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The aim of this paper is to study a nondifferentiable minimax programming
problem with square root terms in the objective functions and establish sufficient optimal-

ity conditions from the standpoint of the higher-order convexity assumptions. These op-

timality conditions are illustrated by a non-trivial example. Furthermore, weak, strong,
and strict converse duality theorems are derived for two dual model categories.
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1. Introduction

In spite of optimization problems that have been present in mathematics as the earliest
times, optimization has been established as an independent field only in relatively recent
times. The idea of a minimax programming problem, without a doubt, plays a significant role
in all parts of programming in mathematics including the duality theorem and optimality
conditions. Some blatant and significant outcomes of minimax programming problems were
considered in books Danskin [6] and Demyanov and Malozemov [7]. Optimality and duality
constitute a vital piece in the investigation of mathematical programming in the sense that
these lay down the foundation of the algorithm for a solution of an optimization problem.

In recent years, there has been growing interest in minimax mathematical program-
ming (see, for example, [1, 2, 3, 4, 8, 9, 10, 13, 14, 17, 18, 20, 21, 22, 23]). For a generalized
minimax programming problem, Schmitendorf [18] first presented necessary and sufficient
optimality conditions, which Tanimoto [20] used to formulate a dual problem and to dis-
cuss about the duality outcomes. Bector and Bhatia [4] and Weir [21] also employed the
aforesaid method to construct several dual models and derived weak and strong duality
theorems under pseudoconvex and quasiconvex functions. Under generalized invexity hy-
potheses, Zalmai [23] established sufficient optimality conditions and duality theorems, and
he introduced necessary optimality conditions for a class of minimax programming problems
in Banach space. Later, Bector et al. [5] developed duality results for a class of minimax
programming problems with V -invexity-type assumptions on the goal and constraint func-
tions.
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The concept of convexity and generalized convexity plays a dominant role in several
sides of mathematical programming and other related fields. Recently, various generalized
convexities have been introduced, and one proof that can be applied to larger classes of
optimization problems to extend optimality conditions and duality conclusions for convex
programs. A significant generalization of the convex function is the strong convexity of
order m which was introduced by Karamardian [12]. Such generalization was introduced
for a differentiable function by Lin and Fukushima [16] and thereafter utilized by several
authors to get significant results. The concept of strong convexity is a fundamental tool
for designing and analyzing a wide range of learning algorithms. Suneja et al. [19] proved
optimality and duality results for nonsmooth vector optimization problems under general-
ized higher-order strongly convex functions. Later, Jayswal et al. [11] concentrated their
study to investigated sufficient and general Mond-Weir type duality results for nonlinear
multiobjective programming problems in which the function involved are semidifferentiable
under higher order semilocally strong convexity.

In this paper, we consider a class of optimization problems with square root terms
in the objective functions governed by the higher-order strong convex functions. The re-
sults obtained here include the results formulated in the previous mentioned studies. The
presence of continuous differentiable of functions of minimax optimization problems with
square root terms in the objective functions represent the main element of total novelty
in the specialized literature. Thereafter, we formulate and prove sufficient optimality con-
ditions associated with the considered non-differentiable minimax optimization problems,
under higher-order strong convex hypotheses of the involved functions. Along these lines,
we apply the optimality conditions to define dual models and prove weak, strong and strict
converse duality theorems using higher-order strong convex assumptions.

The organization of this paper is as follows: Section 2 contains some preliminary
notions and basic definitions needed in the sequel. In Section 3, we have derived the sufficient
optimality conditions for a class of nondifferentiable minimax programming problems which
is illustrated by a non-trivial example. In Sections 4-5, we study two types of dual models
namely Wolfe type dual and general Mond-Weir type dual, respectively, and establish weak,
strong and strict converse duality results for each of them. Finally, Section 6 provides a
conclusion and future developments.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space, Rn
+ be its non-negative orthant

and X be a non-empty open subset of Rn.
The problem to be considered in the present analysis is the following nondifferentiable

minimax programming problem :
(NP) min sup

y∈Y
f(x, y) + (xTAx)

1
2

subject to g(x) ≤ 0, x ∈ X,
where Y is a compact subset of Rl; f : Rn × Rl → R and g : Rn → Rk are continuous
differentiable functions and A is a positive semidefinite n × n symmetric matrix. If A = 0,
then the problem (NP) is a differentiable minimax programming problem introduced by
Schmitendorf [18].

