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APPLICATION OF FIXED POINT METHOD FOR SOLVING 
NONLINEAR VOLTERRA-HAMMERSTEIN INTEGRAL 

EQUATION 

Khosrow MALEKNEJAD1, Parvin TORABI2 

There are various numerical methods to solve nonlinear integral equations. 
Most of them transform the integral equation into a system of nonlinear algebraic 
equations. It is cumbersome to solve these systems, or the solution may be 
unreliable. In this paper, we study the application of the fixed point method to solve 
Volterra-Hammerstein integral equations. This method does not lead to a nonlinear 
algebraic equations system. We show how the proper conditions guarantee the 
uniqueness of the solution and how the fixed point method approximates this 
solution. A bound for the norm of the error is derived and our results prove the 
convergence of the method. Finally, we present numerical examples which confirm 
our approach.   

Keywords: Fixed point theory; counteractive operator; Volterra-Hammerstein 
integral equation; Fixed point method; Sinc quadrature. 

1. Introduction 

Many problems which arise in mathematical physics, engineering, 
biology, economics and etc., lead to mathematical models described by nonlinear 
integral equations. (cf. [1],[2],[3]). For instance, the Hammerstein integral 
equations appear in nonlinear physical phenomena such as electro-magnetic fluid 
dynamics, reformulation of boundary value problems with a nonlinear boundary 
condition (see [4]). This equation is as follows   

 

 
( , ) ( , ( )) ,

b

a
x(t) = g(t) + k t H x dτ τ τ τ∫                                   (1) 

for all [ , ]t I a b∈ =  which is a Fredholm-type integral equation. Many different 
methods have been used to approximate the solution of such integral equations. 
For example we can mention the following approaches. In [5], a variation of 
Nystrom's method is introduced. The classical method of successive 
approximations is used in [6]. Some collocation-type methods are developed in [7, 
8]. An approach based on single-term Walsh series is proposed in [9]. In [10] 
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Hammerstein equation is solved by using Walsh-Hybrid functions. Some methods 
based on interpolations, Petrov-Galerkin, a combination of spline-collocation and 
Lagrange interpolation, and Dabechies wavelets have been introduced in [11, 12, 
13, 14]. 

A Volterra-Hammerstein integral equation is introduced as follows 
 

 
( , ) ( , ( )) ,

t

a
x(t) = g(t) + k t H x dτ τ τ τ∫                                           (2) 

for all [ , ]t I a b∈ = . Han [15] discusses the asymptotic error expansion of a 
collocation-type method for Volterra-Hammerstein integral equations. The 
methods in [15, 7] transform a given integral equation into a system of nonlinear 
equations, which has to be solved with some kind of iterative method. In [7], the 
definite integrals involved in the solution may be evaluated analytically only in 
favorable cases, while in [15] the integrals involved in the solution have to be 
evaluated at each step of the iteration. 

In the methods mentioned above, the integral equation is transformed into 
a system of nonlinear equations which has to be solved with iterative methods. It 
is cumbersome to solve these systems, or the solution may be unreliable. To 
eliminate this problem, we have made an attempt to prepare a numerical scheme 
to approximate a solution for integral equation (2) based on the fixed point 
method and some quadrature rules such as sinc quadrature which has exponential 
rate of accuracy [16, 17]. We studied the appropriate conditions and performance 
of this method for Fredholm-Hammerstein equation (1) in [18]. This method has 
two advantages that encourage us to use it. Firstly, there is not any system of 
nonlinear equations with its relevant difficulties. Furthermore, this method is very 
simple to apply and to make an algorithm. 

The organization of this paper is as follows. First we mention some 
necessary concepts such as contractive operators and sinc quadrature which we 
will use later. Then we introduce our numerical technique, and discuss its 
convergence. Finally, we present some numerical examples to show the efficiency 
and accuracy of our proposed method. 

2. Preliminaries 

Let us introduce some necessary concepts and tools which help us to frame 
our method. They can be found in books on numerical analysis such as [16, 17, 
19, 20]. 

