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ON GENERALIZED ABSOLUTE VALUE EQUATIONS

M. A. Noor1, K. I. Noor2, S. Batool3

In this paper, we consider the generalized absolute value equations. It is
shown that Lax-Milgram lemma and absolute values equations can be obtained as special

cases. We use the auxiliary principle technique to prove the existence of a solution to
the generalized absolute value equations. This technique is also used to suggest some new
iterative methods for solving the generalized absolute value equations. The convergence

analysis of the proposed methods is analyzed under some mild conditions. Ideas and
techniques of this paper may stimulate further research.

Keywords: Absolute value equations, Lax-Milgram Lemma, Auxiliary Principle, Iter-
ative method, Convergence.

1. Introduction

Recently much attention has been given to solve the systems of absolute value equa-
tions, which were introduced and studied by Mangasarian and Meyer [12]. The system of
absolute value equations are closely related to the complementarity problems, variational
inequalities and optimization problem. Various numerical methods have been developed for
solving the absolute values equations, see [5, 6, 9, 10, 11, 12, 13, 14, 19, 20, 21, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32] and the references therein.

In this paper, we introduce and study the system of generalized absolute values equa-
tions. This system of generalized absolute value equations can be viewed as weak formulation
of the boundary value problems. It is shown that the system of absolute value equations
[12] and Lax-Milgram [7] can be obtained as special cases. We use the auxiliary principle
technique, which is mainly due to Lions and Stampachhia [8] and Glowinski et al [4], to
discuss the existence to a solution of the generalized absolute value equations. The auxiliary
principle technique is used to suggest some iterative methods for solving the generalized
absolute value equations.

In Section 2, we introduce the generalized absolute value equations and discuss their
applications. The auxiliary principle technique is used to discuss the existence to a solution
as well as to suggest some iterative methods for solving the general absolute value equations.
The convergence analysis of the proposed method is also considered under some mild condi-
tions. As special cases, two new iterative methods for solving the absolute values equations
are obtained.
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2. Formulations and basic facts

Let H be a Hilbert space, whose norm and inner product are denoted by ∥ · ∥ and
⟨·, ·⟩, respectively.

For a given an operator L, continuous functional f, and a constant λ, we consider the
problem of finding u ∈ H, such that

⟨Lu− λ|u|, v − u⟩ = ⟨f, v − u⟩, ∀v ∈ H, (1)

which is called the system of generalized absolute value equations. Here |u| denotes the
component-wise absolute value of u ∈ H. A wide class of problems arising in pure and
applied sciences can be studied via the absolute valued equations (1).
The problem (1) is equivalent to finding u ∈ H, such that

⟨Lu− λ|u|, v⟩ = ⟨f, v⟩, ∀v ∈ H. (2)

If λ = 0 and ⟨Lu, v⟩ = a(., .), where a(., .) : H ×H → H, is a continuous bifunction, then
the problem (2) is equivalent to finding u ∈ H, such that

a(u, v) = ⟨f, v⟩, ∀v ∈ H, (3)

which is known as the famous Lax-Milgram Lemma[7]. This result has been used to discuss
the unique existence to a solution of the boundary value problems. This result is of similar
significance in the study of function spaces and partial differential equations. For the appli-
cations and generalizations of the Lax-Milgram Lemma, see [1, 3, 7, 8, 15, 18, 22] and the
references.

We note that the problem (1) is equivalent to finding u ∈ H such that

Lu− λ|u| = f, (4)

which is known as the absolute value equations. Problem of type (1) has been discussed in
a series of papers recently, see[5, 6, 9, 10, 11, 12, 13, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32].
We would like to mention that problems (1), (2) and (4) are equivalent.

If the operator L is linear, positive and symmetric, then problem (1) is equivalent to
finding a minimum of the functionI[v] on H, where

I[v] = ⟨Lv − λ|v|, v⟩ − 2⟨f, v⟩ ∀v ∈ H, (5)

which is a nonlinear quadratic programming problem and can be solved using the known
techniques of the nonlinear optimization.

We now show that the boundary value problems can be studied via problem (1).

