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LIMITS IN THE CATEGORY OF STRUCTURAL TOPOLOGICAL
SPACES

M. Z. Kazemi Baneh*!' and S. N. Hosseini?

We introduce the notion of topological structure, and relative to that the
notions of structural topology as well as structural continuity are given. We show
that for a given topological structure, structural topological spaces together with
structural continuous morphisms form a concrete category. We then give the
construction of the induced, coinduced, discrete and indiscrete structural topolo-
gies, proving certain results that hold for topological spaces also hold for structural
topological spaces. We demonstrate that if the base category is (finitely) complete,
then the category of structural topological spaces is concretely (finitely) complete.
Finally we provide some illustrative examples.
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1. Introduction and Preliminaries

Structural topology as well as structural continuity are introduced in [2] based
on a locally given topological structure Sx for an object X in a category, where it
is shown that these notions generalize the notions of topology and continuity, see
[6], as well as some of the notions of fuzzy topology and fuzzy continuity existing in
the literature. In this paper in Section 2, the topological structure S is defined glob-
ally consisting of natural transformations and structural topology is defined slightly
different. Also structural continuity is introduced. We then show that for a given
topological structure S, structural topological spaces together with structural con-
tinuous morphisms form a concrete category that we denote by STop. In Section
3, under certain conditions we construct the induced, coinduced, discrete and indis-
crete S-topologies in STop. We also prove that certain propositions similar to those
in the category Top of topological spaces hold in the category STop. In Section
4, we show that concrete equalizers, concrete terminal objects and concrete (finite)
products exist in STop as soon as equalizers, terminal objects and (finite) products,
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56 M. Z. Kazemi Baneh, S. N. Hosseini

respectively exist in the base category, proving that ST'op has concrete (finite) lim-
its if the base category has (finite) limits. Finally in Section 5, we furnish several
illustrative examples.

For categorical notions we refer the reader to [1, 3, 4]. The following lemma
will be used in the subsequent sections.

Denoting join of subobjects a: A>— X and b: B>— X in a category
by avb: AV B> X and the collection of all the monomorphisms by Mono,
one can easily verify that:

Lemma 1.1. Let C be an (E, Mono)-structured category for some collection E of mor-
phisms. If the binary coproduct of the subobjects a: A>—= X and b: B> X
of X exists, then the mono part of the factorization of a®b: AUB —— X 1is the
join avVb: AV B> X.

2. The Category of Structural Topological Spaces

In this section we give a slightly different definition of a topological structure
relative to a base than the one given in [2]. We then introduce the notions of
structural topological space and structural continuity and show that the structural
topological spaces with structural continuous morphisms form a concrete category.

Definition 2.1. Let € and C be categories.

a) A pair of functors &E°P Foe P C, with C finitely complete, is called a
base on (€, C).
b) A topological structure relative to a base (P, P) or a (P, P)-topological struc-
ture, is a quadruple S = (b,t,A\,V), where
1-2-P, 1—'-P, SoP—2>P and PoP —Y>P

are natural transformations. Here S : € — C is the square functor.
c) A structural topology on an object X of € relative to a structure S, or just an

S-topology on X, is a C-monomorphism Tx ~ P(X) such that morphisms

b
]_*X>TX, 1A-Tx, TXxTXgTX and P(TX)&TX

exist rendering commutative the following diagrams.

Tx Tx

bx I tx I
TX TX

/11 /11
17 P(X) 12~ P(X)
bX tx
Tx x Ty — X Ty P(Ty) —X > Ty
TXETX /1/ ITX P(TX)\L /1] ITX

P(X) x P(X) —— P(X)

P(P(X)) —= P(X)
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In this case, (X,7x) is called a structural topological space or just an S-
topological space.

In the rest of the paper we let S be a topological structure relative to a base
(P, P) on (&,0C).

