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NONDIFFERENTIABLE MINIMAX PROGRAMMING PROBLEMS
UNDER HIGHER-ORDER CONVEXITY

by Neelima Shekhawat!, Toan Stancu-Minasian?, Andreea M#dalina Rusu-Stancu® and Vivek Singh*

The aim of this paper is to study a nondifferentiable minimax programming
problem with square root terms in the objective functions and establish sufficient optimal-
ity conditions from the standpoint of the higher-order convexity assumptions. These op-
timality conditions are illustrated by a non-trivial ezample. Furthermore, weak, strong,
and strict converse duality theorems are derived for two dual model categories.
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1. Introduction

In spite of optimization problems that have been present in mathematics as the earliest
times, optimization has been established as an independent field only in relatively recent
times. The idea of a minimax programming problem, without a doubt, plays a significant role
in all parts of programming in mathematics including the duality theorem and optimality
conditions. Some blatant and significant outcomes of minimax programming problems were
considered in books Danskin [6] and Demyanov and Malozemov [7]. Optimality and duality
constitute a vital piece in the investigation of mathematical programming in the sense that
these lay down the foundation of the algorithm for a solution of an optimization problem.

In recent years, there has been growing interest in minimax mathematical program-
ming (see, for example, [1, 2, 3, 4, 8,9, 10, 13, 14, 17, 18, 20, 21, 22, 23]). For a generalized
minimax programming problem, Schmitendorf [18] first presented necessary and sufficient
optimality conditions, which Tanimoto [20] used to formulate a dual problem and to dis-
cuss about the duality outcomes. Bector and Bhatia [4] and Weir [21] also employed the
aforesaid method to construct several dual models and derived weak and strong duality
theorems under pseudoconvex and quasiconvex functions. Under generalized invexity hy-
potheses, Zalmai [23] established sufficient optimality conditions and duality theorems, and
he introduced necessary optimality conditions for a class of minimax programming problems
in Banach space. Later, Bector et al. [5] developed duality results for a class of minimax
programming problems with V-invexity-type assumptions on the goal and constraint func-
tions.
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The concept of convexity and generalized convexity plays a dominant role in several
sides of mathematical programming and other related fields. Recently, various generalized
convexities have been introduced, and one proof that can be applied to larger classes of
optimization problems to extend optimality conditions and duality conclusions for convex
programs. A significant generalization of the convex function is the strong convexity of
order m which was introduced by Karamardian [12]. Such generalization was introduced
for a differentiable function by Lin and Fukushima [16] and thereafter utilized by several
authors to get significant results. The concept of strong convexity is a fundamental tool
for designing and analyzing a wide range of learning algorithms. Suneja et al. [19] proved
optimality and duality results for nonsmooth vector optimization problems under general-
ized higher-order strongly convex functions. Later, Jayswal et al. [11] concentrated their
study to investigated sufficient and general Mond-Weir type duality results for nonlinear
multiobjective programming problems in which the function involved are semidifferentiable
under higher order semilocally strong convexity.

In this paper, we consider a class of optimization problems with square root terms
in the objective functions governed by the higher-order strong convex functions. The re-
sults obtained here include the results formulated in the previous mentioned studies. The
presence of continuous differentiable of functions of minimax optimization problems with
square root terms in the objective functions represent the main element of total novelty
in the specialized literature. Thereafter, we formulate and prove sufficient optimality con-
ditions associated with the considered non-differentiable minimax optimization problems,
under higher-order strong convex hypotheses of the involved functions. Along these lines,
we apply the optimality conditions to define dual models and prove weak, strong and strict
converse duality theorems using higher-order strong convex assumptions.

The organization of this paper is as follows: Section 2 contains some preliminary
notions and basic definitions needed in the sequel. In Section 3, we have derived the sufficient
optimality conditions for a class of nondifferentiable minimax programming problems which
is illustrated by a non-trivial example. In Sections 4-5, we study two types of dual models
namely Wolfe type dual and general Mond-Weir type dual, respectively, and establish weak,
strong and strict converse duality results for each of them. Finally, Section 6 provides a
conclusion and future developments.

2. Preliminaries

Let R™ be the n-dimensional Euclidean space, R’} be its non-negative orthant

and X be a non-empty open subset of R"™.

