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NOISE INFLUENCE ON FRACTAL DIMENSION IN THE
PROCESS OF GENERATION OF THE JULIA FRACTALS

Constantin ROSU', Doina M. MAXIMEAN?

Fractalii pot fi intdlniti in naturd intr-o mare varietate de domenii. Una din
principalele lor caracteristici este marimea fractionard a dimensiunii geometrice.
Spre deosebire de fractalii deterministi la care auto-replicarea poate fi explorata la
orice scard, in sistemele reale aceasta este limitata de prezenta zgomotului, cu
influente asupra dimensiunii fractale. Ne propunem sa exploram in aceasta lucrare
efectul zgomotului asupra marimii dimensiunii fractale, calculatd prin metoda box-
counting. Analiza este efectuatd prin introducerea zgomotului in marimea
parametrilor care intervin in procesul de generare a fractalilor. Rezultatele obtinute
prezintd interes in caracterizarea sistemelor haotice prin intermediul dimensiunii
fractale.

Fractals are encountered in nature in many domains. One of their main
characteristics is the fractional geometric dimension. As opposed to deterministic
fractals in which the self- similarity can be explored at any scale, in real systems
this is limited by the presence of noise, that influences the fractal dimensions. Our
goal is to explore the noise effect on fractal dimension, using the box-counting
method. The analysis is done by randomizing the fractal generation parameters.
The obtained results are interesting in the characterization of chaotic systems by
fractal dimension.
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1. Introduction

The dimension problem is essential in the study of all knowledge domains:
essentially it deals with the determination and the characterization of the
minimum number of quantities (geometrical coordinates, physical parameters,
etc.) necessary for the univocal description of the system. Even if intuitively the
geometric dimension problem is evident (a one, two or three dimension body has
the dimensions 1, 2, or 3 respectively), the algorithm of determination of the
number of dimensions of a system and of their respective values is generally an
open problem, with some notable exceptions. Thus in geometry the definitions of
Borel and Lebesgue have been specified and algorithmized by Hausdorff [1-3] in
a rigorous way. Starting from the difficulty of characterizing the complex forms
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and processes in nature (by example the clouds, the new liquid crystal textures,
the temporal evolution of the stock market, etc.) using the Euclidian geometrical
forms, Mandelbrot [4] introduced the concept of fractal. In an imprecise but
suggestive definition [5, 6], the fractal is an object in which any of its parts is a
reduced size-copy of the entire. Applying the Hausdorff algorithm for computing
the dimension, fractional values are obtained for the fractal dimension. We
mention that there are several equivalent variants of the Hausdorff dimension
[5-7]: the similar dimension, the box-counting dimension, the correlation
dimension, the Lyapunov dimension, etc. They are different in accuracy and
computing speed.

In a generalized way [8], the construction of a fractal reproduces (see
fig.1) the evolution of the processing unit studied in the presence of a feedback
line, with the control parameter, denoted by CU in fig. 1. According to the
analysis [8], the evolution of this system can generate complex structures even in
the case of a very simple form of the feedback function.

processing unit | @

feedback line

Fig.1 Fractals generation seen as the evolution of a feedback system.

If the parameters of the feed-back function and the value of the control parameter
are constant in time, the generated fractal is a regular fractal; if these parameters
are random, the fractal will be a random fractal. In this paper, we examine the
noise parameters dependency of the fractal dimension of some random fractals.
This study is of practical interest when the quantitative differentiation of similar
systems is needed. Since the real systems have random evolution parameters, one
should know their influence on the fractal dimension, and on the application based
on it, respectively.

2. Theoretical considerations

We shell use the box-counting for the determination of the fractal
dimension. This method is also known as the Minkowski-Bouligand dimension
[7], and it uses a grid devided by evenly-spaced squares, of dimension s (the
squares of s side below). The grid is superposed on the figure for which the fractal
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dimension is to be determined (a Koch fractal in fig. 2). Let N be the number of
cases crossed by the fractal. We reduce with a constant scale the dimension of the
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Fig.2. Calculus steps in the box-counting method of the fractal dimension.

squares (the scaling factor is 1/2 in fig. 2: s;=sy/2=s,/4) and we obtain the
dependency :
ln(N )= f (s)

The box-counting dimension is the exponent N =ct-s ”of the power
function. Practically, it is the slope of the dependency ln(N )= f (s), obtained for
different values of the cases (fig. 2a, b, c). For the calculation of the fractal
dimension we have used the soft program Fraclab from Matlab. It allows the
calculus of the fractal dimension by the box-counting method, on graphic files.