Definition 2.2. Given S-topological spaces (X,7x) and (Y,7y), an E-morphism
f: X ——=Y s said to be structurally continuous or S-continuous, if there exists

a C-morphism Ty : Ty —— Tx such that following diagram commutes.
Tx —= P(X)
TfT /11 TJP’(f)
Ty —=P(Y).
In this case we write f: (X, 7x) —— (Y, 7y).
Lemma 2.1. Given S-topological spaces (X, 7x), (Y,1y) and (Z,7z),
(1) the identity morphism (X, Tx) b (X,7x) 1is S-continuous.
(2) the composition of the S-continuous morphisms (X, Tx) S (Y, 7v) and
(Y, 1v) . (Z,71z) 1is S-continuous.
Proof. Similar to the proof given in [2]. O

Proposition 2.1. The S-topologiacl spaces together with S-continuous maps form
a category.

Proof. Follows from 2.1. O

The category of S-topological spaces and S-continuous maps is denoted by
STop. It can be easily verified that,

Theorem 2.1. The mapping U : STop —— & taking f:(X,7x) — (Y, 7v) to
f: X ——=Y s a faithful functor.

By the above lemma the category STop is concrete over €£.

3. Induced, Coinduced, Discrete and Indiscrete S-topologies

In this section we show that under certain conditions the induced, coinduced,
discrete and indiscrete S-topologies exist in STop by actually constructing such en-
tities. We also prove that certain facts similar to those in the category Top of
topological spaces hold in STop. To this end writing an E-morphism e: X ——=Y
in an (E, Mono)-structured category as e: X — Y, we have.
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Theorem 3.1. Suppose C is an (E, Mono)-structured category, the square functor
preserves E-morphisms and the functor P preserves both E-morphisms and monos.
If f: X ——=Y isan E-morphism and Ty is an S-topology on Y, then Tx defined
by the mono part of P(f)1y as shown below,

P(f)

TY

Ty P(Y) P(X)
N /) %
Tx

is the smallest S-topology on X making f S-continuous.

Proof. Set bx =Tpby : 1 —— Tx . We have:
Tbe = Tfoby = [P(f)Tyby = [P(f)by = bX

Similarly tx = Tyty : 1 ——= Ty satisfies the required equality. Now we have,

xTiNy =P(f)ry Ay =P(f) Ay (1y X 7v) =
Ax (P(f) x P(f)(ry x 7v) = Ax(1x x 7x)(Ty x T})

so that the following square commutes.

Ty X Ty TY
/ AN

/ \

/ TfXTf Tf

Py xB(ry | Tx X Tx oo Axeoo=Tx By
TX XTX TX
N ¥
P(X) x P(X) ——— P(X)

By the diagonal property of the factorization structure there is a (unique) morphism
Ax T, x Tx —— Tx making the top and bottom squares commute. The exis-
tence of Vyx : P(Tx) —— Tx follows similarly. This proves 7x is an S-topology.
The commutativity of the above triangle defining 7x yields the S-continuity
of f.
To show that 7x is the smallest such S-topology, suppose 7% also renders f
S-continuous. So we have the following commutative triangles.
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Ty P(f)
Ty P(Y) P(X)

/1]

Tf TX
Tx

: /
\\ L / TS(

Tx

The diagonal property of the factorization structure gives a map k:7Tx — T%

making the left ant right triangles in the above diagram commutative. The commu-
tativity of the right one yields 7x < 7%.
O

The S-topology on X in the above theorem is called the S-topology induced
by f and 7y and is denoted by Tg(.

Theorem 3.2. If f: X ——=Y s an E-morphism and Tx is an S-topology on X,
then Ty defined by the pullback of Tx along P(f) as shown below,

Ty Tx
TYI pb ITX
P(Y P(X

(¥) —5— BX)

is the largest S-topology on'Y making f S-continuous.

