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THE INCREASE OF THE ELECTRICAL CONDUCTANCE IN 
NANOSTRUCTURES: A THEORETICAL APPROACH 

Pavlos D. IOANNOU1, Petru NICA2, Maricel AGOP3 

Considerând că mişcarea purtătorilor de sarcină are loc pe curbe fractalice, 
se explică creşterea conductanţei electrice în nanostructuri folosind un model extins 
al teoriei relativităţii de scală. Rezultă două procese majore responsabile de 
creşterea conductanţei electrice. La scală macroscopică se obţine trecerea de la 
regimul de transport prin structuri necvasiautonome la cel prin structuri 
cvasiautonome, separate de structura 0.7 observată experimental. La scală 
microscopică procesul este controlat prin intermediul coerenţei nano-dilatonilor. 

Considering that the charge carrier movements take place on fractal curves, 
the increase of electrical conductance in nanostructures is explained using an 
extended model of scale relativity theory. Two major processes result as being 
responsible for the increase of the electrical conductance. At the macroscopic scale, 
this increase implies the change of the transport regime of the charge carriers, from 
transport by means of non-quasi-autonomous structures, to transport by means of 
quasi-autonomous structures. These two regimes are separated by the 
experimentally observed 0.7 structure. At the microscopic scale, the process is 
controlled by means of the nanodilaton’s coherence.  
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1. Introduction 

The transport of charged particles in electronic devices is generally 
described by kinetic models such as Boltzmann-like equations or macroscopic 
models of hydrodynamic or diffusion type [1-3].  Due to the ongoing 
miniaturization of these devices, reaching the nanometric scale, the reliability of 
these classical models becomes doubtful as quantum effects become important. 
Since, at an intermediate scale, collision phenomena remain significant, one of the 
most challenging areas of investigation in semiconductor modeling deals with the 
setting-up of quantum transport models which take into account scattering effects. 
Though many works are concerned with the numerical simulation of ballistic 
quantum transport models for semiconductors (see e.g. [4,5]), a quantum theory of 
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collisions is still under development (among other works on the quantum theory 
of scattering, see e.g. [6,7]). Furthermore, several attempts were made to adapt 
existing classical macroscopic models to quantum mechanics [8-10] but, 
generally, the link between the so-obtained models and a microscopic quantum 
description of the particle transport is to a large extent phenomenological. 

In solid-state physics and electronics, a large variety of different non-
equilibrium phenomena accompany the spontaneous self-assemblage of spatial 
and spatio-temporal patterns. Thus, attention has been paid to thyristor-like 
semiconductor structures with large active area, as these nonlinear systems with 
bistable properties show several spatial and spatio-temporal current density 
patterns. Such semiconductor structures could potentially be used as multi-stable 
elements for integrated circuits, self-organizing devices for image recognition and 
image processing.  

All these results requires the development of new “scale” physical 
theories, i.e. of fractal space-time type (e.g. the scale relativity (SR) model 
[11,12]), in which the macroscopic scale specific to the classical quantities coexist 
and it is compatible, simultaneously, with the microscopic “scale” specific to the 
quantum quantities. Then i) the semi-quantum physical theories, must not be 
imposed, but are generated as transitions between the interaction scales; ii) the 
topological dimension and implicitly, the fractal one (for details see [13]) induces 
new transport mechanisms; iii) the so-called anomalies, e.g. the increases of the 
thermal conductivity in nanostructures, appear as natural phenomenon in the 
context of material structures self-organization by means of the spontaneous 
symmetry breaking (for details see [14,15]). In the present paper, considering that 
the motion of the charge carriers in nanostructures takes place on fractal curves 
(continuous but non-differentiable curves), the increase of the electrical 
conductance is explained using an extended model of SR. Such type of movement 
is the result of the chaotic collective effect induced by all the other charge carriers 
on the one under discussion.  

2. Mathematical model 

SR [11,12] is a new approach to understand quantum mechanics, and 
moreover physical domains involving scale laws, such as chaotic systems. It is 
based on a generalization of Einstein’s principle of relativity to scale 
transformations. Namely, one redefines space-time resolutions as characterizing 
the state of scale of reference systems, in the same way as speed characterizes 
their state of motion. Then one requires that the laws of physics apply whatever 
the state of the reference system, of motion (principle of motion-relativity) and of 
scale (principle of SR). The principle of SR is mathematically achieved by the 
principle of scale-covariance, requiring that the equations of physics keep their 
simplest form under transformations of resolution.  
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According to SR [11,12], a non-differentiable continuum is necessarily 
fractal and the trajectories in such a space (or space-time) own (at least) the 
following three properties: i) The test particle can follow an infinity of potential 
trajectories: this leads us to use a fluid-like description (fractal fluid); ii) The 
geometry of each trajectory is fractal ([11-13]). Each elementary displacement is 
then described in terms of the sum, ξxX ddd += , of a mean classical 
displacement dtd vx =  and of a fractal fluctuation ξd , whose behavior satisfies 
the principle of SR (in its simplest Galilean version). It is such that 0=ξd , 

