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APPLICATION OF FIXED POINT METHOD FOR SOLVING
NONLINEAR VOLTERRA-HAMMERSTEIN INTEGRAL
EQUATION

Khosrow MALEKNEJAD?, Parvin TORABI?

There are various numerical methods to solve nonlinear integral equations.
Most of them transform the integral equation into a system of nonlinear algebraic
equations. It is cumbersome to solve these systems, or the solution may be
unreliable. In this paper, we study the application of the fixed point method to solve
Volterra-Hammerstein integral equations. This method does not lead to a nonlinear
algebraic equations system. We show how the proper conditions guarantee the
uniqueness of the solution and how the fixed point method approximates this
solution. A bound for the norm of the error is derived and our results prove the
convergence of the method. Finally, we present numerical examples which confirm
our approach.

Keywords: Fixed point theory; counteractive operator; Volterra-Hammerstein
integral equation; Fixed point method; Sinc quadrature.

1. Introduction

Many problems which arise in mathematical physics, engineering,
biology, economics and etc., lead to mathematical models described by nonlinear
integral equations. (cf. [1],[2],[3]). For instance, the Hammerstein integral
equations appear in nonlinear physical phenomena such as electro-magnetic fluid
dynamics, reformulation of boundary value problems with a nonlinear boundary
condition (see [4]). This equation is as follows

x(®) = gO)+ [k (¢, OH (1.x ()<, (1)
for all t el =[a,b] which is a Fredholm-type integral equation. Many different

methods have been used to approximate the solution of such integral equations.
For example we can mention the following approaches. In [5], a variation of
Nystrom's method is introduced. The classical method of successive
approximations is used in [6]. Some collocation-type methods are developed in [7,
8]. An approach based on single-term Walsh series is proposed in [9]. In [10]
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Hammerstein equation is solved by using Walsh-Hybrid functions. Some methods
based on interpolations, Petrov-Galerkin, a combination of spline-collocation and
Lagrange interpolation, and Dabechies wavelets have been introduced in [11, 12,
13, 14].

A Volterra-Hammerstein integral equation is introduced as follows

x(®) =9+ [ kKt OH (t.x (D)dT, )
for all t el =[a,b]. Han [15] discusses the asymptotic error expansion of a

collocation-type method for Volterra-Hammerstein integral equations. The
methods in [15, 7] transform a given integral equation into a system of nonlinear
equations, which has to be solved with some kind of iterative method. In [7], the
definite integrals involved in the solution may be evaluated analytically only in
favorable cases, while in [15] the integrals involved in the solution have to be
evaluated at each step of the iteration.

In the methods mentioned above, the integral equation is transformed into
a system of nonlinear equations which has to be solved with iterative methods. It
is cumbersome to solve these systems, or the solution may be unreliable. To
eliminate this problem, we have made an attempt to prepare a numerical scheme
to approximate a solution for integral equation (2) based on the fixed point
method and some quadrature rules such as sinc quadrature which has exponential
rate of accuracy [16, 17]. We studied the appropriate conditions and performance
of this method for Fredholm-Hammerstein equation (1) in [18]. This method has
two advantages that encourage us to use it. Firstly, there is not any system of
nonlinear equations with its relevant difficulties. Furthermore, this method is very
simple to apply and to make an algorithm.

The organization of this paper is as follows. First we mention some
necessary concepts such as contractive operators and sinc quadrature which we
will use later. Then we introduce our numerical technique, and discuss its
convergence. Finally, we present some numerical examples to show the efficiency
and accuracy of our proposed method.

2. Preliminaries

Let us introduce some necessary concepts and tools which help us to frame
our method. They can be found in books on numerical analysis such as [16, 17,
19, 20].

2.1. Contractive operator in Banach spaces

LetV be a Banach space with the norm ||.||, and let K be a subset of
V . Consider an operator T : K —V defined on K .
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Definition 2.1. We say that an operator T :K —V is contractive with
contractivity constant o €[0,1) if

ITO)-T Wy <allx=ylly, vx,y eK.
The operator T is called non-expansive if

ITCO-TMWIlv<lIx=ylly. vx,y €K,
and Lipschitz continuous if there exists a constant L >0 such that

ITOO-TMWIly<Llix=yll, vx,y eK.

The following theorem is known as Banach fixed point theorem and plays
an important role in guaranteeing the existence and uniqueness of the solution of
nonlinear equations.