Proof. Since the outer square in the diagram

P(f)

commutes, there is a unique by making the upper and lower triangles commutative.
The commutativity of the lower one shows that by : 1 ——=P(Y) factors through

1y : Ty >—P(Y) as required. Similarly there is a morphism ty : 1 ——= Ty
such that 7vty = ty. Since

P(f) Ay (1v X 1v) = Ax (B(f) X P(f)) (v x 7v) = Ax (P(f)ry X P(f)7v) =
/\X(TXTf X Tfo) = Ax(TX X Tx)(Tf X Tf) =7x N\x (Tf X Tf),

the following outer square commutes.
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ANx (Tf XTf)
TY X Ty
B "VAYQ
_ )
Ty Tx
Ay (Ty XTy') TY I pb ITX
(Y) (X)

P(f)

So there is a unique morphism Ay : Ty x Ty —— Ty making the two triangles
commutative. The commutativity of the lower triangle gives the required commu-
tative square. The existence of Vy : P(Ty) —— Ty making the required square
commutative can be proved similarly. This proves that 7y is an S-topology on Y.
The pullback square defining 7y shows that f is S-continuous.
To show that 7y is the largest S-topology on Y making f S-continuous, suppose
7y is another such S-topology. It follows that there is a map TJ’C Ty, —Tx

rendering commutative the outer square in the following diagram.

Ty

Tx
N R

Therefore there is a morphism k making the two triangles commutative. The com-
mutativity of the lower one gives 7§, < 7y as desired. O

The S-topology on Y in the above theorem is called the S-topology coinduced
by f and 7x and is denoted by 7y-.

Proposition 3.1. Let C have intersections. For X € &, the intersection of any
collection of structural topologies on X is a structural topology.

Proof. Let {m; : T; — P(X) : i € I} be a collection of structural topologies on X.
Set 7 =\ie;7i : T >—=P(X) . Since 7; is an S-topology, we have b; : 1 ——=T;

making the following triangle commutative.

b;
Ti
/17

17~ P(X)

bx
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So by < 7; for all i, yielding bx < 7. Hence there is a morphism b:1 ——T
such that bx = 7b. Similarly there is a morphism ¢:1 ——= T such that tx = 7t.
Also for each ¢ we have A;:T; x T; ——T; rendering commutative the following
square.

Ty x T — o T,

XT; /17 In
v

P(X) x P(X) —— P(X)

X
On the other hand Since 7 < 7, we have a morphism k; such that 7 = 7;k;. Therefore
Ax(T X 1) = Ax(m x 7i)(ki X ki) = 7 N\i (ki X k;), implying Ax (7 x 7) < 7; for all
i. Thus Ax(7 x 7) < 7. Hence there is a morphism A:7T x T ——= T such that
Ax (T x T7) = TA as desired. Similarly we have a morphism V : P(T) —— T such
that Vx P(7) = 7V, completing the proof. O
Remark 3.1. Notice that in 3.1, the weaker assumption that the collection Sub(P(X))

to have intersections does not suffice, because in ANx(t X 7) < 7;, the morphism
Ax (T X T) is not a monomorphism.

Corollary 3.1. Let C have intersections. Given a subobject m : M — P(X), there
1s a smallest structural topology on X containing m.

Proof. An intersection of structural topologies that contain m is by 3.1 a structural
topology; it obviously contains m. O

The S-topology in the above corollary is called the S-topology generated by
m and is denoted by (m).

Theorem 3.3. Let C have intersections and X be an object of €.
a) The identity morphism lp(xy : P(X) — P(X) is an S-topology on X.
b) The intersection of all the S-topologies on X is an S-topology on X.
Proof. (a) follows easily and (b) follows from 3.1. O

The S-topologies in parts (a) and (b) of the above lemma are called respec-
tively, the discrete and the indiscrete S-topologies on X and are denoted by Tji(—is
and T;?d. Note that since every S-topology on X contains by and tx, it contains

