
U.P.B. Sci. Bull., Series C, Vol. 70, No. 3, 2008                                                      ISSN 1454-234x 
 

FPGA INTEGRATED LOGIC ANALYZER 
WITH TESTING AUTOMATION FACILITIES 

Laurenţiu-Cristian DUCA1 

În acest articol se prezintă un analizor logic integrat pentru FPGA. 
Analizorul este dedicat pentru depanarea şi verificarea în timp real, direct pe placa 
de dezvoltare a aplicaţiilor bazate pe FPGA. Deţine facilităţi pentru testarea 
automată a aplicatiilor şi pentru simplificarea interfaţării cu analizoarele de  
protocoale  de comunicaţii. 

This paper presents an FPGA integrated logic analyzer. The logic analyzer is 
designed for in-circuit debug and verification of FPGA based applications. It has 
facilities for testing automation of the FPGA based applications and easy 
interfacing with third party protocol analyzers.  

Keywords: FPGA, integrated logic analyzer, in-circuit debugging, testing 
automation, co-simulation, Verilog simulator 

1. Introduction 

In the field of debugging FPGA based applications, cost of traditionally 
external logic analyzers can be greatly decreased and interfacing to protocol 
analyzers can be significantly improved. 

When using traditional external logic analyzers, the pins of the ASIC chip 
are connected to a special dedicated socket from where the signals on specific pins 
can be grabbed in real-time and viewed on the screen of the dedicated external 
logic analyzer. Usability and scope of logic analyzers are well presented in [1]. In 
industry, representative products of the external logic analyzers market are the 
Agilent 16800/16900 Series Logic Analyzer and Tektroniks TLA 5000 Series 
Logic Analyzer. 

In the FPGA field, the intelligence of the external analyzer can be split in 
two sides. The first side is represented by the FPGA integrated modules which are 
responsible to real-time data capturing of the monitorized signals. The other part 
of the logic analyzer is a computer application which graphically displayes the 
captured data. Xilinx Chipscope and Altera Signal Tap are two of the most 
representative integrated logic analyzers of the market products. Also is the 
SUMP logic analyzer which is an open source project and available for download 
[2] on the Internet. 
                                                            
1 Assist., Dept. of Computer Science, University "Politehnica" of Bucharest, Romania 



Laurentiu-Cristian Duca 
 
102 

In the logic analyzer presented in this paper has been implemented a 
method for testing automation and easy interfacing with third party protocol 
analyzers. This logic analyzer represents an original and personal work of the 
author of this paper. 

2. Architecture and functionality 

The logic analyzer that will be presented is named openverifla. The project 
is publicly available for download [3] on the Internet under the terms of the GNU 
GPL open source license. The accent of the presentation is put on the original 
features of the logic analyzer and the standard part is just sketched as a main view. 

The main architecture of the openverifla logic analyzer is shown in Fig. 1. 
The logic analyzer has two sides, the FPGA part and the PC one. These 
communicates via a PC-FPGA interface. 

 

 
Fig. 1 Main architecture of the logic analyzer 

The openverifla FPGA modules are implemented in Verilog HDL. In 
order to use the logic analyzer, these modules must be implemented in the FPGA 
chip along with the user application. The modules capture the signal transitions of 
the monitorized lines and send the data capture to the PC for graphical 
visualization and future analyze.  

The PC part of the application is implemented in the Java language. The 
Java application receives the captured data and saves it on the disk in a file named 
capture.v. This file is a behavioural Verilog HDL file. An Verilog HDL simulator 
with a graphical viewer for the signals is necessary in order to simulate capture.v 
and view the captured data. 

In the current version, the interface between the FPGA and PC is made via 
the RS232 standard serial interface. The micro-UART Verilog drivers written by 
Jeung Joon Lee [4] were adapted in a version usable by openverifla FPGA 
modules. The rxtx library [5] is used to gain access to the PC serial port. It is 
distributed under the GNU GPL license and supports many operating systems 
such as Linux, Windows. The library is wrote in the C/C++ language and the Java 
port is made through the JNI interface. 

PC 

Interface

FPGA 

verifla 
modules 

user app. 
modules 



FPGA integrated logic analyzer with testing automation facilities 
 

103

The original features of this logic analyzer are shown through an 
illustrative example. In this example, a keyboard driver implementation is 
verified. The keyboard protocol is presented in Fig. 2. When no event occures, the 
clock and data lines are idle – being hold as high. When a key is pressed or 
released, the key-code is sent on the data line, bit by bit. It is preceded by the start 
bit and followed by the parity and stop bits. This is done synchronously with the 
clock signal. When the CLOCK signal is low (0), DATA have a stable value. 
When the CLOCK signal is high (1), on the DATA line it may be a signal 
transition. The key-codes are different by the ASCII codes. For example, 'a' has 
0x1C and its bits will be sent as 0011 1000. 