Theorem 2.2. Assume that K is a nonempty closed set in a Banach spaceV ,
and T :K — K is a contractive mapping with contractivity constant 0 <a <1.
Then the following results hold
(1) Existence and uniqueness: There exists a unique X~ € K such that
x =T (x).
(2) Convergence and error estimates of the iteration: For any x,eK, the
sequence {x,} = K defined by x,,, =T (x,), n=0,1..., convergesto x :

Ix,-x"|l, >0, a n-—on.
For the error, the following bounds are valid

n

* a
o =x v < = X=X llv ©)

. a
o =x "l < 7= lX0 =Xoa v (4)
1% =% lly <ollx,, =x"ly ®)

Proof: [19].
2.2. Sinc quadrature

Based on [17] we introduce a double exponential formula for the
numerical evaluation of the indefinite integration of analytic functions over (a,x)

where a <x <b, by means of the sinc method.
First, we introduce the cardinal function and some of its quadrature
properties. We accept the following definition of sinc(x) from [16]
sin(nx)
sinc(x)=< nx
1 x =0.

., x =0
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Now, for h >0 and integer k , we define k'th sinc function with step size h by
S (k. h)(x) = sin(m(x —kh)/h).
n(x —kh)/h
Let d >0, D, :{z eC :|Im(z )|<d}, and let D be a simply connected

domain with boundary oD . Let a and b denote two distinct points of oD , and
let t =¢(z) denote a conformal map of D onto the strip region D, such that

(@ b)) =(-,), lime(t)=—o, limo(t)=co.

Then all functions f that are analytic in C, have the cardinal series
representation

L) _ 5 LK g 4 hyonin
50~ 2 gn) OO

or

F(x) & f(kh)
~ S(k,h kh),
500 "2, k) S (KeModkn)

for any large N.
Now, in order to have the sinc approximation on a finite interval (a,b)

conformal map is employed as ¢(x)=|n[s —

a). This map carries the eye-

shaped complex domain

Z=X+iy: arg(Z aj d<—
b-z 2

onto the infinite strip D, :{u:owﬁi Bl <d <§} and the basis function on

finite interval (a,b) are given by
_sin(n(o(x)—kh)/h)
SKModb) === S —kny/h

Now, we use the following sinc quadrature formulas to estimate an
integral by (see [17] for more details)

I Vi ) Tog2ra )

f(Z dN
Jf(Z)dz_hk;\J(I)( ) h,k(x)+o( N eXp(_ Tndl\y)

O (exp ( 2ndN (6)

(")



Application of fixed point method [...] Volterra-Hammerstein integral equation 49

where 1, (x)=1/2+1/xSi (n(x —kh)/h) and Si(t)zj.;sin(x)/xdx with

z, =a+be""/1+e*" for k =—N,..,N and h =1/N log(mdN /B).

These quadrature formulas have an exponential rate of accuracy, thus we use them
in the present paper.

3. Fixed point method

We consider Hammerstein integral equation (2) and assume that
g €C[a,b] and k € L?[a,b]’. Now we define the operator T as follows

X)) =9®)+[ k(. OH (zx () ®)

Obviously, the solution of equation (2) is the fixed point of operator T .

By choosing the initial function x,(t) eC[a,b] we introduce the fixed point
iteration

Xon®) =X )O=g®)+ [ k€. DH (tx, ()1, tefabl, n=0. (9
In the following, we show that under proper assumptions, T has a unique
fixed point and the sequence {x (t)},_, generated by iteration (9) converges to

this unique fixed point. Then to prepare a numerical algorithm, we replace the
integral part by a numerical integration. Finally, we find an error bound for the
approximation solution.

3.1. Convergence of the method

Here, we show that under proper assumptions the sequence {x,(t)}._,

generated by iteration (9) converges to the unique fixed point of the operator T .
Theorem 3.1. Assume K is a nonempty closed set in a Banach space V , and

T :K — K is continuous. Suppose T ™ is a contraction for some positive integer
m . Then T has a unique fixed point in K . Moreover, the iteration method
Xou =T (X,), n=01,...,

converges.
Proof: The proof is similar to the proof of theorem (2.2.1) of [21]. Since T " isa
contraction then there exists a constant o €[0,1) such that

IT™x =Ty [[<allx -yl
for all x,y eK . Consequently, the Banach fixed point theorem implies that
operator T™ has a unique fixed point x“ in K ,and T™y —x~ as n —» o for
any y eK .
Since
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TX =TT "x)=T"™ =T"(Tx"),
then Tx e K s also a fixed point of T™, and hence by uniqueness, we have
Tx =x", ie. x is a fixed point of T . Moreover, setting
y =T*x, (k =0,1,...,m -1) respectively, we see that T™*"*x, >x" as
n"—ow(k =0,1..,m-1), and since for every neZ" there exists a unique
n"eZ" and k €{0,1,...,m -1}, where n=mn'+k, then x, X as n— o,
where x, is defined by x ., =T (x,), n=0,1,.... Finally, the uniqueness of the

fixed point for T ™ implies the uniqueness of the fixed point for T . [
Theorem 3.2. Consider the operator T introduced by relation (8) and assume

g eC[a,b], k e L?[a,b]?, i.e. there exists a constant M >0 where

n+l

(j:kz(t,r)dr);glvl <.