<bX V tx>. It follows that T;?d = <bX V t)(>.
Theorem 3.4. Let C have intersections.
a) The mapping D : & — STop by D(X) = (X, 7¥%) and D(f) = f is a full and
faithful functor called the discrete functor.
b) The mapping I : € — STop by 1(X) = (X, 7 and I(f) = f is a full and
faithful functor called the indiscrete functor.
Lemma 3.1. The identity morphism 1y : (X,7x) — (X, 7%) is S-continuous if
and only if 75 < Tx.
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Proof. Straightforward. O
Corollary 3.2. The functor U :STop ——= € has complete fibres.
Proof. Follows easily from 3.1 U
Theorem 3.5. Let C have intersections, f: X ——=Y be an E-morphism, Tx and
Ty be S-topologies on X and Y, respectively. Then
a) f:(X,7%) ——= (Y,1y) is S-continuous.
b) f:(X,7x) — (Y,7") is S-continuous.
Proof. (a) The commutative square
Ty — > P(Y)
P(f)ry l iﬂ]’(f)
P(X) —— P(X)

1p(x)
proves the S-continuity of f.

(b) Let 73 be the coinduced S-topology on Y by f and 7x, so that the mor-
phism f:(X,7x) —= (Y,7{) is S-continuous. Since 7{"? is the intersection of
all S-topologies on Y, T{}"d < 7y. Therefore by 3.1, 1y : (Y,75) — (Y, T{}”d) is
S-continuous. Since the composition of S-continuous morphisms is S-continuous, the
result follows. ]

Corollary 3.3. Let C have intersections.
a) The discrete functor D : € — STop is a left adjoint of U :STop — €& .

b) The indiscrete functor I : & — STop is a right adjoint of U :STop —— & .
c) Functors D and I are full embedding and U oD =U oI = I¢.

Proof. Follows easily from Theorem 3.5. O

Corollary 3.4. The concrete category STop has an initial object and a terminal
object, if € does.

Proof. Follows from 3.3. O

For standard topology as well as types one, three and four fuzzy topologies
the join bx V tx is a structural topology , while for types two and five it is not, see
[2]. To see when by V tx is a structural topology, we have,

Theorem 3.6. Let C be an (E,Mono)-structured category for some collection E
of morphisms, the square functor S preserves E-morphisms and P preserves E-
morphisms and monos. If for a structural topological space (X,Tx), the binary
coproduct of bx and tx exists and there are morphisms N\ and V making the follow-
mg squares commutative,
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(1ul)x (1ul) 2101 P(lul) =101
(bx®tx) 1: (bx®tx) bx ?tx P(bxv@tx) bx ?tx
P(X) x P(X) ——= P(X) P(P(X)) — > P(X)

then bx Vitx :1V1——=P(X) is a structural topology. In this case bx V tx =
(bx Vtx) is the indiscrete S-topology on X.

Proof. Replacing bx @ tx by its (E, Mono)-factorization (bx V tx)e, see 1.1, we get
the following commutative outer squares, and so by diagonal property we get A1y1
and Vv making the top and bottom squares commutative.

(1ul)x (1ul) 2101 P(lul)—L—=1u1
e>‘<e ie P(e)i ie
! A(ivi) V(v1)
(Ivl)x(1vl) ——=(1V1) P(1vl) ——=1y1
(bx\/tx)i(bx\/tx) bxVtx P(bx\/tx) \[bx\/tx
P(X) x P(X) —— P(X) P(P(X)) 5 P(X)

On the other hand we have bx = (bx Vtx)er; and tx = (bx Vitx)ers. Hence bx Vix
is a structural topology. The last assertion follows from 3.1 and 3.3.
O

4. Limits in the Category STop

In this section we show that STop has concrete (finite) limits if the category €
has (finite) limits. We assume that the category € has intersections and since C is also
assumed to be finitely complete, by dual of Theorem 14.17 of [1], it follows that € is
(ExtEpi, Mono)-structured, where ExtEpi is the collection of extremal epimorphisms.
We also assume that the square functor preserves ExtEpi-morphisms and the functor
P preserves both ExtEpi-morphisms and monos.