Example 2.1. Consider the absolute boundary value problem of finding u such that

D2u

dx2
− λ|u| = f(x), ∀x ∈ [a, b], (6)

with boundary conditions

u(a) = 0, u(b) = 0, (7)

where f(x) is a continuous function. This problem can be studied in the general framework
of the problem (1). To do so, let H1

0 [a, b] = {u ∈ H,u(a) = 0, u(b) = 0} be a Hilbert space,
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see [4]. One can easily show that the energy functional associated with (1) is:

I[v] = −
∫ b

a

d2v

dx2
vdx+

∫ b

a

λ|v|vdx− 2

∫ b

a

fvdx, ∀u ∈ H1
0 [a, b]

=

∫ b

a

(
dv

dx
)2 +

∫ b

a

λ|v|vdv − 2

∫ b

a

fvdx

= ⟨Lv, v⟩+ ⟨λ|v|, v⟩ − 2⟨f, v⟩.
where

⟨Lu, v⟩ =
∫ b

a

du

dx

dv

dx
dx, (8)

and

⟨|u|, v⟩ =
∫ b

a

|u|vdx, ⟨f, v⟩ =
∫ b

a

fvdx.

It is clear that the operator L defined by (8) is linear, symmetric and positive.
Thus the minimum of the functional I[v] defined on the Hilbert space H1

0 [a, b] can be char-
acterized by equation (2) or equivalently (1).This shows that the absolute boundary value
problems can be studied in the framework of (1).

We now recall some basic concepts and results.

Definition 2.1. An operator L : H −→ H is said to be;
(i). Strongly monotone, if there exists a constant α > 0, such that

⟨Lu− Lv, u− v⟩ ≥ α∥u− v∥2, ∀u, v ∈ H.

(ii). Lipschitz continuous, if there exists a constant β > 0, such that

∥Lu− Lv∥ ≤ β∥u− v∥, ∀u, v ∈ H.

(iii) monotone, if
⟨Lu− Lv, u− v⟩ ≥ 0, ∀u, v ∈ H.

We remark that, if the operator L is both strongly monotone with constant α > 0
and Lipschitz continuous with constant β > 0, respectively, then from (i) and (ii), it follows
that α ≤ β.

3. Main results

In this section, we use the auxiliary principle technique, the origin of which can be
traced back to Lions and Stampacchia [7]and Glowinski et al [4], as developed by Noor
[15, 16, 18]. The main of idea of this technique to consider an auxiliary problem related
to the original problem. This way, one defines a mapping connecting the solutions of both
problems. To prove the existence of solution of the original problem, it is enough to show that
this connecting mapping is a contraction mapping and consequently has a unique solution of
the original problem. Another novel feature of this approach is that this technique enables
us to suggest some iterative methods for solving the generalized absolute value equations.

Theorem 3.1. Let the operator L be strongly monotone with constant α > 0 and Lipschitz
continuous with constant β > 0, respectively. If there exists a constant ρ > 0 such that

0 < ρ <
2(α− λ)

β2
, ρλ < 1, λ < α. (9)

then problem (1) has a unique solution..
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Proof. (a). Uniqueness. Let u1 ̸= u2 ∈ H be two solutions of problem (1). Then

⟨Lu1 − λ|u1|, v − u1⟩ = ⟨f, v − u1⟩, ∀v ∈ H. (10)

⟨Lu2 − λ|u2|, v − u2⟩ = ⟨f, v − u2⟩, ∀v ∈ H. (11)

Taking v = u2 in (10) and v = u1 in (11) and adding the resultant, we have

⟨Lu1 − Lu2 − λ(|u1| − |u2|), u1 − u2⟩ = 0. (12)

Using the strongly monotonicity of L with constant α > 0 and (12), we have

α∥u1 − u2∥2 ≤ ⟨Lu1 − Lu2, u1 − u2⟩
= ⟨λ(|u1| − |u2|), u1 − u2⟩
≤ λ∥|u1| − |u2|∥∥u1 − u2∥
≤ λ∥u1 − u2∥2,

from which, it follows that

(α− λ)∥u1 − u2∥2 ≤ 0,

which implies that u1 = u2, the uniqueness.
(b). Existence. We now use the auxiliary principle technique to prove the existence of a
solution of (1). For a given u ∈ H satisfying (1), consider the problem of finding w ∈ H
such that,

⟨ρ(Lu− λ|u|), v − w⟩+ ⟨w − u, v − w⟩ = ρ⟨f, v − w⟩, ∀v ∈ H, (13)

which is called the auxiliary problem, where ρ > 0 is a constant. It is clear that (13) defines
a mapping w connecting the both problems (1) and (13). To prove the existence of a solu-
tion of (1), it is enough to show that the mapping w defined by (13) is a contraction mapping.

