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LIMITS IN THE CATEGORY OF STRUCTURAL TOPOLOGICAL

SPACES

M. Z. Kazemi Baneh*1 and S. N. Hosseini2

We introduce the notion of topological structure, and relative to that the

notions of structural topology as well as structural continuity are given. We show

that for a given topological structure, structural topological spaces together with

structural continuous morphisms form a concrete category. We then give the

construction of the induced, coinduced, discrete and indiscrete structural topolo-

gies, proving certain results that hold for topological spaces also hold for structural

topological spaces. We demonstrate that if the base category is (finitely) complete,

then the category of structural topological spaces is concretely (finitely) complete.

Finally we provide some illustrative examples.
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continuity, Limit.
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1. Introduction and Preliminaries

Structural topology as well as structural continuity are introduced in [2] based

on a locally given topological structure SX for an object X in a category, where it

is shown that these notions generalize the notions of topology and continuity, see

[6], as well as some of the notions of fuzzy topology and fuzzy continuity existing in

the literature. In this paper in Section 2, the topological structure S is defined glob-

ally consisting of natural transformations and structural topology is defined slightly

different. Also structural continuity is introduced. We then show that for a given

topological structure S, structural topological spaces together with structural con-

tinuous morphisms form a concrete category that we denote by STop. In Section

3, under certain conditions we construct the induced, coinduced, discrete and indis-

crete S-topologies in STop. We also prove that certain propositions similar to those

in the category Top of topological spaces hold in the category STop. In Section

4, we show that concrete equalizers, concrete terminal objects and concrete (finite)

products exist in STop as soon as equalizers, terminal objects and (finite) products,
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respectively exist in the base category, proving that STop has concrete (finite) lim-

its if the base category has (finite) limits. Finally in Section 5, we furnish several

illustrative examples.

For categorical notions we refer the reader to [1, 3, 4]. The following lemma

will be used in the subsequent sections.

Denoting join of subobjects a : A // // X and b : B // // X in a category

by a ∨ b : A ∨B // // X and the collection of all the monomorphisms by Mono,

one can easily verify that:

Lemma 1.1. Let C be an (E,Mono)-structured category for some collection E of mor-

phisms. If the binary coproduct of the subobjects a : A // // X and b : B // // X

of X exists, then the mono part of the factorization of a⊕ b : A ⊔B // X is the

join a ∨ b : A ∨B // // X .

2. The Category of Structural Topological Spaces

In this section we give a slightly different definition of a topological structure

relative to a base than the one given in [2]. We then introduce the notions of

structural topological space and structural continuity and show that the structural

topological spaces with structural continuous morphisms form a concrete category.

Definition 2.1. Let E and C be categories.

a) A pair of functors Eop P // C
P // C, with C finitely complete, is called a

base on (E,C).

b) A topological structure relative to a base (P, P ) or a (P, P )-topological struc-

ture, is a quadruple S = (b, t,∧,∨), where

1
b // P, 1

t // P, S ◦ P ∧ // P and P ◦ P ∨ // P
are natural transformations. Here S : C −→ C is the square functor.

c) A structural topology on an object X of E relative to a structure S, or just an

S-topology on X, is a C-monomorphism TX
// τX // P(X) such that morphisms

1
bX // TX , 1

tX // TX , TX × TX
∧X // TX and P (TX)

∨X // TX

exist rendering commutative the following diagrams.

TX
��
τX
��

1

bX

///

=={{{{{{{{{

bX

// P(X)

TX
��
τX
��

1

tX

///

=={{{{{{{{{

tX
// P(X)

TX × TX
∧X //

��
τX×τX ///

��

TX
��
τX
��

P(X)× P(X) ∧X

// P(X)

P (TX)
∨X //

P (τX) ///

��

TX
��
τX
��

P (P(X)) ∨X

// P(X)
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In this case, (X, τX) is called a structural topological space or just an S-

topological space.

In the rest of the paper we let S be a topological structure relative to a base

(P, P ) on (E,C).