2.1. Contractive operator in Banach spaces 

Let V  be a Banach space with the norm || . ||V  and let K  be a subset of 
V . Consider an operator :T K V→  defined on K . 
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Definition 2.1. We say that an operator :T K V→  is contractive with 
contractivity constant [0,1)α∈  if  

    || ( ) ( ) || || || , , .V VT x T y x y x y K− ≤ α − ∀ ∈  
The operator T  is called non-expansive if  

    || ( ) ( ) ||  || || , , ,V VT x T y x y x y K− ≤ − ∀ ∈  
and Lipschitz continuous if there exists a constant 0L ≥  such that 

    || ( ) ( ) || || || , , .V VT x T y L x y x y K− ≤ − ∀ ∈  
The following theorem is known as Banach fixed point theorem and plays 

an important role in guaranteeing the existence and uniqueness of the solution of 
nonlinear equations.  
Theorem 2.2.  Assume that K  is a nonempty closed set in a Banach  space V , 
and :T K K→  is a contractive mapping with contractivity constant 0 1≤ α < . 
Then the following results hold 
(1) Existence and uniqueness: There exists a unique *x K∈  such that 

* *( ).x T x=  
(2) Convergence and error estimates of the iteration: For any 0x K∈ , the  

sequence { }nx K⊂  defined by 1 ( ), 0,1,...n nx T x n+ = = , converges to *x : 
*

  || || 0, .n Vx x as n− → →∞  
For the error, the following bounds are valid  

*
 1 0   || || || || ,

1

n

n V Vx x x xα
− ≤ −

−α
                                   (3) 

*
 1   || || || || ,

1n V n n Vx x x x −
α

− ≤ −
−α

                                 (4) 
* *

  1   || || || || .n V n Vx x x x−− ≤ α −                                   (5) 
Proof: [19]. 

 2.2. Sinc quadrature 

Based on [17] we introduce a double exponential formula for the 
numerical evaluation of the indefinite integration of analytic functions over ( , )a x  
where a x b< < , by means of the sinc method.  

First, we introduce the cardinal function and some of its quadrature 
properties. We accept the following definition of sin ( )c x  from [16]  

sin( ) , 0
sin ( )

1, 0.

x x
c x x

x

π⎧ ≠⎪= π⎨
⎪ =⎩
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Now, for 0h >  and integer k , we define k'th sinc function with step size h  by 
sin( ( ) / )( , )( ) .

( ) /
x kh hS k h x

x kh h
π −

=
π −

 

Let 0d > , { }: Im( )dD z C z d= ∈ < , and let D be a  simply connected 
domain with boundary D∂ . Let  a  and b  denote two distinct points of D∂ , and 
let  ( )t z= φ  denote a conformal map of D onto the strip region dD  such that  

(( , )) ( , ), lim ( ) , lim ( ) .
t a t b

a b t t
→ →

φ = −∞ ∞ φ = −∞ φ = ∞  

Then all functions f  that are analytic in , have the cardinal series 
representation 

( ) ( ) ( , ) ( ),
( ) ( )k

f x f kh S k h kh
x kh

∞

=−∞

= οφ
′ ′φ φ∑  

or 
( ) ( ) ( , ) ( ),
( ) ( )

N

k N

f x f kh S k h kh
x kh=−

≈ οφ
′ ′φ φ∑  

for any large N. 
Now, in order to have the sinc approximation on a finite interval ( , )a b  

conformal map is employed as ( ) ln x ax
b x
−⎛ ⎞φ = ⎜ ⎟−⎝ ⎠

. This map carries the eye-

shaped complex domain 

: arg ,
2

z az x iy d
b z

⎧ ⎫− π⎛ ⎞= + < ≤⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭
 

onto the infinite strip :
2dD i d π⎧ ⎫= μ = α +β β < <⎨ ⎬

⎩ ⎭
, and the basis function on 

finite interval ( , )a b  are given by 
sin( ( ( ) ) / )( , ) ( ) .

( ( ) ) /
x kh hS k h x

x kh h
π φ −

οφ =
π φ −

 

Now, we use the following sinc quadrature formulas to estimate an 
integral by (see [17] for more details) 

 

 2
( ) 2( ) (exp( )),
( ) log( )

Nb k
a

k N k
dN

f z dNf z dz h O
z=−

π
β

π
= + −

′φ∑∫                          (6) 

 

, 

( ) log( ) ( ) ( exp( )),
( ) log( )

Nx k
h ka

k N k
dN

f z N dNf z dz h x O
z N=−

π
β

π
= η + −

′φ∑∫                (7) 
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where , ( ) 1 2 1 ( ( ) )h k x Si x kh hη = + π π −  and 
 

 0
( ) sin( )

t
Si t x x dx= ∫  with 

1kh kh
kz a be e= + +  for ,...,k N N= −   and 1 log( )h N dN= π β . 

These quadrature formulas have an exponential rate of accuracy, thus we use them 
in the present paper. 