Also H (t,x) satisfies a uniform Lipschitz condition with respect to its second
argument

IH(@x)-H@y)ll.<hlx-yl.,, (10)
Forall te[a,b] and x,y eR.
Then T has a unique fixed point in C[a,b]. Moreover, the iterative method (9)
converges for any initial function x,eCla,b].
Proof: Suppose that x,y €CJa,b], then for all t [a,b] we derive the following
inequality

)@~ TY)OH [ k€0 (H (1x () -H (ry (1))d 1|
<([PKee 9 1M Ex0-H @y, ¢ _a)

1
<Mht-a)?f|x -y L.
where Cauchy-Schwartz inequality and Lipschitz condition (10) were used in the
recent relation. Also we get

500~ O H [k € A(H @ M) -H 5 Ty)@)dd
<M [0 -@y)@ Fdof
_[Mh( -a)?)

@ ||X_y||oo'

By a mathematical induction, we obtain
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[Mh(t -a)2]"
!

@00 -0yl By
Thus

1T OO - ")) [L< Wux vl
Since

1
[Mh(b -2)2]"
Jm1
the operator T™ is a contraction on C[a,b] when m is chosen sufficiently large.
By the theorem (3.1), the operator T has a unique fixed point in C[a,b] and the
iteration sequence (9) converges to the solution. []

—0 as m — oo,

3.2. Approximation of the integral part

Now, to start iteration (9), we need an initial function. Since
g(t)eCla,b], it can be chosen as the initial function for iteration, i.e. X, =g . In
each iteration we have to calculate the integral part of operator T . It can be
cumbersome if we compute that integral analytically, so we use a quadrature
method such as sinc integration to evaluate integral part of the operator T
numerically. By substituting sinc quadrature (7) in equation (9) we have

Xou ) =X, )O =9 )+ [ k€, IH (1%, (D)d

~o@)+h 3 LERIHEIED, () 1)

where 1., h, ¢(t) and n,  (t) were introduced in subsection (2.2).

In any iteration of relation (11), x,,, arises directly from x, without

solving any large system of nonlinear algebraic equations. This is a great
advantage of the proposed method.

3.3. Error bound

In the previous subsection, we proved that if T ™ be a contraction then T

0

has a unique fixed point x". Also the sequence {x,}-, generated by (9)
converges to x . Now we find an error bound for this sequence. Let {y .}, be
the sequence generated by fixed point iteration for the operator T", i.e.
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Y,y =T"y.,n">0,y,=T"x, for any x,. Using Banach fixed point theorem,
we have the following error bound

I'l

Iyn =X ||< Iyi=yoll. n">1.

According to the proof of theorem (3.1), we have x, =X
then

mn’+k
=T Xo=VYu

mn’+k
n-k

o m
_yO ”: ||Xm+k _Xk ”’ (12)
l1-a

X =x 1=y

. . n
where k €{0,1,...,m -1} is the residual of —.
m

Now, let x")(t) be the approximation of x, ,(t) by sinc quadrature in
(11) and x " (t) be the exact fixed point of T . Then, we have the following error
bound

I =X < x5 =X+ X =X

where the bound of these errors were obtained in (7) and (12).

In the next section the accuracy and efficiency of the method are shown
using some numerical examples.

4. Experimental results

In order to test the utility of the proposed numerical method, we give the
following examples. In all examples, we choose the tolerance £ =10 to stop the
iterations, i.e. fixed point iterations stop when || x, —x,, |<e. All routines have

been written in Fortran 90.
Example 4.1. Consider the following Volterra-Hammerstein integral equation

X(t)=t—z+ft2tre‘“‘f)dr, 0<t<l.
gt 0
The exact solution of this equation is xexact (t)=t. We try to solve this by our

proposed method. By choosing x,(t) =— and using sinc quadrature we have
e’

X, ()= +j 2re  d 1

t h Z 2t1:ke_x" )

z—2+ ; n (t), n 20
e k=N o'(t) e



Application of fixed point method [...] Volterra-Hammerstein integral equation 53

Where h =n/6 and 1, =e*"/1+e*" for all k =-N,..,N . The functions ¢(t)
and m,  (t) are introduced in subsection 2.2. Table 1 shows the approximation
values and errors in some points t €[0,1].