Definition 2.2. Given S-topological spaces (X, τX) and (Y, τY ), an E-morphism

f : X / / Y is said to be structurally continuous or S-continuous, if there exists

a C-morphism Tf : TY
// TX such that following diagram commutes.

TX
// τX // P(X)

TY

Tf ///

OO

//
τY

// P(Y ).

P(f)

OO

In this case we write f : (X, τX) // (Y, τY ).

Lemma 2.1. Given S-topological spaces (X, τX), (Y, τY ) and (Z, τZ),

(1) the identity morphism (X, τX)
1X // (X, τX) is S-continuous.

(2) the composition of the S-continuous morphisms (X, τX)
f // (Y, τY ) and

(Y, τY )
g // (Z, τZ) is S-continuous.

Proof. Similar to the proof given in [2]. □

Proposition 2.1. The S-topologiacl spaces together with S-continuous maps form

a category.

Proof. Follows from 2.1. □

The category of S-topological spaces and S-continuous maps is denoted by

STop. It can be easily verified that,

Theorem 2.1. The mapping U : STop // E taking f : (X, τX) // (Y, τY ) to

f : X // Y is a faithful functor.

By the above lemma the category STop is concrete over E.

3. Induced, Coinduced, Discrete and Indiscrete S-topologies

In this section we show that under certain conditions the induced, coinduced,

discrete and indiscrete S-topologies exist in STop by actually constructing such en-

tities. We also prove that certain facts similar to those in the category Top of

topological spaces hold in STop. To this end writing an E-morphism e : X // Y

in an (E,Mono)-structured category as e : X // // Y , we have.
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Theorem 3.1. Suppose C is an (E,Mono)-structured category, the square functor

preserves E-morphisms and the functor P preserves both E-morphisms and monos.

If f : X / / Y is an E-morphism and τY is an S-topology on Y , then τX defined

by the mono part of P(f)τY as shown below,

TY
// τY //

Tf

///

"" ""E
EE

EE
EE

E
P(Y )

P(f)
// P(X)

TX

;; τX

;;wwwwwwww

is the smallest S-topology on X making f S-continuous.

Proof. Set bX = TfbY : 1 // TX . We have:

τXbX = τXTfbY = P(f)τY bY = P(f)bY = bX

Similarly tX = Tf tY : 1 // TY satisfies the required equality. Now we have,

τXTf∧Y = P(f)τY ∧Y = P(f) ∧Y (τY × τY ) =

∧X(P(f)× P(f))(τY × τY ) = ∧X(τX × τX)(Tf × Tf )

so that the following square commutes.

TY × TY
∧Y //

Tf×Tf

����
P(f)τY ×P(f)τY

��

TY

P(f)τY

��

Tf

����
TX × TX ∧X //

��

τX×τX

��

TX
��

τX

��
P(X)× P(X) ∧X

// P(X)

By the diagonal property of the factorization structure there is a (unique) morphism

∧X : Tx × TX
// TX making the top and bottom squares commute. The exis-

tence of ∨X : P (TX) // TX follows similarly. This proves τX is an S-topology.

The commutativity of the above triangle defining τX yields the S-continuity

of f .

To show that τX is the smallest such S-topology, suppose τ ′X also renders f

S-continuous. So we have the following commutative triangles.
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TY
// τY //

Tf

///

"" ""E
EE

EE
EE

E

))

P(Y )
P(f)

// P(X)

TX

;; τX

;;wwwwwwww

k
��

T ′
X

44

τ ′X

QQ

The diagonal property of the factorization structure gives a map k : TX
// T ′

X

making the left ant right triangles in the above diagram commutative. The commu-

tativity of the right one yields τX ≤ τ ′X .

□

The S-topology on X in the above theorem is called the S-topology induced

by f and τY and is denoted by τ iX .

Theorem 3.2. If f : X // Y is an E-morphism and τX is an S-topology on X,

then τY defined by the pullback of τX along P(f) as shown below,

TY
//

Tf //
��

τY pb
��

TX
��
τX
��

P(Y )
P(f)

// P(X)

is the largest S-topology on Y making f S-continuous.