 

 
Fig. 2 Keyboard protocol 

A keyboard driver implementation is shown in Table 1. The module 
top_of_verifla is instantiated in the KEYBOARD module. This way, it will be 
implemented in the FPGA chip along with the user application. The signals to be 
captured are DATA, KBD_CLK_EF and MASTER. When a key is pressed, its 
keyboard-code bits are sent on the data line, conforming to the keyboard protocol 
shown above. The implementation of the KEYBOARD module de-serializes the 
data bits and then places the keyboard-code in the MASTER octet register. The 
signal transitions are captured on-the-fly by the openverifla modules and then will 
be sent to the PC, where will be graphically displayed. 

 
Table 1 

An implementation of the keyboard driver 

module KEYBOARD(DATA, KBD_CLK_REAL,RESET,MASTER, 
 //top_of_verifla 
    , clk,  
    // Transceiver 
    uart_XMIT_dataH, uart_REC_dataH 
); 
 
//top_of_verifla 
input clk; 
 // Transceiver 



Laurentiu-Cristian Duca 
 
104 

input uart_REC_dataH; 
output uart_XMIT_dataH; 
 
// App. specific 
input DATA,KBD_CLK_REAL,RESET; 
 
wire KBD_CLK_EF; 
output [7:0] MASTER; // master register for storing keyboard data 
reg [7:0] MASTER; 
reg [3:0] i;  // initial value needs to be not equal to 0 through 7. set initial to 10. 
 
 
//assign KBD_CLK_EF=KBD_CLK_REAL; 
IBUF b1(KBD_CLK_EF, KBD_CLK_REAL); 
 
always @ (negedge KBD_CLK_EF or posedge RESET) 
begin 
 if(RESET)  
 begin  
  i=10; 
  MASTER=0; 
 end 
 else begin 
  if ((i >= 0) && (i <= 7))  
  // data bit. 
  begin 
   MASTER = {DATA, MASTER[7:1]}; 
   i = i + 1; 
  end 
  else if ((i == 8) || (i == 9))  
  // parity bit or stop bit. 
  begin 
   i = i + 1; 
  end 
  else // start bit 
  begin 
   i = 0; 
  end  
 end 
end 
 
// VeriFLA 
top_of_verifla verifla (clk, !RESET, 0,  
    {22'h000000, DATA, KBD_CLK_EF, MASTER}, 
    // Transceiver 
    uart_XMIT_dataH, uart_REC_dataH 
    ); 
 
endmodule 



FPGA integrated logic analyzer with testing automation facilities 
 

105

After the application is implemented in the FPGA chip, the Java 
application is run on the PC. This way, the openverifla modules are instructed to 
start a new capture and after the capture is finished, to send the capture to the PC.  

Now, these modules wait for signal events on the monitorized lines. If a 
key is pressed - for example 'a', the keyboard module implementation does its job 
and the openverifla modules makes the capture on-the-fly and sends it to the PC.  

The Java application gets the capture and builds the capture.v Verilog file. 
After this, the capture.v can be added and simulated in a Xilinx ISE normal 
project. The result is shown in Fig. 3. 

 
Fig. 3 Simulation of capture.v 

 

The development-board clock is used as the openverifla modules clock 
and has a freqvency of 50 MHz. The frequency of the keyboard clock is about few 
Khz. So, in the Xilinx simulation, run 1000000 ns commands were necessary, to 
reach the $stop instruction of the capture.v. 

 
3. Testing automation 
 
The capture.v file is built such that it contains signal transitions for all 

monitorized lines. Having both the input stimulus and output signals captured, 
testing automation can be done. 

In the above test case we wanted to verify if the driver receives corectly a 
key that was pressed. Consider more that this key is pressed immediately after the 



Laurentiu-Cristian Duca 
 
106 

solution was implemented on the FPGA and the reset button associated to the 
application was pressed. 

The main structure of the capture.v file is shown in Table 2. The kbd_data, 
kbd_clk lines and the MASTER register were monitorized. The clock of the 
openverifla modules is clk_of_verifla. 

 
Table 2 

Code structure of the capture.v file 
`timescale 1ns / 10ps 
 
module capture_20070921_1522_28(clk_of_verifla, la_trigger_matched,  
MASTER, kbd_clk, kbd_data, not_used_3); 
 
output clk_of_verifla; 
output la_trigger_matched; 
output [7:0] MASTER; 
output kbd_clk; 
output kbd_data; 
output [21:0] not_used_3; 
reg [7:0] MASTER; 
reg kbd_clk; 
reg kbd_data; 
reg [21:0] not_used_3; 
reg la_trigger_matched; 
reg clk_of_verifla; 
 
parameter PERIOD = 10; 
initial // Clock process for clk_of_verifla 
begin 
forever 
begin 
clk_of_verifla = 1'b0; 
#(5); clk_of_verifla = 1'b1; 
#(5); 
end 
end 
 
initial begin 
#(5); 
la_trigger_matched = 0; 
{not_used_3,kbd_data,kbd_clk,MASTER}= 32'b00000000000000000000001100000000; 
#10; 
// ------------- Current Time: 10*(1ns) 
#655350; 
{not_used_3,kbd_data,kbd_clk,MASTER}= 32'b00000000000000000000000100000000; 
#10; 
// ------------- Current Time: 655370*(1ns) 
#5750; 



