U.P.B. Sci. Bull., Series C, Vol. 70, No. 3, 2008 ISSN 1454-234x

FPGA INTEGRATED LOGIC ANALYZER
WITH TESTING AUTOMATION FACILITIES

Laurentiu-Cristian DUCA'

In acest articol se prezintd un analizor logic integrat pentru FPGA.
Analizorul este dedicat pentru depanarea i verificarea in timp real, direct pe placa
de dezvoltare a aplicatiilor bazate pe FPGA. Detine facilitati pentru testarea
automata a aplicatiilor si pentru simplificarea interfatarii cu analizoarele de
protocoale de comunicatii.

This paper presents an FPGA integrated logic analyzer. The logic analyzer is
designed for in-circuit debug and verification of FPGA based applications. It has
facilities for testing automation of the FPGA based applications and easy
interfacing with third party protocol analyzers.

Keywords: FPGA, integrated logic analyzer, in-circuit debugging, testing
automation, co-simulation, Verilog simulator

1. Introduction

In the field of debugging FPGA based applications, cost of traditionally
external logic analyzers can be greatly decreased and interfacing to protocol
analyzers can be significantly improved.

When using traditional external logic analyzers, the pins of the ASIC chip
are connected to a special dedicated socket from where the signals on specific pins
can be grabbed in real-time and viewed on the screen of the dedicated external
logic analyzer. Usability and scope of logic analyzers are well presented in [1]. In
industry, representative products of the external logic analyzers market are the
Agilent 16800/16900 Series Logic Analyzer and Tektroniks TLA 5000 Series
Logic Analyzer.

In the FPGA field, the intelligence of the external analyzer can be split in
two sides. The first side is represented by the FPGA integrated modules which are
responsible to real-time data capturing of the monitorized signals. The other part
of the logic analyzer is a computer application which graphically displayes the
captured data. Xilinx Chipscope and Altera Signal Tap are two of the most
representative integrated logic analyzers of the market products. Also is the
SUMP logic analyzer which is an open source project and available for download
[2] on the Internet.

! Assist., Dept. of Computer Science, University "Politehnica" of Bucharest, Romania

102 Laurentiu-Cristian Duca

In the logic analyzer presented in this paper has been implemented a
method for testing automation and easy interfacing with third party protocol
analyzers. This logic analyzer represents an original and personal work of the
author of this paper.

2. Architecture and functionality

The logic analyzer that will be presented is named openverifla. The project
is publicly available for download [3] on the Internet under the terms of the GNU
GPL open source license. The accent of the presentation is put on the original
features of the logic analyzer and the standard part is just sketched as a main view.

The main architecture of the openverifla logic analyzer is shown in Fig. 1.
The logic analyzer has two sides, the FPGA part and the PC one. These
communicates via a PC-FPGA interface.

PC FPGA
verifla user app.
Interface modules modules

Fig. 1 Main architecture of the logic analyzer

The openverifla FPGA modules are implemented in Verilog HDL. In
order to use the logic analyzer, these modules must be implemented in the FPGA
chip along with the user application. The modules capture the signal transitions of
the monitorized lines and send the data capture to the PC for graphical
visualization and future analyze.

The PC part of the application is implemented in the Java language. The
Java application receives the captured data and saves it on the disk in a file named
capture.v. This file is a behavioural Verilog HDL file. An Verilog HDL simulator
with a graphical viewer for the signals is necessary in order to simulate capture.v
and view the captured data.

In the current version, the interface between the FPGA and PC is made via
the RS232 standard serial interface. The micro-UART Verilog drivers written by
Jeung Joon Lee [4] were adapted in a version usable by openverifla FPGA
modules. The rxtx library [S5] is used to gain access to the PC serial port. It is
distributed under the GNU GPL license and supports many operating systems
such as Linux, Windows. The library is wrote in the C/C++ language and the Java
port is made through the JNI interface.

FPGA integrated logic analyzer with testing automation facilities 103

The original features of this logic analyzer are shown through an
illustrative example. In this example, a keyboard driver implementation is
verified. The keyboard protocol is presented in Fig. 2. When no event occures, the
clock and data lines are idle — being hold as high. When a key is pressed or
released, the key-code is sent on the data line, bit by bit. It is preceded by the start
bit and followed by the parity and stop bits. This is done synchronously with the
clock signal. When the CLOCK signal is low (0), DATA have a stable value.
When the CLOCK signal is high (1), on the DATA line it may be a signal
transition. The key-codes are different by the ASCII codes. For example, 'a' has
0x1C and its bits will be sent as 0011 1000.

CLOCK
DATA

n—=u|-Nm-r|.nr.nh->,_'

£ < < < < 4 <4 4 £ = 0o
d = = = = k= = = = @£ O
- 9 € 9 9 4 94 94 £ o -
Lo g a o o Qo o o oowm

Fig. 2 Keyboard protocol

A keyboard driver implementation is shown in Table 1. The module
top_of verifla is instantiated in the KEYBOARD module. This way, it will be
implemented in the FPGA chip along with the user application. The signals to be
captured are DATA, KBD CLK EF and MASTER. When a key is pressed, its
keyboard-code bits are sent on the data line, conforming to the keyboard protocol
shown above. The implementation of the KEYBOARD module de-serializes the
data bits and then places the keyboard-code in the MASTER octet register. The
signal transitions are captured on-the-fly by the openverifla modules and then will
be sent to the PC, where will be graphically displayed.