Proof. Since the outer square in the diagram

1
bX

��

bY

((

bY
!!
TY

//
Tf //

��
τY pb

��

TX
��
τX
��

P(Y )
P(f)

// P(X)

commutes, there is a unique bY making the upper and lower triangles commutative.

The commutativity of the lower one shows that bY : 1 // P(Y ) factors through

τY : TY
// // P(Y ) as required. Similarly there is a morphism tY : 1 // TY

such that τY tY = tY . Since

P(f) ∧Y (τY × τY ) = ∧X(P(f)× P(f))(τY × τY ) = ∧X(P(f)τY × P(f)τY ) =
∧X(τXTf × τXTf ) = ∧X(τX × τX)(Tf × Tf ) = τX ∧X (Tf × Tf ),

the following outer square commutes.
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TY × TY

∧X(Tf×Tf )

  

∧Y (τY ×τY )

**

∧Y

%%
TY

//
Tf //

��
τY pb

��

TX
��
τX
��

P(Y )
P(f)

// P(X)

So there is a unique morphism ∧Y : TY × TY
// TY making the two triangles

commutative. The commutativity of the lower triangle gives the required commu-

tative square. The existence of ∨Y : P (TY ) // TY making the required square

commutative can be proved similarly. This proves that τY is an S-topology on Y .

The pullback square defining τY shows that f is S-continuous.

To show that τY is the largest S-topology on Y making f S-continuous, suppose

τ ′Y is another such S-topology. It follows that there is a map T ′
f : T ′

Y
// TX

rendering commutative the outer square in the following diagram.

T ′
Y

T ′
f

��

��

τ ′Y

((

k
""
TY

//
Tf //

��
τY pb

��

TX
��
τX
��

P(Y )
P(f)

// P(X)

Therefore there is a morphism k making the two triangles commutative. The com-

mutativity of the lower one gives τ ′Y ≤ τY as desired. □

The S-topology on Y in the above theorem is called the S-topology coinduced

by f and τX and is denoted by τ cY .

Proposition 3.1. Let C have intersections. For X ∈ E, the intersection of any

collection of structural topologies on X is a structural topology.

Proof. Let {τi : Ti ↣ P(X) : i ∈ I} be a collection of structural topologies on X.

Set τ =
∩

i∈I τi : T
// // P(X) . Since τi is an S-topology, we have bi : 1 // Ti

making the following triangle commutative.

Ti
��
τi
��

1

bi

///

=={{{{{{{{{

bX

// P(X)
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So bX ≤ τi for all i, yielding bX ≤ τ . Hence there is a morphism b : 1 / / T

such that bX = τb. Similarly there is a morphism t : 1 // T such that tX = τt.

Also for each i we have ∧i : Ti × Ti
// Ti rendering commutative the following

square.

Ti × Ti
∧i //

��
τi×τi ///

��

Ti
��
τi
��

P(X)× P(X) ∧X

// P(X)

On the other hand Since τ ≤ τi, we have a morphism ki such that τ = τiki. Therefore

∧X(τ × τ) = ∧X(τi × τi)(ki × ki) = τi ∧i (ki × ki), implying ∧X(τ × τ) ≤ τi for all

i. Thus ∧X(τ × τ) ≤ τ . Hence there is a morphism ∧ : T × T // T such that

∧X(τ × τ) = τ∧ as desired. Similarly we have a morphism ∨ : P (T ) // T such

that ∨XP (τ) = τ∨, completing the proof. □
Remark 3.1. Notice that in 3.1, the weaker assumption that the collection Sub(P(X))

to have intersections does not suffice, because in ∧X(τ × τ) ≤ τi, the morphism

∧X(τ × τ) is not a monomorphism.

Corollary 3.1. Let C have intersections. Given a subobject m : M ↣ P(X), there

is a smallest structural topology on X containing m.