)/2(2 )(2 FDdtDd =ξ   and )/3(2/33 )()2( FDdtDd =ξ , where D defines the 

fractal/non-fractal transition, i.e. the transition from the explicit scale dependence 
to scale independence. The existence of this fluctuation implies introducing new 
second and third order terms in the differential equation of motion; iii) Time 
reversibility is broken at the infinitesimal level: this can be described in terms of a 
two-valuedness of the velocity vector, +v  the “forward” speed and −v  the 
“backward” speed, for which we use a complex representation, 

( ) ( ) 22 −+−+ −−+= vvvvV i , where the real part defines the classical 
(differentiable) speed, while the imaginary part refers to the fractal (non-
differentiable) character of movement (for details see Refs. [11-16]). 

These three effects can be combined to construct a complex time-
derivative operator [15,16], 
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ix . Therefore, the sum of the local time 

dependence, Vt∂ , of the convective term, VV ∇⋅ , of the dissipative one, VΔ , and 
of the dispersive one, V3∇  is null in any point of a fractal curve of DF fractal 
dimension. This result shows that transport process in nanostructures has 
hysteretic properties [17-19]: the fractal fluid can be described by Kelvin-Voight 
or Maxwell rheological model with the aid of complex quantities, i.e. the complex 
speed field, the complex acceleration field etc. and complex structure coefficients, 
i.e. the imaginary viscosity coefficient, 1)/2()( −= FDdtiDη , as it will be shown 
below. We assume that the motion of the fractal fluid is irrotational, 0=×∇ V , 
and then we can choose V  of the form: 
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)(ln)(2 1)/2( ψφ ∇−=∇= −FDdtiDV     (3) 
In these conditions, Eq. (2) takes the form 
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and ψ  satisfies a generalized Schrödinger type equation: 
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 Particularly, when the dispersion is absent, Eq. (4) becomes a generalized 
Navier-Stoke (GNS) type equation, 
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with imaginary viscosity coefficient, 1)/2()( −= FDdtiDη , and from here, using Eq. 
(3), the Schrödinger type equation results, 

0)()( 1)/2(2)/4(2 =∂+Δ −− ψψ t
DD FF dtiDdtD   (7) 

Moreover, for mD 2/h= , with h  the reduced Planck’s constant, m the rest mass 
of the test particle and for the fractal dimension, 2=FD , i.e. for movements on 
fractal curves of Peano type [11,12], the previous equation is reduced to standard 
Schrödinger equation.  
 In the particular case when the dissipation is absent, Eq. (4) becomes a 
generalized Korteweg de Vries (GKdV) type equation, 
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Let us choose the function ( )iSexpρψ = , with ρ  the amplitude and S 
the phase. By substituting the complex velocity field (3), 

( )( ) ( )( ) ρln2 1/21/2 ∇−∇=+= −− FF DD dtiDSdtDiuvV   in Eq. (8), and separating 
the real and imaginary parts, it results the equation system, 
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In the differentiable case, i.e. at the macroscopic scale, 0=u  or 
.const=ρ , and for the one-dimensional case, with the dimensionless parameters, 
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00 /)/( jvqjj ρφ == , t0ωτ = , xk0=ξ , and the normalizing conditions 
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where cn is the Jacobi’s elliptic function of s modulus [21], )(),( sEsK are the 
elliptic complete integrals [12], and 0ξ  constant of integration. As a result, at the 
macroscopic scale, the electrical charge transport in nanostructures is achieved by 
one-dimensional cnoidal oscillation modes of the charge current density. This 
process is characterized through the normalized wave length, 
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- see Figure 1b, and the normalized group speed, 
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-see Figure 1c. In such conjecture, the followings result: 
i) by eliminating the parameter a from relations (12) and (13), one obtains 

the dispersion relation, )(2 sAv f =λ , with [ ])()1()()(316)A( 222 sKssKsEss +−= . 
In Figure 1d the quantity A(s) is numerically evaluated. We observe that only for s 
= 0÷0.7, A(s) ≈ const., and the dispersion equation takes the form, .2 constv f =λ ; 

ii) the parameter s becomes a measure of the electric charge transfer in 
nanostructures. Thus, for 0→s  , λ , fv  and gv  are small, while for 1→s , λ , 