Let Ω = {x ∈ Rn : g(x) ≤ 0} denote the set of all feasible solutions of (NP). For each
(x, y) ∈ Rn × Rl we define

J(x) = {j ∈ K : gj(x) = 0}, where K = {1, 2, ..., k},
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Y (x) =
{
y ∈ Y : f(x, y) + (xTAx)

1
2 = sup

z∈Y
f(x, z) + (xTAx)

1
2

}
.

M(x) =
{
(p, λ, ỹ) ∈ N× Rp

+ × Rlp : 1 ≤ p ≤ n+ 1, λ = (λ1, λ2, ..., λp) ∈ Rp
+ with

p∑
i=1

λi = 1 and ỹ = (ȳ1, ȳ2, ..., ȳp) with ȳi ∈ Y (x), i = 1, 2, ..., p
}
.

Now, we begin with the definitions of strong convexity given by Lin and Fukushima [16].

Definition 2.1. (Lin and Fukushima [16]). Let m ≥ 1 be an integer number. A differen-
tiable function h : X → R is said to be (strictly) strongly convex of order m at x∗ ∈ X, if
there exists a positive constant c such that

h(x)− h(x∗)(>) ≥ (x− x∗)T∇h(x∗) + c∥x− x∗∥m,∀ x ∈ X,

where ∥ · ∥ denotes any norm of X. If the function h is (strictly) strongly convex of order
m at every x∗ ∈ X, then the function h is said to be (strictly) strongly convex of order m
on X.

Now, we present the following generalizations of generalized strong convexity.

Definition 2.2. (Lin and Fukushima [16]). Let m ≥ 1 be an integer number. A differen-
tiable function h : X → R is said to be (strictly) strongly pseudoconvex of order m at x∗ ∈ X
, if there exists a positive constant c such that

(x− x∗)T∇h(x∗) + c∥x− x∗∥m ≥ 0 ⇒ h(x)(>) ≥ h(x∗),∀ x ∈ X,

or equivalently,

h(x)(≤) < h(x∗) ⇒ (x− x∗)T∇h(x∗) + c∥x− x∗∥m < 0,∀ x ∈ X.

If the function h is (strictly) strongly pseudoconvex of order m at every x∗ ∈ X, then the
function h is said to be (strictly) strongly pseudoconvex of order m on X.

Definition 2.3. (Lin and Fukushima [16]). Let m ≥ 1 be an integer number. A differen-
tiable function h : X → R is said to be strongly quasiconvex of order m at x∗ ∈ X, if there
exists a positive constant c such that

h(x) ≤ h(x∗) ⇒ (x− x∗)T∇h(x∗) + c∥x− x∗∥m ≤ 0,∀ x ∈ X,

or equivalently,

(x− x∗)T∇h(x∗) + c∥x− x∗∥m > 0 ⇒ h(x) > h(x∗),∀ x ∈ X.

If the function h is strongly quasiconvex of order m at every x∗ ∈ X, then the function h is
said to be strongly quasiconvex of order m on X.

Lemma 2.1. (Generalized Schwartz Inequality). Let A be a positive semidefinite symmetric
matrix of order n. Then, for all x, v ∈ Rn,

xTAv ≤ (xTAx)
1
2 (vTAv)

1
2 .

