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REINFORCEMENT LEARNING FOR THE CONTROL
OF BLOOD PRESSURE IN POST CARDIAC SURGERY
PATIENTS

Ciprian SANDU', Dumitru POPESCU?

This paper addresses the problem of automatic control of the blood pressure
in post cardiac surgery patients. The focus of this study is on showing that
reinforcement learning may be suitable for the blood pressure regulation in post
cardiac surgery patients, using directly the clinical data, without the need of an
accurate patient model. A detailed and realistic model of a hypertensive patient is
successfully developed and implemented. Firstly, we use this model in order to
create closed loop control with a classical PID controller. Secondly, we use the
model only as a source of pseudo-clinical data with reinforcement learning.

Keywords: blood pressure regulation, reinforcement learning, mathematical
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1. Introduction

Since some of the natural control systems of the body are disrupted during
a cardiac surgical intervention, the patients need drug administration in order to
keep their mean arterial pressure within safe limits. There are many benefits to
including automatic control in the regulation of mean arterial pressure (MAP) in
post cardiac surgery patients. In such patients, we have the blood pressure
measured and the infusion of the fast-acting vasodilator - sodium nitroprusside
(SNP) is adjusted as necessary.

One of the benefits is that the precision of the amount and of the rate of
the administrated vasodilator is significantly increased.

As a result, the goals of safety, reducing costs and human effort are met
more rapidly and naturally.

The human body involves many complex feedback control systems that
are collectively called as homeostasis, some of which may be disrupted during
surgery (the term homeostasis is used by physiologists to mean maintenance of
nearly constant conditions in the internal environment.
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Essentially all organs and tissues of the body perform functions that help
maintain these constant conditions. For instance, the lungs provide oxygen to the
extracellular fluid to replenish the oxygen used by the cells, the kidneys maintain
constant ion concentrations, and the gastrointestinal system provides nutrients).

Hence, postsurgery patients require intravenous administration of suitable
drugs to maintain key physiological variables such as blood pressure within
desired limits. These allowable limits are rather narrow and small excursions
beyond them may lead to undesirable outcomes. Hence, introducing automatic
control of key physiological variables is beneficial for better patient care and
reducing workload of healthcare staff. The simplest and potent type of automatic
controllers is based on the feedback concept. Automatic feedback control systems
are designed to control crucial variables by adjusting manipulated variables such
as drug infusion rate based on the measured feedback signal.

The standard approach in such a control problem is the use of classical
PID control. The main disadvantage is that it requires a mathematical model. The
system identification for accurately modeling human functions is far from easy.
This paper focuses on presenting an alternative to the classical PID control,
namely reinforcement learning. The main advantage is that a mathematical model
of the involved human functions is not required. We verify that the important
parameters or performances of the system are within satisfying ranges - when
reinforcement learning is used in a closed loop (feedback based control). The
regulation of mean arterial pressure (MAP) in post cardiac surgery patients is an
example where automation is particularly attractive. In such patients, patient's
blood pressure is measured and the infusion of the fast-acting vasodilator -
sodium nitroprusside (SNP) is adjusted as necessary.

The paper is structured as follows: Section 2 presents the motivation of
using automatic control for blood pressure regulation and reinforcement learning,
the problem formulation, as well as the algorithm chosen.

Section 3 presents: how the clinical data is generated (instead of actual
clinical data we have used synthetic data obtained with a simulated model of the
patient), without the need of an accurate patient model for the regulation itself and
the simulation results obtained by using the reinforcement learning algorithm for
the control of the blood pressure, based on the clinical data. The model as a
source of artificial data (that we use here) is not the same thing with the model as
a part of the control strategy (which reinforcement learning makes unnecessary —
in this context). Section 4 presents the conclusions.

2. Problem formulation

In this section we first show the motivation for using automatic control for
blood pressure regulation.
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Then we present the problem formulation and the way to overcome the
inherent difficulties of the classical approach. Finally, we detail the solution in
terms of the algorithms we used.

2.1. Motivation

The reasons for using automatic control of blood pressure in post cardiac
surgery patients are obvious and range from reducing costs and work effort to
enhancing the safety level for the patients: an automatic controller keeps the
arterial pressure between desired limits much longer even than an experienced
clinician. Our final goal is to control the arterial pressure of a patient who suffered
cardiac surgery. For reaching this goal we use a regular feedback loop control.
The standard approach in such a control problem is the use of classical PID
control. The main disadvantage is that it requires a mathematical model. The
system identification for accurately modeling human functions is far from easy.

We will present an example of such mathematical model. We will propose
an improvement to it, we will use it in a closed feedback loop with a PID
controller. Then we will formulate the problem in such way that will allow the use
of reinforcement learning; the mathematical model will serve only as a source of
artificial clinical data.

2.2. PID Control

A realistic model of patient in the context of blood pressure regulation has
the following components: a drug response model, models for internal reflexes,
measurement dynamics, random noise due to respiration, patient movements etc.