Let w1 ̸= w2 ∈ H (corresponding to u1 ̸= u2) be solutions of (13). Then

⟨ρ(Lu1 − λ|u1|), v − w1⟩+ ⟨w1 − u1, v − w1⟩ = ⟨f, v − w1⟩, ∀v ∈ H, (14)

⟨ρ(Lu2 − λ|u2|), v − w2⟩+ ⟨w2 − u2, v − w2⟩ = ⟨f, v − w2⟩, ∀v ∈ H. (15)

Taking v = w2 in (14) and v = w1 in (15) and adding the resultant, we have

∥w1 − w2∥2 = ⟨w1 − w2, w1 − w2⟩
= ⟨u1 − u2 − ρ(Lu1 − Lu2) + ρλ(|u1| − |u2|), w1 − w2⟩. (16)

From (16), we have

∥w1 − w2∥2 ≤ ∥u1 − u2 − ρ(Lu1 − Lu2) + ρλ(|u1| − |u2|)∥∥w1 − w2∥

from which, it follows that

∥w1 − w2∥ ≤ ∥u1 − u2 − ρ(Lu1 − Lu2)∥+ ρλ∥|u1| − |u2|∥
≤ ∥u1 − u2 − ρ(Lu1 − Lu2)∥+ ρλ∥u1 − u2∥. (17)

Using the strongly monotonicity and Lipschitz continuity of the operator L with constants
α > 0 and β > 0, we have

∥u1 − u2 − ρ(Lu1 − Lu2)∥2 = ⟨u1 − u2 − ρ(Lu1 − Lu2), u1 − u2 − ρ(Lu1 − Lu2)⟩
= ⟨u1 − u2, u1 − u2⟩ − 2ρ⟨Lu1 − Lu2, u1 − u2⟩

+ρ2⟨Lu1 − Lu2, Lu1 − Lu2⟩
≤ (1− 2ρα+ ρ2β2)∥u1 − u2∥2. (18)
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Combining (17) and (19), we have

∥w1 − w2∥ ≤
(
ρλ+

√
(1− 2ρα+ ρ2β2)

)
∥u1 − u2∥

= θ∥u1 − u2∥, (19)

where
θ = ρλ+

√
1− 2ρα+ β2ρ2.

From (9), it follows that θ < 1, so the mapping w is a contraction mapping and consequently,
it has a fixed point w(u) = u ∈ H satisfying the problem (1).

�
Remark 3.1. We point out that the solution of the auxiliary problem (13) is equivalent to
finding the minimum of the functional I[w], where

I[w] =
1

2
⟨w − u,w − u⟩ − ρ⟨Lu− |u| − f, w − u⟩,

which is a differentiable convex functional associated with the inequality (13). This alter-
native formulation can be used to suggest iterative methods for solving the general absolute
value equations. This auxiliary functional can be used to find a kind of gap function, whose
stationary points solves the problem (1), see [3].

It is clear that, if w = u, then w is a solution of (1). This observation shows that
the auxiliary principle technique can be used to suggest the following iterative method for
solving the generalized absolute value equations (1).

Algorithm 3.1. For a given initial value u0, compute the approximate solution xn+1 by the
iterative scheme

⟨Lun − λ|un|+ un+1 − un, v − un+1⟩ = ⟨f, v − un+1⟩,∀v ∈ H.

From Algorithm 3.1, one can easily obtain the Picard type iterative method for solving
the absolute value equation (4) and appears to be a new one.

Algorithm 3.2. For a given initial value u0, compute the approximate solution xn+1 by the
iterative scheme

un+1 = un − ρ(Lun − λ|un| − f), n = 0, 1, 2, 3...

We again use the auxiliary principle technique to suggest an implicit method for
solving the problem (1). For a given u ∈ H satisfying (1), consider the problem of finding
w ∈ H such that,

⟨ρ(Lw − λ|w|), v − w⟩+ ⟨w − u, v − w⟩ = ρ⟨f, v − w⟩, ∀v ∈ H, (20)

which is called the auxiliary problem. We note that the auxiliary problems (13) and (20)
are quite different.
Clearly w = u ∈ H is a solution of (1). This observation allows us to suggest the following
iterative method for solving the problem (1).

Algorithm 3.3. For a given initial value u0, compute the approximate solution xn+1 by the
iterative scheme

⟨ρLun+1 − λρ|un+1|+ un+1 − un, v − un+1⟩ = ⟨ρf, v − un+1⟩, ∀v ∈ H, (21)

which is an implicit method.
From this implicit method, we can obtain the following iterative method for solving (2)

Algorithm 3.4. For a given initial value u0, compute the approximate solution xn+1 by the
iterative scheme

un+1 = un − ρ(Lun+1 − λ|un+1| − f), n = 0, 1, 2, 3...