Proof. An intersection of structural topologies that contain m is by 3.1 a structural

topology; it obviously contains m. □

The S-topology in the above corollary is called the S-topology generated by

m and is denoted by ⟨m⟩.

Theorem 3.3. Let C have intersections and X be an object of E.

a) The identity morphism 1P(X) : P(X) ↣ P(X) is an S-topology on X.

b) The intersection of all the S-topologies on X is an S-topology on X.

Proof. (a) follows easily and (b) follows from 3.1. □

The S-topologies in parts (a) and (b) of the above lemma are called respec-

tively, the discrete and the indiscrete S-topologies on X and are denoted by τdisX

and τ indX . Note that since every S-topology on X contains bX and tX , it contains

⟨bX ∨ tX⟩. It follows that τ indX = ⟨bX ∨ tX⟩.

Theorem 3.4. Let C have intersections.

a) The mapping D : E → STop by D(X) = (X, τdisX ) and D(f) = f is a full and

faithful functor called the discrete functor.

b) The mapping I : E → STop by I(X) = (X, τ indX ) and I(f) = f is a full and

faithful functor called the indiscrete functor.

Lemma 3.1. The identity morphism 1X : (X, τX) // (X, τ ′X) is S-continuous if

and only if τ ′X ≤ τX .
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Proof. Straightforward. □

Corollary 3.2. The functor U : STop // E has complete fibres.

Proof. Follows easily from 3.1 □

Theorem 3.5. Let C have intersections, f : X // Y be an E-morphism, τX and

τY be S-topologies on X and Y , respectively. Then

a) f : (X, τdisX ) // (Y, τY ) is S-continuous.

b) f : (X, τX) // (Y, τ indY ) is S-continuous.

Proof. (a) The commutative square

TY
τY //

P(f)τY
��

P(Y )

P(f)
��

P(X)
1P(X)

// P(X)

proves the S-continuity of f .

(b) Let τ cY be the coinduced S-topology on Y by f and τX , so that the mor-

phism f : (X, τX) // (Y, τ cY ) is S-continuous. Since τ indY is the intersection of

all S-topologies on Y , τ indY ≤ τ cY . Therefore by 3.1, 1Y : (Y, τ cY )
// (Y, τ indY ) is

S-continuous. Since the composition of S-continuous morphisms is S-continuous, the

result follows. □

Corollary 3.3. Let C have intersections.

a) The discrete functor D : E → STop is a left adjoint of U : STop // E .

b) The indiscrete functor I : E → STop is a right adjoint of U : STop // E .

c) Functors D and I are full embedding and U ◦D = U ◦ I = IE.

Proof. Follows easily from Theorem 3.5. □

Corollary 3.4. The concrete category STop has an initial object and a terminal

object, if E does.

Proof. Follows from 3.3. □

For standard topology as well as types one, three and four fuzzy topologies

the join bX ∨ tX is a structural topology , while for types two and five it is not, see

[2]. To see when bX ∨ tX is a structural topology, we have,

Theorem 3.6. Let C be an (E,Mono)-structured category for some collection E

of morphisms, the square functor S preserves E-morphisms and P preserves E-

morphisms and monos. If for a structural topological space (X, τX), the binary

coproduct of bX and tX exists and there are morphisms ∧ and ∨ making the follow-

ing squares commutative,
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(1 ⊔ 1)× (1 ⊔ 1)
∧ / /

(bX⊕tX)×(bX⊕tX)
��

1 ⊔ 1

bX⊕tX
��

P(X)× P(X) ∧X

// P(X)

P (1 ⊔ 1)
∨ //

P (bX⊕tX)
��

1 ⊔ 1

bX⊕tX
��

P (P(X)) ∨X

// P(X)

then bX ∨ tX : 1 ∨ 1 // P(X) is a structural topology. In this case bX ∨ tX =

⟨bX ∨ tX⟩ is the indiscrete S-topology on X.