The problem to be considered in the present analysis is the following nondifferentiable
minimax programming problem :

(NP) min sup f(z,y) + (T Az)?

yeY

subject to g(z) <0, z € X,
where Y is a compact subset of R!; f : R® x RY — R and ¢g : R® — RF are continuous
differentiable functions and A is a positive semidefinite n x n symmetric matrix. If A = 0,
then the problem (NP) is a differentiable minimax programming problem introduced by
Schmitendorf [18].

Let = {x € R™: g(x) < 0} denote the set of all feasible solutions of (NP). For each
(x,y) € R" x R! we define

J(x) ={j € K :gj(x) =0}, where K ={1,2,....k},
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Y(z)= {y eyY: flx,y) + (xTAx)% = jg}]af(gc,z) + (:ETA;E)%}.

M(z) ={(p,\,§) e Nx R xRP:1<p<nt1,A= (A, A, Ap) € RE with
p

> Xi=1land j= (41, 0,...0) with g; € Y(2), i =1,2,...,p}.
=1

Now, we begin with the definitions of strong convexity given by Lin and Fukushima [16].

Definition 2.1. (Lin and Fukushima [16]). Let m > 1 be an integer number. A differen-
tiable function h : X — R is said to be (strictly) strongly convex of order m at x* € X, if
there exists a positive constant ¢ such that

h(z) — h(z*)(>) > (x — )T Vh(z™) + cl|z — 2*|™,V 2 € X,

where || - || denotes any norm of X. If the function h is (strictly) strongly convex of order
m at every x* € X, then the function h is said to be (strictly) strongly convex of order m
on X.

Now, we present the following generalizations of generalized strong convexity.

Definition 2.2. (Lin and Fukushima [16]). Let m > 1 be an integer number. A differen-
tiable function h : X — R is said to be (strictly) strongly pseudoconvex of order m at z* € X
, if there exists a positive constant ¢ such that

(x — ") 'Vh(z*) + cllz — z*|™ > 0 = h(z)(>) > h(z*),V z € X,
or equivalently,
h(z)(<) < h(z*) = (x — ") Vh(z*) + cllz —2*|™ <0,V z € X.

If the function h is (strictly) strongly pseudoconvez of order m at every x* € X, then the
function h is said to be (strictly) strongly pseudoconvez of order m on X.

Definition 2.3. (Lin and Fukushima [16]). Let m > 1 be an integer number. A differen-
tiable function h : X — R is said to be strongly quasiconvex of order m at x* € X, if there
exists a positive constant ¢ such that

h(z) < h(z*) = (x — 2*)TVh(2z*) + ¢jz — 2*||" <0,V = € X,
or equivalently,
(x — ") Vh(z*) +cl|lz — %™ > 0 = h(z) > h(z*),V z € X.

If the function h is strongly quasiconvex of order m at every x* € X, then the function h is
said to be strongly quasiconvex of order m on X.

Lemma 2.1. (Generalized Schwartz Inequality). Let A be a positive semidefinite symmetric
matriz of order n. Then, for all x,v € R",

zt Av < (:ETA:E)%(’UTA’U)%.
The equality holds when Ax = £Av for some & > 0. FEvidently, if (UTAU)% <1, we have
zT Av < (xTAx)%. (2.1)

Following necessary conditions are the special case of Theorem 3.1 of Lai et al.[15],
and is needed in the sequel:
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Theorem 2.1. (Necessary conditions). Let * be an optimal solution of the problem (NP)
satisfying z*T Ax* > 0, and assume that Vg;(z*),j € J(x*) are linearly independent. Then
there exist (p, A, §) € M(z*),v € R" and pu € R% such that

k

Z/\i {VF(@*,5) + A} + VY pigi(a™) =0, (2.2)

j=1

k
> pigi(@*) =0, (2.3)
j=1

A\ >0, i:1,2,...,p,2)\i:17 (2.4)
vl Av <1, (a:*TAz*)% =" Av. (2.5)

3. Sufficient conditions

In this section, we derive sufficient optimality conditions for minimax programming
problem (NP) under proposed generalized convexity concept.

Theorem 3.1. Let x* be a feasible solution of the problem (NP). Assume that there exist
(p, A, §) € M(z*),v € R" and pu € RY satisfying relations (2.2)-(2.5). We define

()= N (g + () Av).