68 M. A. Noor, K. I. Noor, S. Batool

This is a new implicit method for solving the absolute value equations (2).

To implement the implicit method, one uses the explicit method as a predictor and
implicit method as a predictor. Consequently, we obtain the two-step method for solving
the problem (1).

Algorithm 3.5. For a given initial value u0, compute the approximate solution xn+1 by the
iterative schemes

⟨ρLun − λρ|un|+ yn − un, v − un+1⟩ = ⟨ρf, v − yn⟩,∀v ∈ H,

⟨ρLyn − λρ|yn|+ un+1 − un, v − un+1⟩ = ⟨ρf, v − un+1⟩, ∀v ∈ H,

which is known as two-step iterative method for solving problem (1).

Based on the above arguments, we can suggest a new two-step(predictor-corrector )
method for solving the absolute value equations (2).

Algorithm 3.6. For a given initial value u0, compute the approximate solution xn+1 by the
iterative schemes

yn = un − ρ(Lun − λ|un| − f)

un+1 = un − ρ(Lyn − λ|yn| − f), n = 0, 1, 2...

We now consider the convergence analysis of Algorithm 3.3 and this is the main
motivation of our next result.

Theorem 3.2. Let u ∈ H be a solution of problem (1) and let un+1 be the approximate
solution obtained from Algorithm 3.3. If L is a monotone operator, then

(1− 2λρ)∥un+1 − u∥2 ≤ ∥un − u∥2 − ∥un+1 − un∥2. (22)

Proof. Let u ∈ H be a solution of (1). Then

⟨Lu− λ|u|, v − u⟩ = ⟨f, v − u⟩, ∀v ∈ H,

which implies that
⟨Lv − λ|u|, v − u⟩ ≥ ⟨f, v − u⟩, ∀v ∈ H, (23)

since the operator L is monotone.
Taking v = un+1 in (23) and v = u in (21), we have

⟨Lun+1 − λ|u|, un+1 − u⟩ ≥ ⟨f, un+1 − u⟩, ∀v ∈ H, (24)

and

⟨ρLun+1 − ρλ|un+1|+ un+1 − un, u− un+1⟩ = ⟨ρf, u− un+1⟩,∀v ∈ H, (25)

From (24) and (25), we have

⟨un+1 − un, u− un+1⟩ ≥ −λρ⟨|un+1| − |u|, un+1 − u⟩. (26)

Using the relation 2ab = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, ∀a, b ∈ H, the Cauchy-Swarchtz inequality
and from (26), we have

(1− 2λρ)∥u− un+1∥2 ≤ ∥u− un∥2 − ∥un − un+1∥2,
which is the required (22).

�

Theorem 3.3. Let ū ∈ H be a solution of (1) and let un+1 be the approximate solution
obtained from Algorithm 3.3. If L is a monotone operator and 2λρ < 1, then

lim
n→∞

un+1 = ū. (27)
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Proof. Let ū ∈ H be a solution of (1). From ((22), it follows that the sequence {∥ū− un∥}
is noncreasing and consequently the sequence {un} is bounded. Also, from (22), we have

∞∑
n=0

∥un+1 − un∥2 ≤ ∥u0 − ū∥2,

which implies that

lim
n→∞

∥un+1 − un∥ = 0. (28)

Let û be a cluster point of {un} and the subsequences {unj} of the sequence {un} converges
to ū ∈ H. Replacing un by unj in (21), taking the limit as nj → ∞ and using (28), we have

⟨Lû− λ|û|, v − ū⟩ = ⟨f, v − û⟩, ∀v ∈ H,

which shows that û ∈ H satisfies (1) and

∥un+1 − un∥2 ≤ ∥un − û∥2.
From the above inequality, it follows that the sequence {un} has exactly one cluster point
û and limn→∞ un = û. �

Conclusion

In this paper, we have considered a new class of absolute value equations. The
auxiliary principle technique has been used to study the existence of the unique solution
of the generalized absolute value equations. Some new iterative methods are suggested for
solving the absolute value equations. The convergence analysis of these iterative methods is
investigated under suitable conditions. This is a new approach for the Lax-Milgram lemma.
We would like to emphasize that the results obtained and discussed in this paper may
motivate a number of novel applications and extensions and in these areas.
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