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NOISE INFLUENCE ON FRACTAL DIMENSION IN THE 
PROCESS OF GENERATION OF THE JULIA FRACTALS 

Constantin ROŞU1, Doina M. MAXIMEAN2 

Fractalii pot fi întâlniti în natură într-o mare varietate de domenii. Una din 
principalele lor caracteristici este mărimea fracţionară a dimensiunii geometrice. 
Spre deosebire de fractalii determinişti la care auto-replicarea poate fi explorată la 
orice scară, in sistemele reale aceasta este limitata de prezenta zgomotului, cu 
influente asupra dimensiunii fractale. Ne propunem să explorăm in această lucrare 
efectul zgomotului asupra mărimii dimensiunii fractale, calculată prin metoda box-
counting. Analiza este efectuată prin introducerea zgomotului în mărimea 
parametrilor care intervin în procesul de generare a fractalilor. Rezultatele obţinute 
prezintă interes în caracterizarea  sistemelor haotice prin intermediul dimensiunii 
fractale. 

 
Fractals are encountered in nature in many domains. One of their main 

characteristics is the fractional geometric dimension. As opposed to deterministic 
fractals in which the self- similarity can be explored at any scale, in real systems 
this is limited by the presence of noise, that influences the fractal dimensions. Our 
goal is to explore the noise effect on fractal dimension, using the box-counting 
method. The analysis is done by randomizing the fractal generation parameters. 
The obtained results are interesting in the characterization of chaotic systems by 
fractal dimension. 

 
Keywords: Fractal dimension, noise. 

1. Introduction 

The dimension problem is essential in the study of all knowledge domains: 
essentially it deals with the determination and the characterization of the 
minimum number of quantities (geometrical coordinates, physical parameters, 
etc.) necessary for the univocal description of the system. Even if intuitively the 
geometric dimension problem is evident (a one, two or three dimension body has 
the dimensions 1, 2, or 3 respectively), the algorithm of determination of the 
number of dimensions of a system and of their respective values is generally an 
open problem, with some notable exceptions. Thus in geometry the definitions of 
Borel and Lebesgue have been specified and algorithmized by Hausdorff [1-3] in 
a rigorous way.  Starting from the difficulty of characterizing the complex forms 
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and processes in nature (by example the clouds, the new liquid crystal textures, 
the temporal evolution of the stock market, etc.) using the Euclidian geometrical 
forms, Mandelbrot [4] introduced the concept of fractal. In an imprecise but 
suggestive definition [5, 6], the fractal is an object in which any of its parts is a 
reduced size-copy of the entire. Applying the Hausdorff algorithm for computing 
the dimension, fractional values are obtained for the fractal dimension. We 
mention that there are several equivalent variants of the Hausdorff dimension    
[5-7]: the similar dimension, the box-counting dimension, the correlation 
dimension, the Lyapunov dimension, etc. They are different in accuracy and 
computing speed. 
 In a generalized way [8], the construction of a fractal reproduces (see 
fig.1) the evolution of the processing unit studied in the presence of a feedback 
line, with the control parameter, denoted by CU in fig. 1. According to the 
analysis [8], the evolution of this system can generate complex structures even in 
the case of a very simple form of the feedback function. 
 

 
 

Fig.1 Fractals generation seen as the evolution of a feedback system. 
 

If the parameters of the feed-back function and the value of the control parameter 
are constant in time, the generated fractal is a regular fractal; if these parameters 
are random, the fractal will be a random fractal. In this paper, we examine the 
noise parameters dependency of the fractal dimension of some random fractals. 
This study is of practical interest when the quantitative differentiation of similar 
systems is needed. Since the real systems have random evolution parameters, one 
should know their influence on the fractal dimension, and on the application based 
on it, respectively. 

2. Theoretical considerations 

 We shell use the box-counting for the determination of the fractal 
dimension. This method is also known as the Minkowski-Bouligand dimension 
[7], and it uses a grid devided by  evenly-spaced squares, of dimension s (the 
squares of s side below). The grid is superposed on the figure for which the fractal 
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dimension is to be determined (a Koch fractal in fig. 2). Let N be the number of 
cases crossed by the fractal. We reduce with a constant scale the dimension of the  

     
(a)           (b)   (c) 

Fig.2. Calculus steps in the box-counting method of the fractal dimension. 
 
squares (the scaling factor is 1/2 in fig. 2: sc=sb/2=sa/4) and we obtain the 
dependency : 
( ) ( )sfN =ln .  

The box-counting dimension is the exponent DsctN −⋅= of the power 
function. Practically, it is the slope of the dependency ( ) ( )sfN =ln , obtained for 
different values of the cases (fig. 2a, b, c). For the calculation of the fractal 
dimension we have used the soft program Fraclab from Matlab. It allows the 
calculus of the fractal dimension by the box-counting method, on graphic files. 