Furthermore, we assume that any one of the following conditions holds:

k
(a) f(,0:)+ ()T Av, i =1,2,...,p and 3 p;g;(.) are strongly convex of order m at x*;
j=1
k
(b) (.) and > pjg;(.) are strongly convex of order m at z*;
j=1

(¢) W(.) is strongly pseudoconvez of order m at x* and zk: w;gi(.) is strongly quasiconver
of order m at x*; !

(d) W(.) is strongly quasiconvez of order m at x* and Ek: 1;g;i(.) is strictly strongly pseu-
doconvex of order m at x*. =

Then x* is an optimal solution of (NP).

Proof. Suppose, contrary to the result, that z* is not an optimal solution of (NP). Then
there exists « € (2 such that

sup (f(z,y) + (27 Ax)?) < sup (f(z*,y) + (&* Az")?). (3.1)
yey yey
Since g; € Y (2*) we have
sup (f(z,y) + (z* Az*)%) = f(a*,§;) + (& Ax™)?. (3.2)
yey
Also
fla,g:) + (2T Az)% < sup (/ () + (2T Ax)?). (3.3)
yeE

Thus, from (3.1), (3.2), (3.3) we obtain
Fla,g) + (2T Ax)? < f(a*,5) + (2 Az*)3. (3.4)
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<Z/\z(f( s i) + (7 %) Z)\l ayz +a” AU)
= U(x")
Hence,
U(z) < U(z™). (3.5)

If condition (a) holds, then there exists a positive constant ¢ such that

Fla,5) + (27 Av) — f(a*,5) — (2 Av)
2 (:L' - iﬂ*)T(Vf(l'*,y_z) + A’U) + CHIE - 1,*”771’ Vi= 1727 Y

P
Since > A; = 1, multiplying the above inequalities by A; and then summing, we obtain
i=1

P
U(x) — U(z*) > (x —2*)7 Z)‘i (Vf(@*, 5) + Av) + c||lz — «*||™,
i=1
which in turn, by using (2.2), implies
U(z) —U(z*) > —(z —a* ijv% )+ cllz — z*||™. (3.6)

k
On the other hand, by strong convexity of order m at * of > 1,g,(.), there exists a positive
j=1

constant ¢ such that

k
> nig;(@) Z;gg (x —a* ZMJVQJ )+ ¢ [la — 2*||™,
j=1

E

which by the feasibility of z in the problem (NP) and (2.3) yields
(x —* Z,uJVgJ —|—c |z —2*||™ < 0. (3.7)

On adding inequalities (3.6) and (3.7) we obtain
U(x) = ¥(a*) = (¢ +o)fe —a||™
Obviously (cl + ¢) > 0. Therefore, it follows from the above inequality
V() = ¥(z") 20,

which contradicts inequality (3.5).
If condition (b) holds, then by strong convexity of order m at x* of ¥(.), there exists
a positive constant ¢ such that

V() — W) > (o~ ) YN (VS Gi) + Av) + el — a7
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The above inequality along with (2.2) implies
k
YD) -2 2 o= LTl el =1

Now the proof follows on similar lines as in case (a).
If condition (c) holds, then by strong pseudoconvexity of order m at * of ¥(.) and
inequality (3.5), it follows that there exists a positive constant ¢ such that

(x — m*)TV\I’(x*) +cllxz — 2™ ™ < 0,

which in turn along with equality (2.2) implies
(x —x* ZuJVg] ) > cllx — 2™ > 0. (3.8)

Now, from the feasibility of  in the problem (NP) and equality (2.3) we get
k k
Z M g] Z Hj gj )s
j=1 j=1

which by strong quasiconvexity of order m at «* of > p;g;(.) implies that there exists a
j=1

positive constant ¢ such that

(z—a" ZNJQJ +C||x_$||m<0

Since ¢ ||z — z*[|™ > 0, the above inequality becomes

(v —a* ZMJVQJ <0,

which contradicts inequality (3.8).
If condition (d) holds, then by strong quasiconvexity of order m at z* of ¥(.) and
inequality (3.5), it follows that there exists a positive constant ¢ such that
(x — 2*)TVU(z*) 4 &z — z*[|™ < 0.

Rest of the proof follows on similar lines as in case of the condition (c). This completes the
proof. O

Now, we illustrate the Theorem 3.1 by the following example.