The equality holds when Ax = ξAv for some ξ ≥ 0. Evidently, if (vTAv)
1
2 ≤ 1, we have

xTAv ≤ (xTAx)
1
2 . (2.1)

Following necessary conditions are the special case of Theorem 3.1 of Lai et al.[15],
and is needed in the sequel:
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Theorem 2.1. (Necessary conditions). Let x∗ be an optimal solution of the problem (NP)
satisfying x∗TAx∗ > 0, and assume that ∇gj(x

∗), j ∈ J(x∗) are linearly independent. Then
there exist (p, λ, ỹ) ∈ M(x∗), v ∈ Rn and µ ∈ Rk

+ such that

p∑
i=1

λi {∇f(x∗, ȳi) +Av}+∇
k∑

j=1

µjgj(x
∗) = 0, (2.2)

k∑
j=1

µjgj(x
∗) = 0, (2.3)

λi ≥ 0, i = 1, 2, ..., p,

p∑
i=1

λi = 1, (2.4)

vTAv ≤ 1, (x∗T

Ax∗)
1
2 = x∗T

Av. (2.5)

3. Sufficient conditions

In this section, we derive sufficient optimality conditions for minimax programming
problem (NP) under proposed generalized convexity concept.

Theorem 3.1. Let x∗ be a feasible solution of the problem (NP). Assume that there exist
(p, λ, ỹ) ∈ M(x∗), v ∈ Rn and µ ∈ Rk

+ satisfying relations (2.2)-(2.5). We define

Ψ(.) =

p∑
i=1

λi

(
f(., ȳi) + (.)TAv

)
.

Furthermore, we assume that any one of the following conditions holds:

(a) f(., ȳi) + (.)TAv, i = 1, 2, ..., p and
k∑

j=1

µjgj(.) are strongly convex of order m at x∗;

(b) Ψ(.) and
k∑

j=1

µjgj(.) are strongly convex of order m at x∗;

(c) Ψ(.) is strongly pseudoconvex of order m at x∗ and
k∑

j=1

µjgj(.) is strongly quasiconvex

of order m at x∗;

(d) Ψ(.) is strongly quasiconvex of order m at x∗ and
k∑

j=1

µjgj(.) is strictly strongly pseu-

doconvex of order m at x∗.
Then x∗ is an optimal solution of (NP).

Proof. Suppose, contrary to the result, that x∗ is not an optimal solution of (NP). Then
there exists x ∈ Ω such that

sup
y∈Y

(
f(x, y) + (xTAx)

1
2

)
< sup

y∈Y

(
f(x∗, y) + (x∗T

Ax∗)
1
2

)
. (3.1)

Since ȳi ∈ Y (x∗) we have

sup
y∈Y

(
f(x∗, y) + (x∗T

Ax∗)
1
2

)
= f(x∗, ȳi) + (x∗T

Ax∗)
1
2 . (3.2)

Also

f(x, ȳi) + (xTAx)
1
2 ≤ sup

y∈Y

(
f(x, y) + (xTAx)

1
2

)
. (3.3)

Thus, from (3.1), (3.2), (3.3) we obtain

f(x, ȳi) + (xTAx)
1
2 < f(x∗, ȳi) + (x∗T

Ax∗)
1
2 . (3.4)
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From the inequalities (2.1), (2.4), (2.5) and (3.4) we get

Ψ(x) =

p∑
i=1

λi

(
f(x, ȳi) + xTAv

)
≤

p∑
i=1

λi

(
f(x, ȳi) + (xTAx)

1
2

)
<

p∑
i=1

λi

(
f(x∗, ȳi) + (x∗T

Ax∗)
1
2

)
=

p∑
i=1

λi

(
f(x∗, ȳi) + x∗T

Av
)

= Ψ(x∗).

Hence,

Ψ(x) < Ψ(x∗). (3.5)

If condition (a) holds, then there exists a positive constant c such that

f(x, ȳi) + (xTAv)− f(x∗, ȳi)− (x∗T

Av)

≥ (x− x∗)T
(
∇f(x∗, ȳi) +Av

)
+ c∥x− x∗∥m, ∀ i = 1, 2, ..., p.