Proof. Replacing bX ⊕ tX by its (E,Mono)-factorization (bX ∨ tX)e, see 1.1, we get

the following commutative outer squares, and so by diagonal property we get ∧1∨1
and ∨1∨1 making the top and bottom squares commutative.

(1 ⊔ 1)× (1 ⊔ 1)
∧ //

e×e
����

1 ⊔ 1

e
����

(1 ∨ 1)× (1 ∨ 1)
∧(1∨1) //

��

(bX∨tX)×(bX∨tX)
��

(1 ∨ 1)
��

bX∨tX
��

P(X)× P(X) ∧X

// P(X)

P (1 ⊔ 1)
∨ //

P (e)
����

1 ⊔ 1

e
����

P (1 ∨ 1)
∨(1∨1) //

��

P (bX∨tX)
��

1 ∨ 1��

bX∨tX
��

P (P(X)) ∨X

// P(X)

On the other hand we have bX = (bX ∨tX)eν1 and tX = (bX ∨tX)eν2. Hence bX ∨tX
is a structural topology. The last assertion follows from 3.1 and 3.3.

□

4. Limits in the Category STop

In this section we show that STop has concrete (finite) limits if the category E

has (finite) limits. We assume that the category C has intersections and since C is also

assumed to be finitely complete, by dual of Theorem 14.17 of [1], it follows that C is

(ExtEpi,Mono)-structured, where ExtEpi is the collection of extremal epimorphisms.

We also assume that the square functor preserves ExtEpi-morphisms and the functor

P preserves both ExtEpi-morphisms and monos.

Proposition 4.1. If E has equalizers, then STop has concrete equalizers.

Proof. Let (X, τX)
f //
g

// (Y, τY ) be parallel morphisms in STop and e : E ↣ X

be an equalizer of X
f //
g

// Y in E. We show that e : (E, τ iE)
// (X, τX) is an

equalizer of (X, τX)
f //
g

// (Y, τY ) in STop. So suppose h : (Z, τZ) // (X, τX) is

given such that fh = gh. Since e : E // X is an equalizer of the pair X
f //
g

// Y

in E, there is a unique morphism h̄ : Z // E making the triangle in the following

diagram commutative.
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E // e // X
f //
g

// Y

Z

h̄

OO

h

>>~~~~~~~~

Need to show h̄ : (Z, τZ) // (E, τE) is S-continuous. By S-continuity of h,

there is a morphism Th making the following square commutative.

TX
// τX //

Th

��

P(X)

P(h)
��

TZ
//
τZ

// P(Z)

In the following diagram, the commutativity of the lower triangle is implied by

the commutativity of the above square; the commutativity of the upper triangle is

implied by the definition of the induced topology, see 3.1; and the commutativity of

the outer square follows from the equality P(h) = P(e ◦ h̄) = P(h̄) ◦ P(e).

TX

P(e)τX

""
Te // //

1

��

TE

d
��

// τE // P(E)

P(h̄)
��

TX

P(h)τX

<<Th

// TZ
//
τZ

// P(Z)

So the diagonal morphism d exists rendering commutative the left and right squares

in the above diagram. The commutativity of the right one shows that h̄ is S-

continuous. Uniqueness follows from faithfulness of U : STop // E . □

Proposition 4.2. Suppose C has binary coproducts. If E has binary products, then

STop has concrete binary products.

Proof. Let (X, τX) and (Y, τY ) be two structural topological spaces and the 2-source

X X × Y
π1oo π2 // Y be a product in E. Given (X, τX) (Z, τZ)

foo g // (Y, τY )

in STop, there is a unique map h = ⟨f, g⟩ in E rendering commutative the following

diagram.

X X × Y
π1oo π2 // Y

Z
f

ccGGGGGGGGGG
h

OO

g

;;wwwwwwwww

So the diagram.
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P(X)

P(f) % %KK
KKK

KKK
KK

P(π1) // P(X × Y )

P(h)
��

P(Y )
P(π2)oo

P(g)yysss
ss
ss
ss

P(Z)

commutes. Since f and g are S-continuous, there are morphisms Tf and Tg making

the following squares commutative.