FPGA integrated logic analyzer with testing automation facilities 
 

107

{not_used_3,kbd_data,kbd_clk,MASTER}= 32'b00000000000000000000000000000000; 
la_trigger_matched = 1; 
#10; 
// ------------- Current Time: 661130*(1ns) 
#22030; 
{not_used_3,kbd_data,kbd_clk,MASTER}= 32'b00000000000000000000000100000000; 
#10; 
... // here code similar to the above lines was stripped out. 
$stop; 
end 
endmodule 
 
By using the co-simulation method, capture.v can be simulated along with 

a specification only Verilog source that is supposed to be correctly or is already 
simulation verified. This may be provided by a third party protocol analyzer. Co-
simulation can be done by instantiating both modules in a single source and then 
simulating this one. For the keyboard driver example, the source for co-simulation 
is shown in Table 3. The inputs of the supposed correct model are driven from the 
captured ones in the real test – which are now taken from the capture.v. These are 
the kbd_clk and kbd_data lines. All the co-simulation time, the MASTER and 
km_MASTER registers should coincide. If they does not, there is a difference of 
the two common simulated solutions. So one of the two is affected by a user 
design logical error. The number of errors are kept in the errors_nr variable. With 
the presence of this variable in simulation, it can be located the moment in time 
where an error appeared and the appropriate state of the user application. 

Table 3 

The co-simulation Verilog source for the keyboard driver 

`timescale 1ns / 1ps 
module kbd_drv_aut_test(clk_of_verifla, la_trigger_matched,  
MASTER, kbd_clk, kbd_data, not_used_3, 
errors_nr); 
 
output errors_nr; 
// same as kbd_capt 
output clk_of_verifla; 
output la_trigger_matched; 
output [7:0] MASTER; 
output kbd_clk; 
output kbd_data; 
output [21:0] not_used_3; 
 
integer errors_nr; 
 
// kbd_capt 
wire clk_of_verifla; 



Laurentiu-Cristian Duca 
 
108 

wire la_trigger_matched; 
wire [7:0] MASTER; 
wire kbd_clk; 
wire kbd_data; 
wire [21:0] not_used_3; 
capture_20070921_1522_28 kbd_capt (clk_of_verifla, la_trigger_matched,  
    MASTER, kbd_clk, kbd_data, not_used_3); 
 
// kbd_model 
reg km_RESET; 
wire [7:0] km_MASTER; 
kbd_drv_behavioural kbd_model (kbd_data, kbd_clk, km_RESET, km_MASTER); 
 
initial begin 
    errors_nr=0; 
    km_RESET=0; 
    #1; 
    km_RESET=1; 
    #1; 
    km_RESET=0; 
end 
 
always begin 
    if(km_MASTER != MASTER) 
    begin 
        //$display("Error at time=%dns km_MASTER=%h, MASTER=%h",  
        // $time, km_MASTER, MASTER); 
        errors_nr = errors_nr + 1; 
        //$stop; 
    end 
    #1; 
end 
endmodule 
 
The co-simulation is shown in Fig. 4. The errors_nr variable is 0 at the 

end of the simulation. So, the co-simulation shows an identical behaviour for both 
solutions for the present test case.  



FPGA integrated logic analyzer with testing automation facilities 
 

109

 
Fig. 4. Co-simulation for the keyboard driver 

4. Conclusions 

In this paper was presented an FPGA integrated logic analyzer and the 
accent put on its original features. 

The logic analyzer FPGA modules can easily be attached to the user 
applications that are written in Verilog. Being implemented in Java, the PC part is 
platform independent. 

The main ideea that make nice features to appear as possible, was to save 
the raw data capture in a behavioural Verilog file named capture.v. This file can 
be simulated in any Verilog simulator and signal transitions along with the time 
stamps are available for the user.  

By using the co-simulation method, capture.v can be simulated along with 
a specification only Verilog source that is supposed to be correctly or is already 
simulation verified.  

Interfacing with third party protocol analyzer programs can be done, by 
using the standard behavioural Verilog format of the capture.v file. 

 
 



Laurentiu-Cristian Duca 
 
110 

R E F E R E N C E S 

[1] A.L. Kuan, A "How To" tutorial on Logic analyzer basics for digital design, 
http://www.pldesignline.com, 2007 

[2] M. Poppitz,  The SUMP logic analyzer, http://sump.org/projects/analyzer 
[3] L.C. Duca,  The openVeriFLA project, http://www.opencores.org/projects.cgi/web/openverifla 
[4] J.J.  Lee, micro-UART, http://www.cmod.com, 2001 
[5] K. Jarvi et all,  The rxtx library, http://www.rxtx.org 
 
 