fv  and gv are high –– see Figures 1a-c;  
iii) the one-dimensional cnoidal oscillation modes contain as 

subsequences: ii1) for 0=s  the one-dimensional harmonic waves and ii2) for 
0→s  the one-dimensional waves packet. These two subsequences describe the 

electric charge transport in a non-quasi-autonomous regime (for details see [17-
19]). ii3) For 1=s , the solution (11) becomes a one-dimensional soliton, while ii4) 
for 1→s  the one dimensional solitons packet results. These last two 
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subsequences describe the electric charge transport in a quasi-autonomous regime 
(for details see [17-19]). Therefore, these two regimes (non-quasi-autonomous and 
quasi-autonomous) are separated by the 0.7 structure, a value in agreement with 
the experimental data [22]. 

 
Figs. 1a-d: The dependences on s of the (a) normalized wave length λ, (b) normalized phase speed 

fv ,  (c) group velocity gv   (various values of the parameter a), and (d) of the quantity A 

 
 The previous results show, through the normalized group speed (14), an 

increase of the charge transport in nanostructures by means of quasi-autonomous 
structures. They can provide a possible explanation of the anomalous increase of 
the electrical conductance that was experimentally observed in [18,19]. 

Let us study now the previous phenomenon in the non-differential case, 
i.e. at microscopic scale. This can be achieved by the substitutions ( ) 24 fv f=φ  

and ( ) )(4 21 τξη ff vvi −=  in Eq. (10). By an adequate choice of the integration 

constants, it becomes, fff −=∂ 3
ηη , i.e. a Ginzburg-Landau type equation [23]. 

The followings result: 
 i) The η coordinate has dynamic significations and the variable f has 

probabilistic significance –for details see [11,12]. The space-time becomes fractal; 
ii) According to [24] we can build a field theory with spontaneous 

symmetry breaking. The fractal kink solution,  
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spontaneously breaks the “vacuum” (the minimum energy states of the system) 
symmetry  by tunneling, and generates coherent structures. This mechanism is 
similar with the one of superconductivity [25]; 

iii) the normalized fractal potential take a very simple expression which is 
directly proportional with the density of states of the fractal fluid,  

( )222 1))(/1( ffddfQ −=−= η .     (16) 
When the density of states, 2f , becomes zero, the fractal potential takes a finite 
value, 1=Q . The fractal fluid is normal (it works in a non-quasi-autonomous 
regime) and there are no coherent structures in it. When 2f  becomes 1, the fractal 
potential is zero, i.e. the entire quantity of energy of the fractal fluid is transferred 
to its coherent structures. Then the fractal fluid becomes coherent (it works in a 
quasi-autonomous regime). Therefore, one can assume that the energy from the 
fractal fluid can be stocked by transforming all the environment’s entities into 
coherent structures and then 'freezing' them. The fractal fluid acts as an energy 
accumulator through the fractal potential (16);  

iv) substituting (15) in (16) the fractal potential (16) becomes a soliton at 
nano scale, 

( )[ ]2/sec 0
2 ηη −= hQ    (17) 

and can be associated with a nanodilaton (for details on this concept see [17-19]). 
In certain conditions of an external load (e.g. an external stress) the nanodilatons 
break down (blow up) and release its energy. As a result, the nanostructure energy 
unexpectedly increases. 

3. Conclusions 

Considering that the charge carrier movements take place on fractal 
curves, the electric charge transport is studied in an extended model of SR. It 
results: i) An equation of motion is deduced for the complex speed field, where 
the local complex acceleration, convection, dissipation and dispersion are 
reciprocally compensating. Using this equation, for the irrotational movement the 
generalized Schrödinger equation is obtained. The absence of the dispersion 
implies a generalized Navier-Stokes type equation, and from here, for the 
irrotational movement and fractal dimension 2=FD , the usual Schrödinger 
equation resulted; ii) The absence of dissipation implies a generalized Korteweg 
de Vries type equation. In the one-dimensional macroscopic case, two flowing 
regimes (quasi-autonomous and non-quasi-autonomous) of the charge carriers are 
evidenced, the separation between them are being made by the 0.7 structure that is 
experimentally observed. In such conjecture, the increase of the electrical 
conductance in nanostructures is connected with the increase of the group velocity 
at the passage from non-quasi-autonomous to quasi-autonomous regime; iii) At 
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microscopic scale, the electrical conductance increase is controlled by means of 
the nanodilaton coherence. When the external field exceeds a critical value, the 
nanodilatons which stock the energy break down and simultaneously release the 
energy to the environment. 
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