3. Fixed point method 

We consider Hammerstein integral equation (2) and assume that 
[ , ]g C a b∈  and 2 2[ , ]k L a b∈ . Now we define the operator T  as follows   

 

 
( )( ) ( ) ( , ) ( , ( )) .

t

a
Tx t g t k t H x d= + τ τ τ τ∫                                  (8) 

Obviously, the solution of equation (2) is the fixed point of operator T . 
By choosing the initial function 0 ( ) [ , ]x t C a b∈  we introduce the fixed point 
iteration 

 

1  
( ) ( )( ) ( ) ( , ) ( , ( )) , [ , ], 0.

t

n n na
x t Tx t g t k t H x d t a b n+ = = + τ τ τ τ ∈ ≥∫        (9) 

In the following, we show that under proper assumptions, T  has a unique 
fixed point and the sequence 0{ ( )}n nx t ∞

=  generated by iteration (9) converges to 
this unique fixed point. Then to prepare a numerical algorithm, we replace the 
integral part by a numerical integration. Finally, we find an error bound for the 
approximation solution.   

3.1. Convergence of the method 

 Here, we show that under proper assumptions the sequence 0{ ( )}n nx t ∞
=  

generated by iteration (9) converges to the unique fixed point of the operator T . 
Theorem 3.1.  Assume K  is a nonempty closed set in a Banach space V , and 

:T K K→  is continuous. Suppose mT  is a contraction for some positive integer 
m . Then T  has a unique fixed point in K . Moreover, the iteration method 

1 ( ), 0,1, ,n nx T x n+ = = …  
converges. 
Proof: The proof is similar to the proof of theorem (2.2.1) of [21].  Since mT  is a 
contraction then there exists a constant [0,1)α∈  such that 

  || || || ||,m mT x T y x y− ≤ α −  
for all ,x y K∈ . Consequently, the Banach fixed point theorem implies that 
operator mT  has a unique fixed point *x  in K , and *mnT y x→  as n →∞  for 
any y K∈ . 
Since 
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* * 1 * *( ) ( ),m m mTx T T x T x T Tx+= = =  
then *Tx K∈  is also a fixed point of mT , and hence by uniqueness, we have 

* *Tx x= , i.e. *x  is a fixed point of T . Moreover, setting 
0 ( 0,1,..., 1)ky T x k m= = −  respectively, we see that *

0
mn kT x x′+ →  as 

( 0,1,..., 1)n k m′ → ∞ = − , and since for every n +∈  there exists a unique 
n +′∈  and {0,1,..., 1}k m∈ − , where n mn ' k= + , then *

nx x→  as n →∞ , 
where xn  is defined by 1 ( ), 0,1,n nx T x n+ = = … . Finally, the uniqueness of the 
fixed point for mT  implies the uniqueness of the fixed point for T .  
Theorem 3.2.  Consider the operator T  introduced by relation (8) and assume 

[ , ]g C a b∈ , 2 2[ , ]k L a b∈ , i.e. there exists a constant M 0>  where 

( )22

 

1
 

( , ) .
b

a
k t d Mτ τ ≤ < ∞∫  

Also ( , )H xτ  satisfies a uniform Lipschitz condition with respect to its second 
argument 

 || ( , ) ( , ) || || || ,H x H y h x y∞ ∞τ − τ ≤ −                             (10) 
For all [ , ]a bτ∈  and ,x y ∈ . 
Then T  has a unique fixed point in [ , ]C a b . Moreover, the iterative method (9) 
converges for any initial function  0 [ , ]x C a b∈ . 
Proof:  Suppose that , [ , ]x y C a b∈ , then for all [ , ]t a b∈  we derive the following 
inequality 

( )
 

 
| ( )( ) ( )( ) | | ( , ) ( , ( )) ( , ( )) |

t

a
Tx t Ty t k t H x H y d− = τ τ τ − τ τ τ∫  

( )
1 1
2 2

 

 

2 ( , ) ( , ) ( , ) ( )
b

a
k t d H x H y t a∞≤ τ τ τ − τ −∫ ‖ ‖  

1
2 ||( ) || ,Mh t a x y ∞≤ − −  

where Cauchy-Schwartz inequality and Lipschitz condition (10) were used in the 
recent relation. Also we get 

( )
 2

 

2| ( )( ) ( )( ) | | ( , ) ( , ( )( )) ( , ( )( )) |
t

a
T x t T y t k t H Tx H Ty d− = τ τ τ − τ τ τ∫  

( ) 

 

1
22|( )( ) ( )( ) |

t

a
Mh Tx Ty d≤ τ − τ τ∫  

1
22[ ( ) ] || || .

2!
Mh t a x y ∞

−
≤ −  

By a mathematical induction, we obtain 
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1
2[ ( )| ( )( ) ( )( ) ]    | || || .