Example 3.1. Let X = {z = (z1,72) € R? : =1 <21 < 1 and — 1 < 23 < 1}. Consider
the nondifferentiable minimax programming problem (NP), where Y = [—1,1] is a compact

1 -1
subset of R, A = ( 1

R?2 xR = R and g : R2 = R be continuously differentiable functions defined by

- 2$1+(£2 2 2
f(x,y)( P ) y

> is a positive semidefinite symmetric matrix. Let f :
2%x2

and

g(x) = 22 + 2129 + 22
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respectively. Obviously, the set of feasible solution of problem (NP) is Q = {x = (x1,23) €
X : 2?2 + 21w + 23 < 0}. By the definition of the set Y (x), we see that Y (z) = {y1,92} =

{-1,1} and
2
2x1 + x9 .
i)=|——"] ,i=1,2.
f(x7y) ( $2+1 ) ?

It is observed that the conditions (2.2)-(2.5) are satisfied for (A1, Ao, 1) = (

1
3
v = (;, 2) at z* = (0,0) € Q. Also, it is easy to verify by means of Deﬁmtwn 2.

= (0,0). Therefore all the conditz'ons of the Theorem 3.1 are satisfied. Thus x* = (0,0)
is an optimal solution for (NP1).

4. First duality model

In this section we formulate the following Wolfe type dual (WD) for (NP) and derive
duality results:

P k
(WD)  max sup S Nif(z5) + 2" Av + 3 pigy(2),
(PN g)EM (2) (z,0,u)EF1 (p,N,G) =1 j=1

where F(p, A, ) denotes the set of all (z,v, u) € R™ x R™ x Ri satisfying

P k
Z/\in(z,y}) +Av+Zungj(z) =0, (4.1)

i=1 j=1
vl Av < 1. (4.2)

If for a triplet (p, \,§) € M(z) the set Fi(p,A,7) = 0, then we define the supremum over it
to be —oo

Theorem 4.1. (Weak duality). Let x and (z,v,p,p, A\, §) be feasible solutions of problems
(NP) and (WD), respectively. Assume that f(.,5;) + ()T Av, i =1,2,..,p and g;(.),j € K
are strongly convez of order m at z. Then

P k
1 _
sup (f(x,y) + (@7 Ax)?) 2> Nif (2, 5) + 2T Av+ Y pg;(2)
ye i=1 j=1
Proof. Suppose, contrary to the result, that
P k

sup(f(z,y) + (2T A2)7) <D Nif (2. 50) + 27 Av + > pigi(2)

yey i1 =
Since g; € Y(x),i = 1,2,...,p, the above inequality implies
P k
_ 1
flx,5:) + TA@" 2 < Z)\zf 2, Ui +ZTAU—|—Z,ujgj
i=1 j=1

For A € RY it follows that

XS fl,g) + (a7 Aw)®) — fozyz +ZTAU+Z% <0,
j=1
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with at least one strict inequality, because A = (A1, Az, ..., Ap) # 0. Taking summation over

P
i and using Y \; = 1 we arrive at

=1
p . p
ZAif(xvgl) (z" Az)? < Z/\zf Z,Yi +ZTAU+Zu]gJ
=1 j=1

The above inequality along with (4.2) and Lemma 2.1 gives
P P k
SN @ @)+ " Av <3 Nif (2 5) + 2T Av+ Y pigs(2). (4.3)
i=1 i=1 j=1

On the other hand, by strong convexity of order m at zof f(.,7) + ()T Av, i =1,2,....p
and g;(.),j € K, there exist positive constants ¢ and c ,J € K, respectively, such that

flz,3:) + T Ay — fz9:) — 2 T Av > (x — z) (Vf(z,yz) + Av) +cllz — 2™ (4.4)
9;(x) — gi(2) > (@ — 2)TVg;(2) + ¢z — 2™ (4.5)

Since Z A; = 1, multiplying each inequality (4.4) by A\;,i = 1,2,...,p, and each inequality
(4.5) by pj,j=1,2,...k, and then taking sum we get

k
Z Nif (@, 5) + 2T Av+ > pigi () = Y Nif (z,5) — 2" Av = ig5(2)

i=1 Jj=1 i=1 i=1

p k k
>(w—2)" | YNV +Av+ > 1Ve(2) | + | e+ Y e | o —z[™ (4.6)

i=1 j=1 j=1
From (4.3), (4.6) and the feasibility of = in the problem (NP) we get

