The length and the area determined by the convex and closed curve T will be,
2n

Lp = I%_l(@)H (o)do,
0

(8)
on 2n
Ap =% ﬂx,g—ﬂdw% !(k‘l(w)Hz(@)—H(l)z (cp))dcp-

Using the notion of mixed area ([2]) for two closed, convex curves I'; and T'5, of
class C*, we obtain,

1 d

X
ATy,Tp)== I x,—2 |dg,

2 do
0

where T'; has the equation x; =—H; (o) +Hl-(l)t,i:1,2, H; being the support
functions for the curves T';.

Because the indicatrix U has the area equal with 7, Lebesgue measure on

R2 coincides with minkowskian bidimensional measure on M.
Therefore, by Brunn - Minkowski inequality ([3], [4]) we obtain,

AZ(F].’FZ)ZAF]_AFZi (9)
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where Ar,,i=12 is the area determined by the curve T';.

For Ty =T and ', =T, where T are the equation x=—-an, a>0,
we have

Al r)- %1 {_ H(ph+ HO () —a j_(p} do-

27 (10)
= % gH(@[l(w)d Q= %Lr-

Replacing (10) in (9), we obtain the inequality,
a®L} > 4Ap Ap.
For a=1and T =T, we obtain following theorem:
Theorem 2. For every convex, closed curve T'c M, of class C!, with
area Ar and the length L, the following isoperimetric inequality holds:
12> 44p A7, (11)
where T is the isoperimetric of the space M.

In (11) the equality holds only for T'=T or for every curve homothetic
with T.

If the space M, is the euclidian space, then At == and from (11) we

obtain classic inequality L12~ > AnAr .
4. The generalization of isoperimetric inequality in the space M,

Let B M5 be a bounded and connected set and let B” be the convex
cover of B.

Theorem 3. The set of straight lines X ={g|gnB=@} and
X" = {g lg M B » @} coincide.

The proof is mode by double inclusion.

Theorem 4. Let Bc M, be a convex and bounded set and c“;g(B) be

minkowskian length of the linear set determined by the intersection g " B..
Then, relativ to the elementary measure of the set of straight lines in the

space My, d g =1 "(p)d H A d ¢|, we have ([5]):
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Iés(g)dg=ATAB (12)
X
where A+ is the area of isoperimetric T and Ag is the area of the set B.
In space M, holds Crofton's integral formula ([5]):

jvdg=2LB, (13)
X
where v is the number of intersections of with the boundary 0B of the set B and
Lg is the length of the boundary 6B , supposed of class C".
If B is not a convex set, then in (12) v >2 and we obtain,

Lg > j dg. (14)
X
When B is convex, Lg = jdg, because v=2.
X

The following theorem extend inequality (11).

Theorem 5. For every bounded an connected set Bc< M, whose
boundary oB is a closed curve of class C', with the length Lg, the inequality
holds,

L% 24I§B(g)dg- (15)
X
Proof. Let B" be the convex cover of the set B and let LB* be

minkowskian length of its boundary.
Then, by (14) and theorem 3, we have,

2 2
2> Idg - jdg . (16)
X x

By (11) and (12), for the convex set B we have,
2
LB* > AB* AT and IéB* (g)d g= ATAB* ,

X
hence

Lé* >4 L& 5 (g)dg. (17)
X

Because LB* = Id g, by relations (16) and (17) we obtain,
X*
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2 2
2 _ _ 72 N
gz [de| = j*dg —LB*z4j*aB (g)dg (18)
X X X

The inclusion BcB” implies that gchgmB*, for all g. Hence

lg A B < Hg A B*H, thatis £ _+(g)> £ (g).
So relation (18) becomes (15), that is

1§24 [ep(e)dg=4[ca(e)dg. (19)
X" X
In case that B is convex, from (15) and (12) it can be obtained relation (11).
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