Since
p∑

i=1

λi = 1, multiplying the above inequalities by λi and then summing, we obtain

Ψ(x)−Ψ(x∗) ≥ (x− x∗)T
p∑

i=1

λi

(
∇f(x∗, ȳi) +Av

)
+ c∥x− x∗∥m,

which in turn, by using (2.2), implies

Ψ(x)−Ψ(x∗) ≥ −(x− x∗)T
k∑

j=1

µj∇gj(x
∗) + c∥x− x∗∥m. (3.6)

On the other hand, by strong convexity of order m at x∗ of
k∑

j=1

µjgj(.), there exists a positive

constant c
′
such that

k∑
j=1

µjgj(x)−
k∑

j=1

µjgj(x
∗) ≥ (x− x∗)T

k∑
j=1

µj∇gj(x
∗) + c

′
∥x− x∗∥m,

which by the feasibility of x in the problem (NP) and (2.3) yields

(x− x∗)T
k∑

j=1

µj∇gj(x
∗) + c

′
∥x− x∗∥m ≤ 0. (3.7)

On adding inequalities (3.6) and (3.7) we obtain

Ψ(x)−Ψ(x∗) ≥ (c
′
+ c)∥x− x∗∥m.

Obviously (c
′
+ c) > 0. Therefore, it follows from the above inequality

Ψ(x)−Ψ(x∗) ≥ 0,

which contradicts inequality (3.5).
If condition (b) holds, then by strong convexity of order m at x∗ of Ψ(.), there exists

a positive constant c such that

Ψ(x)−Ψ(x∗) ≥ (x− x∗)T
p∑

i=1

λi

(
∇f(x∗, ȳi) +Av

)
+ c∥x− x∗∥m.
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The above inequality along with (2.2) implies

Ψ(x)−Ψ(x∗) ≥ −(x− x∗)T
k∑

j=1

µj∇gj(x
∗) + c∥x− x∗∥m.

Now the proof follows on similar lines as in case (a).
If condition (c) holds, then by strong pseudoconvexity of order m at x∗ of Ψ(.) and

inequality (3.5), it follows that there exists a positive constant c such that

(x− x∗)T∇Ψ(x∗) + c∥x− x∗∥m < 0,

which in turn along with equality (2.2) implies

(x− x∗)T
k∑

j=1

µj∇gj(x
∗) > c∥x− x∗∥m ≥ 0. (3.8)

Now, from the feasibility of x in the problem (NP) and equality (2.3) we get

k∑
j=1

µjgj(x) ≤
k∑

j=1

µjgj(x
∗),

which by strong quasiconvexity of order m at x∗ of
k∑

j=1

µjgj(.) implies that there exists a

positive constant c
′
such that

(x− x∗)T
k∑

j=1

µjgj(x
∗) + c

′
∥x− x∗∥m ≤ 0.

Since c
′∥x− x∗∥m ≥ 0, the above inequality becomes

(x− x∗)T
k∑

j=1

µj∇gj(x
∗) ≤ 0,

which contradicts inequality (3.8).
If condition (d) holds, then by strong quasiconvexity of order m at x∗ of Ψ(.) and

inequality (3.5), it follows that there exists a positive constant c̃ such that

(x− x∗)T∇Ψ(x∗) + c̃∥x− x∗∥m < 0.

Rest of the proof follows on similar lines as in case of the condition (c). This completes the
proof. □

Now, we illustrate the Theorem 3.1 by the following example.

Example 3.1. Let X = {x = (x1, x2) ∈ R2 : −1 < x1 < 1 and − 1 < x2 < 1}. Consider
the nondifferentiable minimax programming problem (NP), where Y = [−1, 1] is a compact

subset of R, A =

(
1 −1
−1 1

)
2×2

is a positive semidefinite symmetric matrix. Let f :

R2 × R → R and g : R2 → R be continuously differentiable functions defined by

f(x, y) =

(
2x1 + x2

x2 + 1

)2

y2

and

g(x) = x2
1 + x1x2 + x2

2
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respectively. Obviously, the set of feasible solution of problem (NP) is Ω = {x = (x1, x2) ∈
X : x2

1 + x1x2 + x2
2 ≤ 0}. By the definition of the set Y (x), we see that Y (x) = {y1, y2} =

{−1, 1} and

f(x, yi) =

(
2x1 + x2

x2 + 1

)2

, i = 1, 2.