P k k
(@—2)" | Y NV )+ Av+ Y uVgi(2) | + [ e+ D picy | llz = 2™ <o.
i=1 Jj=1 J=1
k ’

Obviously | ¢+ > ¢; | > 0. Therefore, it follows from the above inequality

j=1

P k
(x—2)" Z AVf(z, ) + Av+ Z w;Vgi(z) | <0,
i=1 j=1

which contradicts inequality (4.1). This completes the proof. O

Theorem 4.2. (Weak duality). Let x and (z,v,p,p, A, §) be feasible solutions of problems
p E
(NP) and (WD), respectively. Assume that > Nif(.,7:) + ()T Av+ Y ujgi(.) are strongly
i=1 j=1
pseudoconvex of order m at z. Then
P k

sup(f(z,y) + (2T A2)7) > D Nif(2.5) + 2T Av+ > pigi(2)

yeY i=1 j=1
Proof. Suppose, contrary to the result, that
1

sup(f(z,y) + (27 Az)?) < Z/\ f(z,9:) +ZTAU+Zung

yeyYy =1 j=1
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Now, proceeding on the same lines as in the Theorem 4.1, we see that
p 4 k

Z Nif (z,7;) + 2T Av < Z Nof (z,9) + 27 Av + Z wig;i(z). (4.7)

i=1 i=1 j=1

Using the feasibility of « in problem (NP) and p; >0, j =1,2,...,k we have

k
Zujgj(x) <0. (4.8)
j=1
By (4.7) and (4.8) it follows that
p k P k
D oNif (@ g) + 2T Av+> pigi(x) <Y Nif (29 + 2T Av+ Y pg(2)
i=1 i=1 i=1 J=1

P k
which by strong pseudoconvexity of order m at z of Y. A (., %)+ ()T Av+ Y pjg(.) implies

i=1 j=1
that there exists a positive constant ¢ such that
P k
(x—2)7 Z NV f(z,0i) + Av + ZMngj(z) +cllz —z||™ < 0.
i=1 j=1

Obviously ¢ > 0. Therefore, it follows from the above inequality

P k
(x—2)" Z)\in(z,y_i)+Av+Zungj(z) <0,

i=1 j=1
which contradicts inequality (4.1). This completes the proof. |

Theorem 4.3. (Strong duality). Let x* be an optimal solution for (NP) and the vectors
Vg,(z*),j € J(z*) are linearly independent. Then, there exist (p*,\*,y*) € M(x*) and
(x*,v*, u*) € Fi(p*, \*,y*) such that (z*,v*, u*,p*, \*, y*) is a feasible solution of (WD).
In addition, if the assumptions of weak duality theorem (Theorem 4.1 or Theorem 4.2) holds
for all feasible solutions of (WD), then the point (x*,v*, u*,p*, \*, y*) is an optimal solution
of (WD) and the two problems (NP) and (WD) have the same optimal values.

Proof. Since z* is an optimal solution of problem (NP) and the vectors Vg;(z*),j €
J(x*) are linearly independent, then by Theorem 2.1, there exist (p*, \*,y*) € M(z*) and
(x*,v*, u*) € Fi(p*, \*,y*) such that (z*,v*, u*, p*, \*,y*) is a feasible solution of (WD)
and the corresponding objective of values of (NP) and (WD) are equal. The optimality
of this feasible solution for (WD) thus follows from weak duality Theorem 4.1 or Theorem
4.2. g

Theorem 4.4. (Strict converse duality). Let x* and (z*,v* DT, A, %) be feasible so-
lutions of (NP) and (WD), respectively. Assume that f( )+ ()TAU 1= 1,2,...,p
and g;(.),j € K are strictly strongly conver of order m at z* Further, assume that
Vyg(z*),j € J(x*) are linear independent. Then, z* = z* that s, z* is an optimal so-
lution of (NP).