Table 1
An implementation of the keyboard driver

module KEYBOARD(DATA, KBD CLK REAL,RESET,MASTER,
/Itop_of_verifla
, clk,
// Transceiver
vart XMIT_dataH, uart REC_dataH

);

/Itop_of verifla
input clk;
// Transceiver

104

Laurentiu-Cristian Duca

input uart REC_dataH;
output uart XMIT_dataH;

/I App. specific
input DATA,KBD CLK REAL,RESET;

wire KBD_CLK _EF;

output [7:0] MASTER; // master register for storing keyboard data

reg [7:0] MASTER;

reg [3:0] i; // initial value needs to be not equal to 0 through 7. set initial to 10.

/lassign KBD_CLK_EF=KBD_CLK_REAL;
IBUF b1(KBD_CLK_EF, KBD CLK_REAL);

always @ (negedge KBD_CLK_EF or posedge RESET)

begin
if(RESET)
begin
i=10;
MASTER=0;
end
else begin
if (i>=0) && (i<=17))
// data bit.
begin
MASTER = {DATA, MASTER[7:1]};
i=i+1;
end
elseif (1==8) || 1==9))
// parity bit or stop bit.
begin
i=i+1;
end
else // start bit
begin
i=0;
end
end
end
// VeriFLA

top_of verifla verifla (clk, 'RESET, 0,
{22'h000000, DATA, KBD CLK EF, MASTER},
// Transceiver
uart XMIT dataH, uart REC dataH

);

endmodule

FPGA integrated logic analyzer with testing automation facilities 105

After the application is implemented in the FPGA chip, the Java
application is run on the PC. This way, the openverifla modules are instructed to
start a new capture and after the capture is finished, to send the capture to the PC.

Now, these modules wait for signal events on the monitorized lines. If a
key is pressed - for example 'a', the keyboard module implementation does its job
and the openverifla modules makes the capture on-the-fly and sends it to the PC.

The Java application gets the capture and builds the capture.v Verilog file.
After this, the capture.v can be added and simulated in a Xilinx ISE normal
project. The result is shown in Fig. 3.

|::':ilin: ISE - D:\Mlucru'scoala\en\laborator\Mlogic_analyzer\wverifla\werilog\graphics\graphics.ise - [Simulation]

::Z.l E =
| e e
o

1.76668e+06ns | 1 4 4 T | g1
Meclk_of_verifla |

I | 1 |

Hl anla_trigger_maltched

| -+ 3MASTER[T:0)
Mkbd_clk
Wkbd_data

= glnot_used_3[21:0]

‘»run 1000000 ns
run 1000000 ns
Stopped at time :

1.766685 ms : File "D:/lucru/scoala/cn/laborator/1

Fig. 3 Simulation of capture.v

The development-board clock is used as the openverifla modules clock
and has a freqvency of 50 MHz. The frequency of the keyboard clock is about few
Khz. So, in the Xilinx simulation, rurn 1000000 ns commands were necessary, to
reach the $stop instruction of the capture.v.

3. Testing automation

The capture.v file is built such that it contains signal transitions for all
monitorized lines. Having both the input stimulus and output signals captured,
testing automation can be done.

In the above test case we wanted to verify if the driver receives corectly a
key that was pressed. Consider more that this key is pressed immediately after the

106 Laurentiu-Cristian Duca

solution was implemented on the FPGA and the reset button associated to the
application was pressed.

The main structure of the capture.v file is shown in Table 2. The kbd_data,
kbd clk lines and the MASTER register were monitorized. The clock of the
openverifla modules is clk_of verifla.

Table 2
Code structure of the capture.v file

“timescale 1ns / 10ps

module capture 20070921 1522 28(clk of verifla, la_trigger matched,
MASTER, kbd_clk, kbd data, not used 3);

output clk_of verifla;
output la_trigger matched;
output [7:0] MASTER;
output kbd_clk;

output kbd_data;

output [21:0] not_used 3;
reg [7:0] MASTER,;

reg kbd_clk;

reg kbd_data;

reg [21:0] not _used 3;
reg la_trigger matched,
reg clk_of verifla;

parameter PERIOD = 10;

initial // Clock process for clk_of verifla
begin

forever

begin

clk_of verifla= 1'b0;

#(5); clk_of verifla=1Dl;

#(5);

end

end

initial begin

#(5);

la_trigger matched = 0;

{not_used 3,kbd_data,kbd_clk, MASTER }= 32'b00000000000000000000001100000000;

#10;

J] =mmmmmmmmeeae Current Time: 10*(1ns)

#655350;

{not_used 3,kbd data,kbd clk, MASTER }= 32'b00000000000000000000000100000000;
#10;

R Current Time: 655370*(1ns)

FPGA integrated logic analyzer with testing automation facilities 107

{not used 3,kbd data,kbd clk, MASTER }= 32'b00000000000000000000000000000000;
la_trigger matched = 1;

#10;

/] =mmmmmmeeeee Current Time: 661130*(1ns)

#22030;

{not used 3,kbd data,kbd clk, MASTER }= 32'b00000000000000000000000100000000;
#10,

... // here code similar to the above lines was stripped out.