Proposition 4.1. If € has equalizers, then STop has concrete equalizers.

f
Proof. Let (X,7x) —= (Y, 7y) be parallel morphisms in STop and e : E — X
g

! )
be an equalizer of X —=Y in & We show that e: (E,7}) — (X,7x) is an
g

f
equalizer of (X,7x) —= (Y, 7y) in STop. Sosuppose h:(Z,77) — (X,7x) is
g

given such that fh = gh. Since e: E —— X is an equalizer of the pair X —= Y
g

in &, there is a unique morphism & : Z —— E making the triangle in the following
diagram commutative.
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E="sX_—ZY

o

Z

Need to show h: (Z,77) — (E,7g) is S-continuous. By S-continuity of A,
there is a morphism 7} making the following square commutative.

Ty —> P(X)
Thl ip(h)
Ty —-P(Z)

In the following diagram, the commutativity of the lower triangle is implied by
the commutativity of the above square; the commutativity of the upper triangle is
implied by the definition of the induced topology, see 3.1; and the commutativity of
the outer square follows from the equality P(h) = P(e o h) = P(h) o P(e).

So the diagonal morphism d exists rendering commutative the left and right squares
in the above diagram. The commutativity of the right one shows that h is S-
continuous. Uniqueness follows from faithfulness of U : STop —— € . O

Proposition 4.2. Suppose C has binary coproducts. If € has binary products, then
STop has concrete binary products.

Proof. Let (X, 7x) and (Y, 7y) be two structural topological spaces and the 2-source

X <" X xY 2+ ¥ beaproductin €. Given (X,7x) <— (Z,77) —> (Y, y)
in STop, there is a unique map h = (f, g) in € rendering commutative the following
diagram.

So the diagram.
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commutes. Since f and g are S-continuous, there are morphisms 7 and T, making
the following squares commutative.

Tx = P(X)

Tfl J{P(f)

Putting the S-topologies 71 and 75 on X X Y induced by m; and mo respectively, by
3.1 we have the following commutative diagrams.

TX TY

Ty P(X) and Ty P(Y)
Try i lp(ﬂl) Ty i ip(ﬂﬂ
Ty ——=P(X xY) Ty ——=P(X xY)

The diagonal property of the factorization system yields morphisms n1 and no mak-
ing triangles in the following diagram commutative.

T7r1 Tﬂ'?
Tfl /m/ l]P‘(h)on Tgi /nz/ l]}”(h)om
Ty > P(2) Ty " P(Z)

The coproduct of 77 and T yields the morphisms 7, ® 7, and n; @ n; as follows.

TN — T U, <2 Ty and TN —2Tuh<—T1
X\Tl%ﬁ . kﬂl%nz%
P(X xY) P(Z)
Since 77 ony = P(h) o1 and 77 o ng = P(h) o 72, we get the commutative square:
Ul — " L P(X xY)
n1Pna l lp(h)
Ty P(Z)

TZ
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By 1.1 the mono part of the factorization of 71 @ 75 is the join 7 V 7o, so that
71 @ 72 = (11 V 72)q for an epimorphism ¢q. The above commutative square now
yields the commutativity of the outer square in following diagram and the diagonal
property of the factorization system gives the morphism n making the triangle and
the right square commutative.

T1VT2

T1UT2‘>>T1\/T2>—>]P)(XXY)

n1@ny l - -~ \LIP’(h)

Ty P(Z)

TZ

Putting the S-topology T¢ on X x Y coinduced by h, by 3.2 we have the following
pullback square.

T¢ "> P(X x Y)

Ty P(Z)

TZ

Since the outer square in the following diagram commutes, there is a unique mor-
phism m rendering commutative the two triangles.