!

m
m m Mh t aT x t T y t x y

m ∞
−

− ≤ −  

Thus 

 

1
2[ ]  ( )|| ( )( ) ( )( ) || || || .

!

m
m m Mh b aT x t T y t x y

m∞ ∞
−

− ≤ −  

Since 
1
2[ ( ) ] 0 ,

!
       

mMh b a a s m
m
−

→ →∞  

the operator mT  is a contraction on [ , ]C a b  when m  is chosen sufficiently large. 
By the theorem (3.1), the operator T  has a unique fixed point in [ , ]C a b  and the 
iteration sequence (9) converges to the solution. 

3.2. Approximation of the integral part 

Now, to start iteration (9), we need an initial function. Since 
( ) [ , ]g t C a b∈ , it can be chosen as the initial function for iteration, i.e. 0x g≡ . In 

each iteration we have to calculate the integral part of operator T . It can be 
cumbersome if we compute that integral analytically, so we use a quadrature 
method such as sinc integration to evaluate integral part of the operator T  
numerically. By substituting sinc quadrature (7) in equation (9) we have 

 

1  
( ) ( )( ) ( ) ( , ) ( , ( ))

t

n n na
x t Tx t g t k t H x d+ = = + τ τ τ τ∫  

,
( , ) ( , ( ))( ) ( ),

( )

N
k k n k

h k
k N k

k t H xg t h t
=−

τ τ τ
≈ + η

′φ τ∑                        (11) 

where kτ , h , ( )φ τ  and , ( )h k tη  were introduced in subsection (2.2). 
In any iteration of relation (11), 1nx +  arises directly from nx  without 

solving any large system of nonlinear algebraic equations. This is a great 
advantage of the proposed method. 

3.3. Error bound 

In the previous subsection, we proved that if mT  be a contraction then T  
has a unique fixed point *x . Also the sequence 0{ }n nx ∞

=  generated by (9) 
converges to *x . Now we find an error bound for this sequence. Let 0{ }n ny ∞

′ =  be 
the sequence generated by fixed point iteration for the operator mT , i.e. 
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1 0 0, 0,m k
n ny T y n y T x′ ′+ ′= ≥ =  for any 0x . Using Banach fixed point theorem, 

we have the following error bound 
*

1 0|| || || ||, 1.
1

  
n

ny x y y n
′

′
α ′− ≤ − >
−α

 

According to the proof of theorem (3.1), we have 0
mn k

n mn k nx x T x y′+
′ ′+= = =  

then 

* *
1 0|| || || || || || || ||,  

1 1

n k
n m

n n m k kx x y x y y x x

−
′

′ +
α α

− = − ≤ − = −
−α −α

         (12) 

where {0,1,..., 1}k m∈ −  is the residual of n
m

. 

Now, let ( )
1 ( )N

nx t+  be the approximation of 1( )nx t+  by sinc quadrature in 
(11) and *( )x t  be the exact fixed point of T . Then, we have the following error 
bound  

( ) * ( ) *
1 1 1 1|| || || || || |   |,N N

n n n nx x x x x x+ + + +− ≤ − + −  
where the bound of these errors were obtained in (7) and (12). 

In the next section the accuracy and efficiency of the method are shown 
using some numerical examples. 

4. Experimental results 
In order to test the utility of the proposed numerical method, we give the 

following examples. In all examples, we choose the tolerance 710−ε =  to stop the 
iterations, i.e. fixed point iterations stop when 1|| ||n nx x −− < ε .  All routines have 
been written in Fortran 90. 
Example 4.1.  Consider the following Volterra-Hammerstein integral equation 

2

2
(

 0

 )( ) 2 , 0 1.
t x

t

tx t t e d t
e

− τ= + τ τ ≤ ≤∫  

The exact solution of this equation is ( )exactx t t= . We try to solve this by our 

proposed method. By choosing 20 ( )
t

tx t
e

=  and using sinc quadrature we have 

2

2
( )

1 0

 

 
( ) 2 n

t x
n t

tx t t e d
e

− τ
+ = + τ τ∫  

2

2

( )

,
2 ( ), 0.

( )

n kxN
k

h kt
k N k

t et h t n
e

− τ

=−

τ
≈ + η ≥

′φ τ∑  
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Where 6h = π  and 1kh kh
k e eτ = +  for all ,...,k N N= − . The functions ( )tφ  

and , ( )h k tη  are introduced in subsection 2.2. Table 1 shows the approximation 
values and errors in some points [0,1]t ∈ . 