3. Results and discussions

We shall examine the influence of the generation noise on a Julia fractal [5], for
which the feed-back (see fig.1) is ensured by the iteration function of complex
variable z=x+iy:

Z, =2 +c. (1)

1s the calculated value

n+l

The coefficient c is the control parameter CU in fig.1, z

n+l
obtained by the processing unit at the output OU and z” is the input value IU.

The values of z, are computed beginning with a start value conveniently chosen
and are plotted in the complex plane x-y. In the iteration process, a noise with an
uniform probability distribution was introduced. We denote by a the coefficient of
variation of the randomized parameters . The function used from the Mathematica
soft program is:

f.=1+RandomReal[ {- a, a}] 2)
This function multiplies the parameter considered; consequently, we obtain a
random variation of the parameter during the iteration process. For the variation
of the control parameter ¢, we have obtained (see fig. 3 for some examples) a
moderate influence of the noise on the frontier of the Julia fractal; for the regular
fractal we have considered p =2 and ¢=-0.5. As one can see from fig. 3b-d the
shape of the fractal with the randomized control parameter remains identical to
that of the regular fractal (fig.3a) at large scale. At small scale, the images will no
longer be similar, and the differences increase with the increase of the amplitude.
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If we randomize the exponent p from the function (1) by mean of the
function (2), with the mean value p =2, the noise influence becomes dramatic.

As one can see in fig. 4, the presence of a noise that randomly modifies the
exponent with a=0.1 (fig. 4d) practically destroys the fractal. This proves how
small parameters variations in the iteration function lead to the transition from a
fractal with a clearly defined frontier to a fractal with a more and more diffuse
frontier.
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Fig. 3. The Julia fractal: the control parameter p is randomized by choosing the parameter a as 0
(fig. 3a); 0.01(fig. 3b); 0.05 (fig. 3¢c) and a = 0.1(fig. 3d).

The fractal dimension was measured as a function of the amplitude a of
the noise (1) and it is represented in fig 5. As one can see, the fractal dimension
increases with the noise amplitude. The increase presents a saturation process,
which is normal, because when the surface is uniformly covered with iteration
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points, the dimension tends towards the value 2, specific to a bi-dimensional
surface. The relatively slow variation of the dimension lead to the conclusion that
the analysis of the fractal dimension permits however a reliable pattern
recognition in the case of the variation of the control parameter. Exception makes
the variation of the
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Fig.4 Julia fractal with the p exponent randomized by choosing the parameter a = 0.01; 0.02; 0.05;
0.1; in figures a, b, ¢ and d respectively.

exponent in the iteration function, in this situation the system behavior back away
from the fractal one. It is interesting to study the noise influence for various
values of the power p in the reaction function. In fig. 6 is represented the noise
influence on the fractal generation, for the case of randomizing the power p with

a noise amplitude a =0.1 [see equation (2)]. As one can see in fig. 6, a variation
of the exponent numerically equal to the noise amplitude (p varies from p = 2 in
fig 5d to p = 1.9 in fig 6a, and the noise amplitude is constant a = (.1), conserves
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the general shape of the fractal. Comparing the figures, one observes however the
sensible change of shape and the change of the fractal dimension from D =1.63
in case of fig. 5d, to D =1.72 in fig. 6a. At the increase of the exponent value, the
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Fig. 5. Variation of the fractal dimension versus noise amplitude 'a' in the case of randomizing the
control parameter ¢ (squares) and the exponent p (circle) respectively.

generated fractal was null for pe(2,3). For p=3.0, the regulated generated

fractal (without noise) was shown in fig. 6b; the corresponding fractal generated
in noise presence is shown in fig. 6¢. For comparison, we have also presented the
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Fig.6. Julia fractal generated in the presence of noise: a) p=1.9,a=0.1;b)p=3,a=0;
c)p=3,a=0.1;d)p=3.5,a=0.1

case of a random fractal with p=3.5 in fig. 6d. The images show the strong

influence of the feedback function in the fractal generation. One observes that the
topological entropy of the random fractal [7] increases qualitatively with the value
of the exponent p ; we intend to establish quantitatively the correlation between

the box-counting dimension, the topological dimension and the parameters of the
feed-back function for the random fractals in a future work. Also, we intend to
study in the future the correlation between the liquid crystal texture shape, the
phase transitions and the fractal dimension.

4. Conclusions

In this work we have analyzed the noise influence on the fractal
parameters on the fractal generation process. We have reached the conclusion that
the randomizing of the iteration function has much higher effects than the control
parameter. A large modification of the fractal dimension, in the case of noise
systems (noise pictures, temporal serials of Brownian type) is an indication of the
statistical character of the phenomena governing the system evolution. When
increasing the value of the exponent p in the iteration function (1), the influence
of the noise increases in the sense that the fractal frontier becomes more and more
diffuse.
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