2.2.1. Drug response model

In this study the drug response model of Slate et al. (1980) is used:
AP,(s)  Ke™(1+ae™™)
1(s) 5+1

(1)

where: APd(S) is the change in MAP (mmHg)

I(s) is the infusion rate of SNP (ml h™"),

K gives the patient’s sensitivity (a high value of K->sensitive patient),
a is a recirculation index,

7 is a time constant,

T; is the initial transport delay and

T is the recirculation time.
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2.2.2. Models for internal reflexes

There are internal reflexes in the human body to regulate blood pressure.
Lee et al. (2005) identified that RAS (renin-angiotensin system) and BRS
(baroreceptor reflex system) are necessary for a complete model of a patient for
good blood pressure control. The former, as shown by Lee et al. (2005), “is an
internal blood pressure buffering system that is activated when MAP drops below
a threshold value. Through a series of chemical reactions from renin to
angiotensin II, RAS can alter the total peripheral resistance of arterioles and hence
increase blood pressure”.

The typical range of threshold for activation of RAS is between 70 to 75
mmHg for the general population. Hahn et al. (2002) noted the existence of the
threshold and range for RAS, but he did not use them. Lee’s model used the
threshold value 72 mmHg and the range of 50-110: the “switch” simulates the
RAS threshold of 72 mmHg whereas the saturation block represents the range of
MAP (50 - 110 mmHg) where RAS remains effective.

The model for RAS proposed by Lee is shown in Fig. 1:
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Fig. 1. Lee’s model for RAS

The model for RAS proposed in a previous paper that will be used here in
the feedback control loop for blood pressure regulation is shown in Fig. 2.
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Fig. 2: The improved model for RAS

The closed loop used for this study is shown in Fig. 3:
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Fig. 3: The feedback control loop including the improved RAS model

The classical PID controller is shown in Fig. 4:
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Fig. 4: The PI(D) controller used in the feedback control loop

In this example we will use a simpler PI controller, so the derivative part
of the controller will be 0. This simplification does not affect in any way the
relevance of our point. For the proportional part of the controller we will use the
value 1 and for the integrator, 0.01.

When we plot the structure shown in Fig. 3, with the RAS block
disconnected from the system, we obtain the result a detail of which is shown in
Fig. 5 — we focused on the relevant part, the transition of the MAP (Mean Arterial
Pressure) when the setpoint P_ref changes from 130 to 60 mmHg.

When we plot the structure shown in Fig. 3, since the 72 mmHg threshold
is reached, the RAS system will become active — the new behavior is shown in
Fig. 6.

In both responses one can notice that the stability of the system is not
affected.
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Fig. 5: The response of the system when the RAS block is disconnected

When the RAS block is connected, one can notice a slight negative
overshoot of about 5 mmHg (is acceptable from a medical point of view: Lee
argued that even a variation of 10 mmHg is acceptable from a medical point of
view).

The settling time is about the same in both cases, therefore the presence of
the RAS block does not affect this particular parameter.
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Fig. 6: The response of the system when the RAS block is connected (just as shown in Fig. 3)
2.3. Problem formulation

The control problem is easy to formulate as being defined by a set of states
in which the environment (in this case the patient) may be observed, a set of
actions that can be taken in order to influence the environment (the patient), a
transition function linking actions to changes in state and a reward function
(which evaluates the immediate control performance). The purpose is to make
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sure the system reaches certain optimum states — with an acceptable error and
overshoot.

So we have all the ingredients for formulating our problem as an optimal
control problem, specifically a Markov Decision Process (a mathematic
framework for optimal decision making in systems with uncertainty): a set of
states of the environment, a set of actions to influence it, the transition function
for linking the two and the reward function.

We have formulated the problem as a Markov Decision Process. We
propose an alternative to the classical PID control, namely Reinforcement
Learning (RL). The Markov property is essential in providing theoretical
guarantees about RL algorithms.

Reinforcement Learning is an intelligent systems technique. It represents a
mathematically robust method of achieving optimal control in systems challenged
with noise, nonlinearity, time delay, and uncertainty. The main advantage is that a
mathematical model of the involved human functions is not required.

The controller will be represented by a Reinforcement Learning agent.

The Reinforcement Learning controller applies its commands (actions) on
a (simulated) patient. The policy within the agent receives 1 input: the control
error, which is the difference between the measured arterial pressure and the
pressure reference (or setpoint).

The states set X is defined by the error (the difference between the
measured arterial pressure and the pressure reference) and it is represented as a
discrete set of values:

X=[1,2,...,200] (2)
We provide the controller with a discrete set of SNP infusion rates (in ml
per hour) U (actions); we call this set “the action set”:

U=J[1,2,...,350] 3)
These are all the theoretical possible values. In practice, the actual action
values will be much below 100.
As a result of the action U, applied in the state Xy, the state changes to Xy+1,
according to the transition function:

f: XxU->X:
X, t1=1(x,uy) 4)
In order to train the RL controller, we need some measure of the utility of
the states: the reward function provides the mechanism for deciding the state
value. The controller receives the scalar reward signal ry.+1, according to the
reward functionr : X x U -> R
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r Fl=r(x,,u,) (5)
The reward evaluates the immediate effect of action Uy, namely the
transition from X to Xk+1, but in general does not say anything about its long-term
effects.
The controller chooses the actions according to its policy
h: X — U, using:

u, =h(x,) (6)

Given f and r, the current state Xy and the current action Ui are sufficient to

determine both the next state Xy+1 and the reward ry+1. This is the Markov property,
which is essential in providing theoretical guarantees about RL algorithms.