$stop;

end

endmodule

By using the co-simulation method, capture.v can be simulated along with
a specification only Verilog source that is supposed to be correctly or is already
simulation verified. This may be provided by a third party protocol analyzer. Co-
simulation can be done by instantiating both modules in a single source and then
simulating this one. For the keyboard driver example, the source for co-simulation
is shown in Table 3. The inputs of the supposed correct model are driven from the
captured ones in the real test — which are now taken from the capture.v. These are
the kbd clk and kbd data lines. All the co-simulation time, the MASTER and
km_MASTER registers should coincide. If they does not, there is a difference of
the two common simulated solutions. So one of the two is affected by a user
design logical error. The number of errors are kept in the errors_nr variable. With
the presence of this variable in simulation, it can be located the moment in time
where an error appeared and the appropriate state of the user application.

Table 3

The co-simulation Verilog source for the keyboard driver

‘timescale 1ns / 1ps

module kbd_drv_aut_test(clk of verifla, la_trigger matched,
MASTER, kbd_clk, kbd data, not used 3,

errors_nr);

output errors_nr;

// same as kbd_capt

output clk_of verifla;
output la_trigger matched;
output [7:0] MASTER;
output kbd_clk;

output kbd_data;

output [21:0] not_used_3;

integer errors_nr;

// kbd_capt
wire clk of verifla;

108 Laurentiu-Cristian Duca

wire la_trigger matched,;

wire [7:0] MASTER;

wire kbd_clk;

wire kbd_data;

wire [21:0] not_used_3;

capture_20070921 1522 28 kbd_capt (clk_of verifla, la_trigger matched,
MASTER, kbd_clk, kbd data, not_used 3);

// kbd_model

reg km RESET;

wire [7:0] km_MASTER;

kbd_drv_behavioural kbd model (kbd_data, kbd_clk, km RESET, km MASTER);

initial begin
errors_nr=0;
km_RESET=0;
#1;
km_RESET=I;
#1;
km RESET=0;

end

always begin
if(km MASTER != MASTER)
begin
//$display("Error at time=%dns km MASTER=%h, MASTER=%h",
// $time, km_MASTER, MASTER);
errors_nr = errors_nr + 1;
/1$stop;
end
#1;
end
endmodule

The co-simulation is shown in Fig. 4. The errors nr variable is 0 at the
end of the simulation. So, the co-simulation shows an identical behaviour for both
solutions for the present test case.

FPGA integrated logic analyzer with testing automation facilities 109

[EE Xilinx - ISE - D:\lucru\scoala\cnMaborator\logic_analyzer\veriflatverilogikeyboard_and_verifla\keyboard_and_verifla.ise - [

G

Now:

1.76730e+06 ns
Mclk_of_verifla

Mla_trigger_matched
P MASTER][7:0] [
Mkbd_clk
Mkbd_data
2inot_used_3[21:0] |
AMkm_RESET
F km_MASTER[7:0] |
BI[3:0] [10
@lerrors_nr{31:0] [

585636 ns 762367 939097 ns ‘1115823 1292
| | | | |

8h1C

8hi1C

10

run 2000000 ns
Stopped at time 1.767305 ms

File "D:/lucru/scoala/cn/la

Fig. 4. Co-simulation for the keyboard driver

4, Conclusions

In this paper was presented an FPGA integrated logic analyzer and the
accent put on its original features.

The logic analyzer FPGA modules can easily be attached to the user
applications that are written in Verilog. Being implemented in Java, the PC part is
platform independent.

The main ideea that make nice features to appear as possible, was to save
the raw data capture in a behavioural Verilog file named capture.v. This file can
be simulated in any Verilog simulator and signal transitions along with the time
stamps are available for the user.

By using the co-simulation method, capture.v can be simulated along with
a specification only Verilog source that is supposed to be correctly or is already
simulation verified.

Interfacing with third party protocol analyzer programs can be done, by
using the standard behavioural Verilog format of the capture.v file.

110 Laurentiu-Cristian Duca

REFERENCES

[1] A.L. Kuan, A "How To" tutorial on Logic analyzer basics for digital design,
http://www.pldesignline.com, 2007

[2] M. Poppitz, The SUMP logic analyzer, http://sump.org/projects/analyzer

[3] L.C. Duca, The openVeriFLA project, http://www.opencores.org/projects.cgi/web/openverifla

[4]JJ. Lee, micro-UART, http://www.cmod.com, 2001

[5] K. Jarvi et all, The rxtx library, http://www.rxtx.org