It is observed that the conditions (2.2)-(2.5) are satisfied for (λ1, λ2, µ) = ( 13 ,
2
3 ,

1
2 ) and

v = ( 12 ,
1
2 ) at x∗ = (0, 0) ∈ Ω. Also, it is easy to verify by means of Definition 2.1 that the

functions f(x, yi) + xTAv and µg(x) are strongly convex of order 2 with (c, c
′
) = ( 14 ,

1
4 ) at

x∗ = (0, 0). Therefore all the conditions of the Theorem 3.1 are satisfied. Thus x∗ = (0, 0)
is an optimal solution for (NP1).

4. First duality model

In this section we formulate the following Wolfe type dual (WD) for (NP) and derive
duality results:

(WD) max
(p,λ,ỹ)∈M(z)

sup
(z,v,µ)∈F1(p,λ,ỹ)

p∑
i=1

λif(z, ȳi) + zTAv +
k∑

j=1

µjgj(z),

where F1(p, λ, ỹ) denotes the set of all (z, v, µ) ∈ Rn × Rn × Rk
+ satisfying

p∑
i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z) = 0, (4.1)

vTAv ≤ 1. (4.2)

If for a triplet (p, λ, ỹ) ∈ M(z) the set F1(p, λ, ỹ) = ∅, then we define the supremum over it
to be −∞.

Theorem 4.1. (Weak duality). Let x and (z, v, µ, p, λ, ỹ) be feasible solutions of problems
(NP) and (WD), respectively. Assume that f(., ȳi) + (.)TAv, i = 1, 2, ..., p and gj(.), j ∈ K
are strongly convex of order m at z. Then

sup
y∈Y

(
f(x, y) + (xTAx)

1
2

)
≥

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).

Proof. Suppose, contrary to the result, that

sup
y∈Y

(f(x, y) + (xTAx)
1
2 ) <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).

Since ȳi ∈ Y (x), i = 1, 2, ..., p, the above inequality implies

f(x, ȳi) + (xTAx)
1
2 <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).

For λ ∈ Rp
+ it follows that

λi

f(x, ȳi) + (xTAx)
1
2 )−

 p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z)

 ≤ 0,
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with at least one strict inequality, because λ = (λ1, λ2, ..., λp) ̸= 0. Taking summation over

i and using
p∑

i=1

λi = 1 we arrive at

p∑
i=1

λif(x, ȳi) + (xTAx)
1
2 <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).

The above inequality along with (4.2) and Lemma 2.1 gives

p∑
i=1

λif(x, ȳi) + xTAv <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z). (4.3)

On the other hand, by strong convexity of order m at z of f(., ȳi) + (.)TAv, i = 1, 2, ..., p

and gj(.), j ∈ K, there exist positive constants c and c
′

j , j ∈ K, respectively, such that

f(x, ȳi) + xTAv − f(z, ȳi)− zTAv ≥ (x− z)T
(
∇f(z, ȳi) +Av

)
+ c∥x− z∥m (4.4)

gj(x)− gj(z) ≥ (x− z)T∇gj(z) + c
′

j∥x− z∥m. (4.5)

Since
p∑

i=1

λi = 1, multiplying each inequality (4.4) by λi, i = 1, 2, ..., p, and each inequality

(4.5) by µj , j = 1, 2, ..., k, and then taking sum we get

p∑
i=1

λif(x, ȳi) + xTAv +

k∑
j=1

µjgj(x)−
p∑

i=1

λif(z, ȳi)− zTAv −
k∑

j=1

µjgj(z)

≥ (x− z)T

 p∑
i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

+

c+

k∑
j=1

µjc
′

j

 ∥x− z∥m. (4.6)

From (4.3), (4.6) and the feasibility of x in the problem (NP) we get

(x− z)T

 p∑
i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

+

c+

k∑
j=1

µjc
′

j

 ∥x− z∥m < 0.