2.4. The solution

The main reason for using RL (reinforcement learning) control is that it
uses the clinical data alone, without relying on the identification of an accurate
model of the patient (which is a complex process).

The policy is the dependency between action and state and is defined
(after an intense trial and error session to cover as many scenarios as possible) as
follows:

u=ref-145+x" (7

where ref is the pressure reference and x* is an artificial parameter that
depends on the state x, that can take the following values:

[x/10], [x/5], x, 2x, 3x, 4x, 5%, 6X

where “[ ]” means the nearest integer upwards

To avoid the so-called “tunnel vision” problem in which the agent revisits
a neighborhood of states and chooses the same actions repetitively, the action
takes one of these values a random value 20% of the time and the value that
maximizes the reward — 80% of the time.

The equation below summarizes the reward function we used for the
closed loop arterial pressure control problem to penalize the agent when the
measured arterial pressure was off target (the reasons for choosing this particular
reward function are complex, they range from detailed calculations to empirical
results observed for a large number of scenarios and they are not to be detailed
here):

r(x,u) =120000 -1000(x + xx")/2

()
1000 +10u - xx"-x
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where X” is the previous state.

The two values depend on how large the state we are in is. The first one is
for small values (lower than 10), the second one for big values (10 or above).

We applied a SARSA algorithm to estimate the value function for each of
the SNP infusion rates.

Equation 9 presents the SARSA update rule:

Q(x,u) = (1-a)Q(X,u) +afr(x,u) + XQ(X',u")] )

where U’, X” are the next action and respectively the next state.

Each time the agent completes one experiment with its environment (i.e.,
chooses an action and receives a reward), the Q function is incrementally
adjusted.

The duration of an action is set to 100 seconds (best results being obtained
this way). We mention that the way the algorithm has been built, it permits total
control over the duration of each action (so one can modify it freely if desired).

3. Results

In this section we present the results we have obtained by using the
reinforcement learning approach on artificially generated data. Firstly we show
how the data is generated and secondly we discuss the performances of the
control loop.

3.1. Artificial generation of the clinical data

We use the same model of a patient as earlier, but this time with the only
purpose of generating the input data (instead of gathering the data from a real
patient). This is why we call the generation of the data “artificial”.

The closed loop used for this study is shown in fig. 7:
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Fig. 7. The feedback control loop including the RAS model
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3.2. Results

In Fig. 8 we show the behavior of the arterial pressure when controlled
with the SARSA algorithm:
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Fig. 8. The arterial pressure when controlled with the SARSA algorithm

On the vertical axis we have the arterial pressure.
On the horizontal axis we have the time.

We have highlighted 2 important moments with circles and with vertical
lines:

5000 seconds — when the agent switching from learning (random actions)
to applying what it learned (20% rand actions, 80% intelligent actions)

8000 seconds — when the pressure reference changes from 90 to 70
mmHg.

We have highlighted

The upper horizontal line the 90 mmHg level,

The middle horizontal line the 85 mmHg level,

The lower horizontal line the 80 mmHg level.

Between the 5000 and the 8000 seconds moments, the error is greater than
5 mmHg only once, and not with much (it is acceptable from a medical point of
view). The behavior after 8000 seconds is due to the RAS reflex: when the
pressure goes below 72 mmHg, the reflex increases the pressure. Again, the error
is acceptable and the overshoot within desired limits.
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4. Conclusions

Control of blood pressure regulation in post cardiac surgery patients using
reinforcement learning is studied. We used reinforcement learning algorithms for
the controller in order to control the mean arterial pressure in post cardiac surgery
patients. Such an approach does not require a mathematical model of the patient
as part of the regulation approach. A detailed and realistic model for blood
pressure regulation is used for generating clinical data by including the drug
response model of Slate et al. (1980) and models for internal reflexes (namely
RAS) of the body.

The purpose of this report is to highlight the state of art in automatic blood
pressure regulation, to propose alternative techniques to do it and the
performances obtained with these alternative techniques.

The state of art of blood pressure regulation consists in the classical
feedback control loop using a PID controller. PID control is suitable for this
context, as it meets the requirements of being simple and easy to implement. But
it does require a mathematical model of the patient, which is rather difficult to
implement. We showed that we can obtain good results using Reinforcement
Learning, which does not require a mathematical model of the patient. Therefore,
Reinforcement Learning is an elegant solution, as by adopting it, the difficult
modelling is no longer necessary, but the desired performances are still met.

The research continues in the direction of refining the algorithms and of
finding even more methods that have good results in controlling the blood
pressure for patients who have suffered heart surgery.
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