T%i»PXxY

\ T, l pb lP(h)

Ty P(Z)

TZ

By commutativity of the above upper triangle, we get 7 V 7o < 7€, and so by 3.1,
(11 V 1) < 7¢. Therefore there is a morphism & such that (71 V 72) = 7°k. We have
Ty Thk = P(h)7¢k = P(h)(11 V T2), proving the commutativity of the square,

TV Ty — ™ p(x x Y)
Thkl pb J{P(h)
Ty — P(Z)

which proves S-continuity of the morphism h. Uniqueness follows from faithfulness
of U:STop—— €. O

So with the assumptions made on the category C at the beginning of the
section, we have:

Theorem 4.1. Suppose C has binary coproducts. If € has finite limits, then STop
has concrete finite limits.
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An investigation of the proof of 4.2 shows that:

Proposition 4.3. Suppose C has coproducts. If €& has products, then STop has
concrete products.

So we have:

Theorem 4.2. Suppose C has coproducts. If € has limits, then STop has concrete
limits.

5. Examples

It is clear that by taking different bases (P, P) and then considering different
(P, P)-topological structures S = (b, t, A, V), the category ST op covers many different
categories. In this section we give some examples that include some known and some
not so familiar categories.

Example 5.1. For the standard topology and the types one, two and three fuzzy
topologies given in [2], one can easily verify that b, t, A and \V are natural transfor-
mations, while t is not natural for types four and five. the categories & and C are
the category Set in all the former cases and so satisfy the required conditions given
in this paper. Also the functors P and S being the covariant and square functors
satisfy the required conditions. So for the topological structure and the types one,
two and three fuzzy topological structures, the category STop is complete, implying
that the category of topological spaces as well as the categories of type one, type two
and type three fuzzy topological spaces are all complete; some of these are of course
known facts.

Example 5.2. As mentioned in the previous example, the map t for type four (and
five) fuzzy topologies defined in [2] is not a natural transformation. We give a mod-

ified type four structure by redefining P : (IV)? — Set as P(X) = Fx and for

f: X —=Y f(ie, X <Y), P(f) = —ANX. Now the maps b, t, A\ and V as
defined in [2] are all natural. It is not hard to verify that Tx C Fx is a type four
fuzzy topology on X if and only if 7x : Tx —= Fx is an S-topology with respect
to the modified structure S = (b, t, A\, V). Since IV is a complete category, it follows
that the category STop is complete and therefore so is the category of type four fuzzy
topological spaces.

Since the structure for type five fuzzy topologies is the same as type four, see
[2], similar arguments hold for the category of type five fuzzy topological spaces.

The above example is a special case of:

Example 5.3. Let (X, <) be a partially ordered class such that for each z € X,
le={ae X :a<z}isa set. Suppose (X, <) is small complete and binary meet
distributes over arbitrary join. Let P: (X, <)? —— Set be the functor sending
the object x € X to the set | x and the morphism x <y in (X, <) to the function
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— ANz :ly——= 1] x, that takes each b €l y tobANx €l . Let P:Set —— Set
and S :Set ——= Set be the covariant powerset and the square functors, respec-
tively. For x € X, define by:1——=|x by by(1) = 0, t,:1——=_,x by
te(1) =2, Npglax |z ——=]x by Ay(a,b) =aAband Vy: P(lzx)—= ]z

by Vz(A) = \ a. One can easily verify that by, t,, Ny and \V, form natural trans-
acA
formations over x. It is also easy to see that T, Cl x is a structural topology

on z if and only if 0,x € T, and T, is closed under binary meet and arbitrary
join. A morphism f:x ——=1y in (X,<)? (i.e. y < x) yields an S-continuous
fi(z,ty) — (y,ty) with T, C| x and T, C| y if and only if T, C T,. So the
category STop is equivalent to the category whose objects are (x,t,) witht, : T,, Cl
and S-continuous maps as explained above. Since (X, <) is a complete category, so
is STop.

As another special case of the above example we have:

Example 5.4. Consider the class of all the sets under the inclusion. As a category
it is the subcategory of Set with sets as objects and inclusions as morphisms. The
category STop is (equivalent to) the subcategory of topological spaces with topological
spaces as objects and continuous inclusions as morphisms; and it is a complete
category.