TX
// τX //

Tf

��

P(X)

P(f)
��

TZ
// τZ // P(Z)

TY

Tg

OO

// τY // P(Y )

P(g)

OO

Putting the S-topologies τ1 and τ2 on X × Y induced by π1 and π2 respectively, by

3.1 we have the following commutative diagrams.

TX
// τX //

Tπ1 ����

P(X)

P(π1)
��

T1
//
τ1

// P(X × Y )

and TY
// τY //

Tπ2 ����

P(Y )

P(π2)
��

T2
//
τ2

// P(X × Y )

The diagonal property of the factorization system yields morphisms n1 and n2 mak-

ing triangles in the following diagram commutative.

TX

Tπ1 // //

Tf

��

T1

P(h)◦τ1
��

n1
yyy
y

||yyy
y

TZ
//
τZ

// P(Z)

and TY

Tπ2 // //

Tg

��

T2

P(h)◦τ2
��

n2
zzz
z

||zzz
z

TZ
//
τZ

// P(Z)

The coproduct of T1 and T2 yields the morphisms τπ1 ⊕ τπ2 and n1 ⊕ n1 as follows.

T1 $$

τ1 $$II
III

III
I

ν1 // T1 ⊔ T2

τ1⊕τ2
��

T2
ν2oo

zz

τ2zzuuu
uuu

uuu

P(X × Y )

and T1

n1 ##G
GG

GG
GG

GG
ν1 // T1 ⊔ T2

n1⊕n2

��

T2
ν2oo

n2{{ww
ww
ww
ww
w

P(Z)

Since τZ ◦ n1 = P(h) ◦ τ1 and τZ ◦ n2 = P(h) ◦ τ2, we get the commutative square:

T1 ⊔ T2
τ1⊕τ2 //

n1⊕n2

��

P(X × Y )

P(h)
��

TZ
//

τZ
// P(Z)
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By 1.1 the mono part of the factorization of τ1 ⊕ τ2 is the join τ1 ∨ τ2, so that

τ1 ⊕ τ2 = (τ1 ∨ τ2)q for an epimorphism q. The above commutative square now

yields the commutativity of the outer square in following diagram and the diagonal

property of the factorization system gives the morphism n making the triangle and

the right square commutative.

T1 ⊔ T2
q / / //

n1⊕n2

��

T1 ∨ T2
//τ1∨τ2 //

nt
ttt

t

yyttt
tt

P(X × Y )

P(h)
��

TZ
//

τZ
// P(Z)

Putting the S-topology T c on X × Y coinduced by h, by 3.2 we have the following

pullback square.

T c // τ
c

//

Th pb
��

P(X × Y )

P(h)
��

TZ
//

τZ
// P(Z)

Since the outer square in the following diagram commutes, there is a unique mor-

phism m rendering commutative the two triangles.

T1 ∨ T2
##

m

##G
GG

GG
GG

G
τ1∨τ2

##

n

$$

T c // τ
c

pb

//

Th

��

P(X × Y )

P(h)
��

TZ
//

τZ
// P(Z)

By commutativity of the above upper triangle, we get τ1 ∨ τ2 ≤ τ c, and so by 3.1,

⟨τ1 ∨ τ2⟩ ≤ τ c. Therefore there is a morphism k such that ⟨τ1 ∨ τ2⟩ = τ ck. We have

TZThk = P(h)τ ck = P(h)⟨τ1 ∨ τ2⟩, proving the commutativity of the square,

⟨T1 ∨ T2⟩ //
⟨τ1∨τ2⟩ //

Thk pb
��

P(X × Y )

P(h)
��

TZ
//

τZ
// P(Z)

which proves S-continuity of the morphism h. Uniqueness follows from faithfulness

of U : STop // E. □

So with the assumptions made on the category C at the beginning of the

section, we have:

Theorem 4.1. Suppose C has binary coproducts. If E has finite limits, then STop

has concrete finite limits.
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An investigation of the proof of 4.2 shows that:

Proposition 4.3. Suppose C has coproducts. If E has products, then STop has

concrete products.