Proof. Suppose, contrary to the result, that z* # z*. From strong duality Theorem 4.3, we
reach

sup <f(x*,y*)+(m 3) Z)\f ,yz + 2" Av —i-z,ujgj ).

yey j=1



58 Neelima Shekhawat, Ioan Stancu-Minasian, Andreea Mad&lina Rusu-Stancu and Vivek Singh

Thus, we have
p” k
@™ yp) + (@ Aa®)® < 3TN )+ A Y g (7).
i=1 j=1
for all yf € Y(a*), i =1,2,...,p".
Now, proceeding on the same lines as in the Theorem 4.1, using strictly strongly convex of
order m we get

p* k
(z* =27 (Z NV y0) + Avt + ZujVQj(Z*)) <0,
i=1 j=1
which contradicts inequality (4.1). This completes the proof. O
Theorem 4.5. (Strict converse duality). Let x* and (2*,v*, u*,p*, \*, y*) be feasible solu-

P _ k
tions of (NP) and (WD), respectively. Assume that Y X; f(.,y7) + ()T Av* + 37 pig;(.)
i=1 j=1
are strictly strongly pseudoconvex of order m at z*. Further, assume that Vg(x*),j € J(z*)
are linear independent. Then, z* = x*; that is, z* is an optimal solution of (NP).

Proof. The proof is similar to that of the above theorem and hence being omitted. O

5. Second duality model

In this section, we formulate the following general Mond-Weir type dual (MD) for
(NP) and derive duality results:
P
(MD) max sup M Nif(z ) + 2T Av+ Y pigi(2)
PADEM(2) (2,0,u)EF2(p,\,5) i=1 J€Jo
where Fy(p, A, §) denotes the set of all (z,v, ) € R" x R x R¥ satisfying

P k
Z)\Z-Vf(zyy]) +AU+Z,ungj(z) =0, (5.1)
i=1 j=1
D igi(z) 20,y =1,2,.8, (5.2)
JEIy
v Av <1, (ZTAZ)% = 2T Av, (5.3)

where J, € K = {1,2,....,k},y = 0,1,2,....t with U/ _;Js = K and Jg N J, # ¢, if § # 7.
If for a triplet (p, A, §) € M(2), the set Fy(p, A, §) = (), then we define the supremum over it
to be —oo0.

Remark 5.1. If Jo=K, J,=¢ (1 <y <), then (MD) reduces to (WD).

Theorem 5.1. (Weak duality). Let x and (z,v,pu,p, A, §) be feasible solutions of (NP) and
P

(MD), respectively. Assume that Y Nif (., 9:) + (VT Av+ > wigi(.) and Y. pjgi(.) are

i=1 J€Jo JET,
strongly convex of order m at z. Then

P

sup (f(z,9) + (@7 A2)2) > Y Nif(z5) + 2T Av+ > g (2).

yey i=1 jeTo
Proof. Suppose, contrary to the result, that

sup (f(z,y) + (27 A2)2) <" Nif(2.5) + 27 Av+ Y py95(2).

yey i=1 jedo
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Since y; € Y(x), i = 1,2, ..., p, the above inequality implies

p
Fa, i) + @TAz)E < 3" Nf(z5) + 2T Av+ Y gz
i=1 j€Jo

For XA € RE, from above inequality we arrive at

| (@ gi) + (a7 Ax)E — (ZM‘Z gi) + 2T Av+ > ygi(2) )] <o,

i=1 j€Jo
with at least one strict inequality, because A = (A1, Ag, ..., Ap) # 0. Taking summation over

P
i and using Y A; =1 we have
i=1

P P
Z/\if(m,y] (z7 Az)? < Z (z,4:) + 2T Av + Z wigi(z

Jj€Jo
The above inequality along with (5.3) and Lemma 2.1 implies

P

p
> Nif (@, gi) +aTAv <Y Nif(z,5) + 2T Av+ > pigi(2). (5.4)

i=1 i=1 j€do
Also, from (5.2) we have
— > wigi(z) <0. (5.5)

JET,
P
On the other hand, by strong convexity of order m at z of Y X f(., %)+ ()T Av+ > ujig;(.)
i=1 j€Jo

and . p;9;(.), there exist positive constants ¢ and ¢ respectively such that
j€d,

P P
Z Nif (z,53) + 27 Av + Z wigi(x) — Z Nif(z,55) — 27 Av — Z 1ig;(2)
i=1

=1 j€Jo j€Jdo

> (z - z)T<ZANf(z, i)+ Av+ Y ijgj(z)> +ellz = 2™,

i=1 j€Jo

> wigi(@) = wigi(2) > (x - 2) <Z 1iVg;(z ) +c o — 2™

JEJy JEJy JjEJ,
On adding the above two inequalities we obtain

p k

S ONif (@ g) + 2T Av+ Y pig(a) — Z)\if(z,ﬂi) — 2T Av =Y pigi(2) = Y pig;(2)

i—1 =1 j€Jo Jj€dy

P k
> (o z>T<ZWf<z,zm +Av+ Zungj(Z)> tletc)le—zm  (5.6)

i=1 j=1
From (5.4), (5.5), (5.6) and the feasibility of = in the problem (NP) we get