Table 1
Approximation and error values in some points in example 4.3
t | Exact N=20 N=50 N=100
Appro. Error Appro Error Appro Error

0.0| 0.0 | 0.000000E-0 | 0.000EO | 0.000000E-O | 0.000EQ | 0.000000E-O | 0.000EQ
0.2 | 2.0E-1 | 2.000000E-1 | 1.490E-8 | 2.000000E-1 | 0.000EQ | 2.000000E-1 | 0.000EOQ
0.4 | 4.0E-1 | 4.000008E-1 | 7.749E-7 | 4.000001E-1 | 1.192E-7 | 4.000000E-1 | 2.980E-8
0.6 | 6.0E-1 | 6.000094E-1 | 9.360E-6 | 6.000015E-1 | 1.490E-6 | 6.000004E-1 | 4.172E-7
0.8 | 8.0E-1 | 8.000458E-1 | 4.584E-5 | 8.000073E-1 | 7.331E-6 | 8.000018E-1 | 1.848E-6
1.0] 1.0 1.000129E0 | 1.295E-4 | 1.000021EQ | 2.062E-5 | 1.000005E0 | 5.007E-6

Example 4.2. X . ()= Jt +0.1 is the exact solution of the following Volterra-
Hammerstein integral equation

x(t)=\/f+o.1—tsin(t)+jtwdr, 0<t<1.

0 (Jt+0.2)2
By applying the proposed method we approximate the solution of this
equation. Approximation of the solution is obtained after 10 iterations with
lle ll,=2.161E —7 . Exact and approximation solutions based on sinc quadrature,

with N=20 and N =50, are shown in Fig. 1.

‘ + N=20 o N=50 ExactSDlutfm‘

T T T T 1
02 04 06 0.8 1
£

Fig. 1. Approximation and exact solutions for N=20 and N=50 in example 4.2

Example 4.3. Consider the following Volterra-Hammerstein integral equation
sin(t)

i

with the exact solution x,,, (t) =
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X(t)=mn+(—m)cos(t)—sin(t)+

t1(t—t)

sin(t)
& *Jy sin(x)

x?(t)dt, 0<t <1.

Approximation of the solution is obtained after 17 iterations with

lle ll,.=1.549E —5. Comparison between the approximation and the exact solution
in some points is shown in table 2.

Table 2
Approximation and exact values in some points in example 4.3
t Appro. values | Exact values
0.001 0.03162434 0.03162277
0.2 0.44423140 0.44423810
0.4 0.61572050 0.61572440
0.6 0.72894610 0.72895030
0.8 0.80202200 0.80202850
1.0 0.84146090 0.84147100
Example 4.4. The following Volterra-Hammerstein integral equation
2 1 t
X(t)=-ot® =2t +t? =1+ [ ¢ -20)x*()dT, O<t <L,
15 3 0

has exact solution x_, (t)=t*-1. Approximation of the solution is obtained

after 6 iterations with lle ||, = 2.342E —5. Fig. 2 shows X, (t) in three consecutive
iterations.

e x00) —— x1() = = 1200

014

024

034

044

054

~0.64

-0.74

-0.84

-094

BE

0‘9 1I

Fig. 2. Graph of x, (t) in three consecutive iterations in example 4.4
Example 4.5. In this example we solve the following Volterra integral equation
which has the exact solution x, (t) =t ,

x(t)=tcos(t)+J;t sin(x (t))d 7, 0<t <1.
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For some N , the error of the approximation solution is shown in table 3.
Table 3
Absolute error in some points 0 <t <1 and for some quadrature nodes N in example 4.5

t N=25 N=50 N=100

0.001 | 4.657E-10 4.657E-10 4.657E-10
0.2 3.532E-6 1.371E-6 6.855E-7
0.4 5.811E-6 2.950E-6 1.460E-6
0.6 7.749E-7 4.760E-6 2.444E-6
0.8 1.204E-5 6.855E-6 3.576E-6
1.0 3.988E-5 8.702E-6 4.768E-6

5. Conclusions

We approximated the solution of Volterra-Hammerstein integral equation
by the fixed point method. We have shown that some appropriate conditions
guarantee the convergence of the method. This method has two advantages. On
the one hand, we do not have to deal with any system of nonlinear equations. On
the other hand, this method is very simple to apply and to make an algorithm. The
numerical results verify that the method is valid. It is worthy to note that this
method can be utilized as a very accurate algorithm to solve linear and nonlinear
integro-differential equations and functional integral equations arising in physics
and other fields of applied mathematics.
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