So we have:

Theorem 4.2. Suppose C has coproducts. If E has limits, then STop has concrete

limits.

5. Examples

It is clear that by taking different bases (P, P ) and then considering different

(P, P )-topological structures S = (b, t,∧,∨), the category STop covers many different

categories. In this section we give some examples that include some known and some

not so familiar categories.

Example 5.1. For the standard topology and the types one, two and three fuzzy

topologies given in [2], one can easily verify that b, t, ∧ and ∨ are natural transfor-

mations, while t is not natural for types four and five. the categories E and C are

the category Set in all the former cases and so satisfy the required conditions given

in this paper. Also the functors P and S being the covariant and square functors

satisfy the required conditions. So for the topological structure and the types one,

two and three fuzzy topological structures, the category STop is complete, implying

that the category of topological spaces as well as the categories of type one, type two

and type three fuzzy topological spaces are all complete; some of these are of course

known facts.

Example 5.2. As mentioned in the previous example, the map t for type four (and

five) fuzzy topologies defined in [2] is not a natural transformation. We give a mod-

ified type four structure by redefining P : (IU )op // Set as P(X) = FX and for

f : X // Y (i.e., X ≤ Y ), P(f) = − ∧ X. Now the maps b, t, ∧ and ∨ as

defined in [2] are all natural. It is not hard to verify that TX ⊆ FX is a type four

fuzzy topology on X if and only if τX : TX
// FX is an S-topology with respect

to the modified structure S = (b, t,∧,∨). Since IU is a complete category, it follows

that the category STop is complete and therefore so is the category of type four fuzzy

topological spaces.

Since the structure for type five fuzzy topologies is the same as type four, see

[2], similar arguments hold for the category of type five fuzzy topological spaces.

The above example is a special case of:

Example 5.3. Let (X,≤) be a partially ordered class such that for each x ∈ X,

↓ x = {a ∈ X : a ≤ x} is a set. Suppose (X,≤) is small complete and binary meet

distributes over arbitrary join. Let P : (X,≤)op // Set be the functor sending

the object x ∈ X to the set ↓ x and the morphism x ≤ y in (X,≤) to the function



68 M. Z. Kazemi Baneh, S. N. Hosseini

− ∧ x :↓ y // ↓ x , that takes each b ∈↓ y to b ∧ x ∈↓ x. Let P : Set // Set

and S : Set // Set be the covariant powerset and the square functors, respec-

tively. For x ∈ X, define bx : 1 // ↓ x by bx(1) = 0, tx : 1 // ↓ x by

tx(1) = x, ∧x :↓ x× ↓ x // ↓ x by ∧x(a, b) = a ∧ b and ∨x : P (↓ x) // ↓ x

by ∨x(A) =
∨
a∈A

a. One can easily verify that bx, tx,∧x and ∨x form natural trans-

formations over x. It is also easy to see that Tx ⊆↓ x is a structural topology

on x if and only if 0, x ∈ Tx and Tx is closed under binary meet and arbitrary

join. A morphism f : x // y in (X,≤)op (i.e. y ≤ x) yields an S-continuous

f : (x, tx) // (y, ty) with Tx ⊆↓ x and Ty ⊆↓ y if and only if Ty ⊆ Tx. So the

category STop is equivalent to the category whose objects are (x, tx) with tx : Tx ⊆↓ x

and S-continuous maps as explained above. Since (X,≤) is a complete category, so

is STop.

As another special case of the above example we have:

Example 5.4. Consider the class of all the sets under the inclusion. As a category

it is the subcategory of Set with sets as objects and inclusions as morphisms. The

category STop is (equivalent to) the subcategory of topological spaces with topological

spaces as objects and continuous inclusions as morphisms; and it is a complete

category.