P k
(z - Z)T<Z AV f(2,8:) + Av + Zuﬂw(@) +(c+c)e—zm <o.

i=1 j=1
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Obviously (¢ + c/) > 0. Therefore, it follows from the above inequality

P k
(x—2)" <Z)\ivf(z7yi) + Av + ZMngj(Z)> <0,

i=1 j=1
which contradicts inequality (5.1). This completes the proof. O
Theorem 5.2. (Weak duality). Let x and (z,v, g, p, A y) be feasible solution of (NP) and

(MD), respectively. Assume that Z XNfCogi)+ ()T Av+ Z wig(.) is strongly pseudoconvex
i=1 j=1
of order m at z. Then

p

sup(f(z,y) + (a7 Ax)%) > S Xif(zm) + 2T Av+ Y pigs(2)
yeY i=1 jedo

Proof. Suppose, contrary to the result, that

Sup(f(a:,y)+(xTAx % ) < Z/\ f(z, 3 +ZTAU+Z‘ung

yeYy =1 Jj=1

Now, proceeding on same line as in the Theorem 5.1, we see that

p p
SONif(@m) + 2T Av <> Nif(z0) + 2T Av+ Y pgi(2). (5.7)

i=1 i=1 j€Jo

Using the feasibility of = in the problem (NP) and p;, j =1,2,....k, we get

k
> #ig5(@) < 0. (5.8)

By (5.2), (5.7) and (5.8) it follows that
p k D k
D oS, g) 2" Av+ Y g () <Y NS (2 5) + 2T Av+ Y pig;(2)
i=1 j=1 i=1 j=1
p k
which by strong pseudoconvexity of order m at z of > Nif(., %) + ()T Av + 3 ;g ()
j=1

i=1
implies that there exists a positive constant ¢ such that

P k
(@ — z>T<Z NV f(z,5) + Av + Zujvmz)) +ellz — 2™ < 0.

i=1 j=1

Obviously ¢ > 0. Therefore, it follows from the above inequality

P k
(x—2)7 <ZAin(z,yi) + Av+ Zungj(z)> <0,

i=1 j=1
which contradicts inequality (5.1). This completes the proof. O

Theorem 5.3. (Strong duality). Let x* be an optimal solution for (NP) and the vectors
Vg;(z*),7 € J(x*) are linearly independent. Then there exist (p*,\*,y*) € M(x*) and
(x*,v*, 1u*) € Fa(p*, \*,y*) such that (z*,v*, u*,p*, \*,y*) is a feasible solution of (MD).
In addition, if the assumptions of weak duality theorem (Theorem 5.1 or Theorem 5.2) hold
for all feasible solutions of (MD), then the point (z*,v*, u*,p*, \*,y*) is an optimal solution
of (MD) and the two problems (NP) and (MD) have the same optimal value.

Proof. The proof follows on similar lines of Theorems 4.3. |



Nondifferentiable minimax programming problems under higher-order convexity 61

Theorem 5.4. (Strict converse duality). Let x* and (2*,v*, u*,p*, \*,y*) be feasible solu-
p" _
tions of (NP) and (MD), respectively. Assume that Y N f(.,yf)+ ()T Av+ > pjgi(.) and

i=1 j€Jdo
> 1ig;(.) are strictly strongly convex of order m at z. Further, assume that Vg(z*), j €
jed,
J(z*) are linear independent. Then, z* = x*; that is, z* is an optimality solution of (NP).

Proof. The proof follows on similar lines of Theorems 4.4. (|

Remark 5.2. Let A= 0. Then (NP) and (WD) become the problems proposed by Tanimoto
[20].

6. Conclusion

In the present work, we have established the sufficient optimality conditions for a
nondifferentiable minimax programming problem under strong convexity/generalized con-
vexity of order m. Weak, strong and strict converse duality results for two types of duals
viz., Wolfe and general Mond-Weir type dual problems were also established by using the
aforesaid convexity/generalized convexity concepts. It seems that the techniques developed
in this paper can also be used to provide similarly results for a nonsmooth minimax pro-
gramming problem. This will be the future task of the authors.
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