Table 1 
Approximation and error values in some points in example 4.3 

Example 4.2.  ( ) 0.1exactx t t= +  is the exact solution of the following Volterra-
Hammerstein integral equation 

2 

0 2

sin( ) ( )( ) 0.1 sin( ) , 0 1.
( 0.1)

t t xx t t t t d tτ
= + − + τ ≤ ≤

τ +∫  

By applying the proposed method we approximate the solution of this 
equation. Approximation of the solution is obtained after 10 iterations with 

2.161 7e E∞= −‖ ‖ . Exact and approximation solutions based on sinc quadrature, 
with N 20=  and N 50= , are shown in Fig. 1. 

 
Fig. 1. Approximation and exact solutions for N=20 and N=50 in example 4.2 

 
Example 4.3.  Consider the following Volterra-Hammerstein integral equation 

with the exact solution sin( )( )exact
tx t

t
= , 

t Exact N=20 N=50 N=100 
Appro. Error Appro Error Appro Error 

0.0 0.0 0.000000E-0 0.000E0 0.000000E-0 0.000E0 0.000000E-0 0.000E0 
0.2 2.0E-1 2.000000E-1 1.490E-8 2.000000E-1 0.000E0 2.000000E-1 0.000E0 
0.4 4.0E-1 4.000008E-1 7.749E-7 4.000001E-1 1.192E-7 4.000000E-1 2.980E-8 
0.6 6.0E-1 6.000094E-1 9.360E-6 6.000015E-1 1.490E-6 6.000004E-1 4.172E-7 
0.8 8.0E-1 8.000458E-1 4.584E-5 8.000073E-1 7.331E-6 8.000018E-1 1.848E-6 
1.0 1.0 1.000129E0 1.295E-4 1.000021E0 2.062E-5 1.000005E0 5.007E-6 
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2

0

sin( ) ( )( ) ( ) cos( ) sin( ) ( ) , 0 1.
sin( )

tt tx t t t t x d t
t

τ τ −
= π+ − π − + + τ τ ≤ ≤

τ∫  

Approximation of the solution is obtained after 17 iterations with 
1.549 5e E∞= −‖ ‖ . Comparison between the approximation and the exact solution 

in some points is shown in table 2. 
Table 2 

Approximation and exact values in some points in example 4.3 

t Appro. values Exact values 

0.001 0.03162434 0.03162277 
0.2 0.44423140 0.44423810 
0.4 0.61572050 0.61572440
0.6 0.72894610 0.72895030 
0.8 0.80202200 0.80202850 
1.0 0.84146090 0.84147100

Example 4.4.  The following Volterra-Hammerstein integral equation 
6 4 2 2

0

 

 

2 1( ) 1 ( 2 ) ( ) , 0 1.
15 3

t
x t t t t t x d t= − + − + − τ τ τ ≤ ≤∫  

has exact solution 2( ) 1exactx t t= − . Approximation of the solution is obtained 
after 6 iterations with 2.342 5e E∞= −‖ ‖ . Fig. 2 shows ( )ix t  in three consecutive 
iterations. 

 

 
Fig. 2. Graph of ( )x ti in three consecutive iterations in example 4.4 

 
Example 4.5. In this example we solve the following Volterra integral equation 
which has the exact solution ( )exactx t t= , 

0

 

 
( ) cos( ) sin( ( )) , 0 1.

t
x t t t t x d t= + τ τ ≤ ≤∫  
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For some N , the error of the approximation solution is shown in table 3. 
Table 3 

Absolute error in some points 0 < t ≤ 1  and for some quadrature nodes N in example 4.5 

t N=25 N=50 N=100 

0.001 4.657E-10 4.657E-10 4.657E-10 
0.2 3.532E-6 1.371E-6 6.855E-7
0.4 5.811E-6 2.950E-6 1.460E-6 
0.6 7.749E-7 4.760E-6 2.444E-6 
0.8 1.204E-5 6.855E-6 3.576E-6
1.0 3.988E-5 8.702E-6 4.768E-6 

 5. Conclusions 

 We approximated the solution of Volterra-Hammerstein integral equation 
by the fixed point method. We have shown that some appropriate conditions 
guarantee the convergence of the method. This method has two advantages. On 
the one hand, we do not have to deal with any system of nonlinear equations. On 
the other hand, this method is very simple to apply and to make an algorithm. The 
numerical results verify that the method is valid. It is worthy to note that this 
method can be utilized as a very accurate algorithm to solve linear and nonlinear 
integro-differential equations and functional integral equations arising in physics 
and other fields of applied mathematics. 
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