3. Results and discussions 

We shall examine the influence of the generation noise on a Julia fractal [5], for 
which the feed-back (see fig.1) is ensured by the iteration function of complex 
variable z=x+iy: 

 czz p
nn +=+1 .         (1) 

The coefficient c is the control parameter CU in fig.1, 1+nz  is the calculated value 
obtained by the processing unit at the output OU and p

nz  is the input value IU. 
The values of zn are computed beginning with a start value conveniently chosen 
and are plotted in the complex plane x-y.  In the iteration process, a noise with an 
uniform probability distribution was introduced. We denote by a the coefficient of 
variation of the randomized parameters . The function used from the Mathematica 
soft program is: 

fz = 1+RandomReal[{- a, a}]       (2) 
This function multiplies the parameter considered; consequently, we obtain a 
random variation of the parameter during the iteration process. For the variation 
of the control parameter c, we have obtained (see fig. 3 for some examples) a 
moderate influence of the noise on the frontier of the Julia fractal; for the regular 
fractal we have considered 2=p  and 5.0−=c . As one can see from fig. 3b-d the 
shape of the fractal with the randomized control parameter remains identical to 
that of the regular fractal (fig.3a) at large scale.  At small scale, the images will no 
longer be similar, and the differences increase with the increase of the amplitude. 
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 If we randomize the exponent p from the function (1) by mean of the 
function (2), with the mean value 2=p , the noise influence becomes dramatic. 
As one can see in fig. 4, the presence of a noise that randomly modifies the 
exponent with a=0.1 (fig. 4d) practically destroys the fractal. This proves how 
small parameters variations in the iteration function lead to the transition from a 
fractal with a clearly defined frontier to a fractal with a more and more diffuse 
frontier.    
 

 
(a)     (b) 

 
(c)     (d) 

Fig. 3. The Julia fractal: the control parameter p is randomized by choosing the parameter a as 0 
(fig. 3a); 0.01(fig. 3b); 0.05 (fig. 3c) and a = 0.1(fig. 3d). 

 
 The fractal dimension was measured as a function of the amplitude a  of 
the noise (1) and it is represented in fig 5. As one can see, the fractal dimension 
increases with the noise amplitude. The increase presents a saturation process, 
which is normal, because when the surface is uniformly covered with iteration 
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points, the dimension tends towards the value 2, specific to a bi-dimensional 
surface. The relatively slow variation of the dimension lead to the conclusion that 
the analysis of the fractal dimension permits however a reliable pattern 
recognition in the case of the variation of the control parameter. Exception makes 
the variation of the 

    
(a)     (b) 

  
(c)     (d) 

Fig.4  Julia fractal with the p exponent randomized by choosing the parameter a = 0.01; 0.02; 0.05; 
0.1; in figures a, b, c and d respectively. 

 
exponent in the iteration function, in this situation the system behavior back away 
from the fractal one.  It is interesting to study the noise influence for various 
values of the power p  in the reaction function. In fig. 6 is represented the noise 
influence on the fractal generation, for the case of randomizing the power p with 
a noise amplitude 1.0=a  [see equation (2)]. As one can see in fig. 6, a variation 
of the exponent numerically equal to the noise amplitude (p varies from p = 2 in 
fig 5d to p = 1.9 in fig 6a, and the noise amplitude is constant a = 0.1), conserves 
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the general shape of the fractal. Comparing the figures, one observes however the 
sensible change of shape and the change of the fractal dimension from 63.1=D  
in case of fig. 5d, to 72.1=D  in fig. 6a. At the increase of the exponent value, the 
 

 
Fig. 5. Variation of the fractal dimension versus noise amplitude 'a' in the case of randomizing the 

control parameter c (squares) and the exponent p (circle) respectively. 
 
generated fractal was null for ( )3,2∈p . For 0.3=p , the regulated generated 
fractal (without noise) was shown in fig. 6b; the corresponding fractal generated 
in noise presence is shown in fig. 6c. For comparison, we have also presented the  

 
(a)     (b) 
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(c)     (d) 

Fig.6. Julia fractal generated in the presence of noise: a) p = 1.9, a = 0.1; b) p = 3, a = 0; 
c) p = 3, a = 0.1; d) p = 3.5, a = 0.1 

 
case of a random fractal with 5.3=p  in fig. 6d. The images show the strong 
influence of the feedback function in the fractal generation. One observes that the 
topological entropy of the random fractal [7] increases qualitatively with the value 
of the exponent p ; we intend to establish quantitatively the correlation between 
the box-counting dimension, the topological dimension and the parameters of the 
feed-back function for the random fractals in a future work. Also, we intend to 
study in the future the correlation between the liquid crystal texture shape, the 
phase transitions and the fractal dimension. 

4. Conclusions 

 In this work we have analyzed the noise influence on the fractal 
parameters on the fractal generation process. We have reached the conclusion that 
the randomizing of the iteration function has much higher effects than the control 
parameter. A large modification of the fractal dimension, in the case of noise 
systems (noise pictures, temporal serials of Brownian type) is an indication of the 
statistical character of the phenomena governing the system evolution. When 
increasing the value of the exponent p in the iteration function (1), the influence 
of the noise increases in the sense that the fractal frontier becomes more and more 
diffuse. 
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