Obviously

(
c+

k∑
j=1

µjc
′

j

)
> 0. Therefore, it follows from the above inequality

(x− z)T

 p∑
i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

 < 0,

which contradicts inequality (4.1). This completes the proof. □

Theorem 4.2. (Weak duality). Let x and (z, v, µ, p, λ, ỹ) be feasible solutions of problems

(NP) and (WD), respectively. Assume that
p∑

i=1

λif(., ȳi) + (.)TAv +
k∑

j=1

µjgj(.) are strongly

pseudoconvex of order m at z. Then

sup
y∈Y

(f(x, y) + (xTAx)
1
2 ) ≥

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).

Proof. Suppose, contrary to the result, that

sup
y∈Y

(f(x, y) + (xTAx)
1
2 ) <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).
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Now, proceeding on the same lines as in the Theorem 4.1, we see that

p∑
i=1

λif(x, ȳi) + xTAv <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z). (4.7)

Using the feasibility of x in problem (NP) and µj ≥ 0, j = 1, 2, ..., k we have

k∑
j=1

µjgj(x) ≤ 0. (4.8)

By (4.7) and (4.8) it follows that

p∑
i=1

λif(x, ȳi) + xTAv +

k∑
j=1

µjgj(x) <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z),

which by strong pseudoconvexity of order m at z of
p∑

i=1

λif(., ȳi)+(.)TAv+
k∑

j=1

µjg(.) implies

that there exists a positive constant c such that

(x− z)T

 p∑
i=1

λi∇f(z, ȳi) +Av +
k∑

j=1

µj∇gj(z)

+ c∥x− z∥m < 0.

Obviously c > 0. Therefore, it follows from the above inequality

(x− z)T

 p∑
i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

 < 0,

which contradicts inequality (4.1). This completes the proof. □

Theorem 4.3. (Strong duality). Let x∗ be an optimal solution for (NP) and the vectors
∇gj(x

∗), j ∈ J(x∗) are linearly independent. Then, there exist (p∗, λ∗, ỹ∗) ∈ M(x∗) and
(x∗, v∗, µ∗) ∈ F1(p

∗, λ∗, ỹ∗) such that (x∗, v∗, µ∗, p∗, λ∗, ỹ∗) is a feasible solution of (WD).
In addition, if the assumptions of weak duality theorem (Theorem 4.1 or Theorem 4.2) holds
for all feasible solutions of (WD), then the point (x∗, v∗, µ∗, p∗, λ∗, ỹ∗) is an optimal solution
of (WD) and the two problems (NP) and (WD) have the same optimal values.

Proof. Since x∗ is an optimal solution of problem (NP) and the vectors ∇gj(x
∗), j ∈

J(x∗) are linearly independent, then by Theorem 2.1, there exist (p∗, λ∗, ỹ∗) ∈ M(x∗) and
(x∗, v∗, µ∗) ∈ F1(p

∗, λ∗, ỹ∗) such that (x∗, v∗, µ∗, p∗, λ∗, ỹ∗) is a feasible solution of (WD)
and the corresponding objective of values of (NP) and (WD) are equal. The optimality
of this feasible solution for (WD) thus follows from weak duality Theorem 4.1 or Theorem
4.2. □

Theorem 4.4. (Strict converse duality). Let x∗ and (z∗, v∗, µ∗, p∗, λ∗, ỹ∗) be feasible so-
lutions of (NP) and (WD), respectively. Assume that f(., ȳ∗i ) + (.)TAv, i = 1, 2, ..., p
and gj(.), j ∈ K are strictly strongly convex of order m at z∗. Further, assume that
∇g(x∗), j ∈ J(x∗) are linear independent. Then, z∗ = x∗; that is, z∗ is an optimal so-
lution of (NP).