As yet another spacial case of Example 5.3 consider,

Example 5.5. Using the frame (P (X),⊆), where X is a set, the category STop is

(equivalent to) the small category whose objects are topological spaces (A, τA) with

A ⊆ X; and whose morphisms are continuous inclusions. This small category is

complete and thus a complete lattice.

Example 5.6. Let E be a well-powered category so that for each object X ∈ E, the

collection Sub(X) of isomorphism classes of monos to X is a set. Assume that E is

(finitely) complete with a pullback stable initial object. Let P : Eop // Set be the

functor taking an object X to Sub(X) and a morphism f to the pullback function

f−1; and let P : Set // Set be the covariant powerset functor. Let binary meet

in Sub(X) be obtained by pullback and assume Sub(X) has pullback stable arbitrary

joins. Let bX : 1 // Sub(X) take the point to [!X ], where !X : 0 // X is the

unique morphism from the initial object 0 to X; and let tX : 1 // Sub(X) take

the point to [1X ], where 1X is the identity morphism on X. One can easily verify

that S = (b, t,∧,∨) is a topological structure. So the category STop whose objects

are pairs (X, tX), where tX : TX
// // Sub(X) with TX containing bX , tX and is

closed under binary meets and arbitrary joins is (finitely) complete.

Since a topos satisfies the given conditions, E can be taken to be a topos.

Example 5.7. Let E be a topos, P and P be the contravariant and covariant power

object functors. Let ∧X : P(X)× P(X) // P(X) be the internal binary meet,
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see [4], page 201, Theorem 1 (Internal). Let ∨X : P ◦ P (X) / / P(X) be the

internal union, see [5], Corollaries 2.7 and 2.8 for definition and naturality. By

Proposition 7, on page 196 of [4], the square funcor preserves epis. P preserves

monos, see Corollary 3 on page 175 of [4]. Assuming P preserves epis, since E is

finitely complete, so is STop.

Example 5.8. With Top the category of topological spaces, let P : Topop // Set

take a topological space (X, τX) to τX and a continuous function f to the inverse

image function f−1; and let P : Set // Set be the covariant powerset functor.

Let b(X,τX) : 1 // τX and t(X,τX) : 1 // τX take the point to ∅ and X, respec-

tively. With binary intersection as meet and arbitrary union as join, one can verify

that S = (b, t,∧,∨) is a topological structure. Thus STop is a category with objects

triples (X, τX , t(X,τX)) with t(X,τX) : T(X,τX)
// // τX , where T(X,τX) is isomorphic

(in Set) to a topology on X that is contained in τX ; and with morphisms, those

functions f : (X, τX , t(X,τX)) // (Y, τY , t(Y,τY )) that are continuous with respect

to both (τX , τY ) and (T(X,τX), T(Y,τY )). Since Top is complete, so is STop.

Example 5.9. With Rmod the category of R-modules, let P : Rmod // Rmod

be the identity functor and P : Rmod // Rmod be the square functor S. For

a module M , let bM : 1 // M and tM : 1 // M both be the inclusions from

the zero module 1 to M . With the R-module homomorphism + : M ×M // M

as both meet and join, one can easily show that S = (b, b,+,+) is a topological

structure. The category STop is equivalent to the category whose objects are pairs of

R-modules (M,M ′) with M ′ ⊆ M ; and morphisms f : (M,M ′) // (N,N ′) those

module homomorphisms f : M // N that restrict to a module homomorphism

f ′ : M ′ // N ′ . Since Rmod is cocomplete, the category E = Rmodop is complete

and therefore so is the category STop.

6. Conclusion

After forming the category STop of structural topological spaces and showing

that it is a concrete category, we introduce and prove the existence of induced,

coinduced, discrete and indiscrete structural topologies. We then prove the existence

of certain limits provided that the base category has such limits and conclude that

STop has limits if the base category does. Finally we provide many examples to

illustrate the results obtained in the manuscript and to show the diversity of the

category STop.

For further research, one can work on colimits as well as introducing and

investigating the closed objects and closure operators.
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