As yet another spacial case of Example 5.3 consider,

Example 5.5. Using the frame (P(X), C), where X is a set, the category STop is
(equivalent to) the small category whose objects are topological spaces (A, T4) with
A C X, and whose morphisms are continuous inclusions. This small category is
complete and thus a complete lattice.

Example 5.6. Let & be a well-powered category so that for each object X € &, the
collection Sub(X) of isomorphism classes of monos to X is a set. Assume that & is
(finitely) complete with a pullback stable initial object. Let P : EP —— Set be the
functor taking an object X to Sub(X) and a morphism f to the pullback function
f~'; and let P:Set — Set be the covariant powerset functor. Let binary meet
in Sub(X) be obtained by pullback and assume Sub(X) has pullback stable arbitrary
joins. Let bx : 1 —— Sub(X) take the point to [x|, where !x : 0 —— X is the

unique morphism from the initial object 0 to X; and let tx : 1 —— Sub(X) take
the point to [1x|, where 1x is the identity morphism on X. One can easily verify
that S = (b,t,\,V) is a topological structure. So the category STop whose objects
are pairs (X,tx), where tx :Tx = Sub(X) with Tx containing bx, tx and is
closed under binary meets and arbitrary joins is (finitely) complete.

Since a topos satisfies the given conditions, € can be taken to be a topos.

Example 5.7. Let € be a topos, P and P be the contravariant and covariant power
object functors. Let Ax :P(X)xP(X)——=P(X) be the internal binary meet,
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see [4], page 201, Theorem 1 (Internal). Let Vx :PoP(X)——=P(X) be the
internal union, see [5], Corollaries 2.7 and 2.8 for definition and naturality. By
Proposition 7, on page 196 of [4], the square funcor preserves epis. P preserves
monos, see Corollary 3 on page 175 of [4]. Assuming P preserves epis, since & is
finitely complete, so is STop.

Example 5.8. With Top the category of topological spaces, let P : Top°? —— Set
take a topological space (X,Tx) to Tx and a continuous function f to the inverse
image function f=1; and let P :Set —— Set be the covariant powerset functor.
Let bix 7)1 ——=7x and t(x ;)1 ——17x take the point to () and X, respec-
tively. With binary intersection as meet and arbitrary union as join, one can verify
that S = (b, t, A\, V) is a topological structure. Thus STop is a category with objects
triples (X, 7x,t(x,r¢)) With t(x ) T(x,rc) == Tx, where T(x ;) is isomorphic
(in Set) to a topology on X that is contained in Tx; and with morphisms, those
functions f: (X, 7x,t(x.r¢)) — (Y, 7y, t(v;ry)) that are continuous with respect

to both (7x,7y) and (T(x ry), T(v,ry))- Since Top is complete, so is STop.

Example 5.9. With Rmod the category of R-modules, let P : Rmod —— Rmod
be the identity functor and P : Rmod —— Rmod be the square functor S. For
a module M, let by : 1 ——= M and tp; : 1 ——= M both be the inclusions from

the zero module 1 to M. With the R-module homomorphism +: M x M —— M

as both meet and join, one can easily show that S = (b,b,+,+) is a topological
structure. The category STop is equivalent to the category whose objects are pairs of
R-modules (M, M") with M" C M ; and morphisms f: (M, M') —— (N, N') those
module homomorphisms f: M ——= N that restrict to a module homomorphism

f': M —— N'. Since Rmod is cocomplete, the category & = Rmod° is complete
and therefore so is the category ST op.

6. Conclusion

After forming the category ST op of structural topological spaces and showing
that it is a concrete category, we introduce and prove the existence of induced,
coinduced, discrete and indiscrete structural topologies. We then prove the existence
of certain limits provided that the base category has such limits and conclude that
STop has limits if the base category does. Finally we provide many examples to
illustrate the results obtained in the manuscript and to show the diversity of the
category ST op.

For further research, one can work on colimits as well as introducing and
investigating the closed objects and closure operators.
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