Proof. Suppose, contrary to the result, that z∗ ̸= x∗. From strong duality Theorem 4.3, we
reach

sup
y∈Y

(
f(x∗, ȳ∗) + (x∗T

Ax∗)
1
2

)
=

p∗∑
i=1

λ∗
i f(z

∗, ȳ∗i ) + z∗
T

Av∗ +

k∑
j=1

µ∗
jgj(z

∗).
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Thus, we have

f(x∗, ȳ∗i ) + (x∗T

Ax∗)
1
2 ≤

p∗∑
i=1

λ∗
i f(z

∗, ȳ∗i ) + z∗
T

Av∗ +

k∑
j=1

µ∗
jgj(z

∗),

for all ȳ∗i ∈ Y (x∗), i = 1, 2, ..., p∗.
Now, proceeding on the same lines as in the Theorem 4.1, using strictly strongly convex of
order m we get

(x∗ − z∗)T

(
p∗∑
i=1

λ∗
i∇f(z∗, ȳ∗i ) +Av∗ +

k∑
j=1

µ∗
j∇gj(z

∗)

)
< 0,

which contradicts inequality (4.1). This completes the proof. □

Theorem 4.5. (Strict converse duality). Let x∗ and (z∗, v∗, µ∗, p∗, λ∗, ỹ∗) be feasible solu-

tions of (NP) and (WD), respectively. Assume that
p∗∑
i=1

λ∗
i f(., ȳ

∗
i ) + (.)TAv∗ +

k∑
j=1

µ∗
jgj(.)

are strictly strongly pseudoconvex of order m at z∗. Further, assume that ∇g(x∗), j ∈ J(x∗)
are linear independent. Then, z∗ = x∗; that is, z∗ is an optimal solution of (NP).

Proof. The proof is similar to that of the above theorem and hence being omitted. □

5. Second duality model

In this section, we formulate the following general Mond-Weir type dual (MD) for
(NP) and derive duality results:

(MD) max
(p,λ,ỹ)∈M(z)

sup
(z,v,µ)∈F2(p,λ,ỹ)

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z)

where F2(p, λ, ỹ) denotes the set of all (z, v, µ) ∈ Rn × Rn × Rk
+ satisfying

p∑
i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z) = 0, (5.1)

∑
j∈Jγ

µjgj(z) ≥ 0, γ = 1, 2, ..., t, (5.2)

vTAv ≤ 1, (zTAz)
1
2 = zTAv, (5.3)

where Jγ ⊆ K = {1, 2, ..., k}, γ = 0, 1, 2, ..., t with ∪t
γ=0Jβ = K and Jβ ∩ Jγ ̸= ϕ, if β ̸= γ.

If for a triplet (p, λ, ỹ) ∈ M(z), the set F2(p, λ, ỹ) = ∅, then we define the supremum over it
to be −∞.

Remark 5.1. If J0 = K, Jγ = ϕ (1 ≤ γ ≤ β), then (MD) reduces to (WD).

Theorem 5.1. (Weak duality). Let x and (z, v, µ, p, λ, ỹ) be feasible solutions of (NP) and

(MD), respectively. Assume that
p∑

i=1

λif(., ȳi) + (.)TAv +
∑
j∈J0

µjgj(.) and
∑

j∈Jγ

µjgj(.) are

strongly convex of order m at z. Then

sup
y∈Y

(
f(x, y) + (xTAx)

1
2

)
≥

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z).

Proof. Suppose, contrary to the result, that

sup
y∈Y

(
f(x, y) + (xTAx)

1
2

)
<

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z).
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Since ȳi ∈ Y (x), i = 1, 2, ..., p, the above inequality implies

f(x, ȳi) + (xTAx)
1
2 <

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z).

For λ ∈ Rp
+, from above inequality we arrive at

λi

[
f(x, ȳi) + (xTAx)

1
2 −

(
p∑

i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z)

)]
≤ 0,

with at least one strict inequality, because λ = (λ1, λ2, ..., λp) ̸= 0. Taking summation over

i and using
p∑

i=1

λi = 1 we have

p∑
i=1

λif(x, ȳi) + (xTAx)
1
2 <

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z).

The above inequality along with (5.3) and Lemma 2.1 implies

p∑
i=1

λif(x, ȳi) + xTAv <

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z). (5.4)

Also, from (5.2) we have

−
∑
j∈Jγ

µjgj(z) ≤ 0. (5.5)

On the other hand, by strong convexity of order m at z of
p∑

i=1

λif(., ȳi)+(.)TAv+
∑
j∈J0

µjgj(.)

and
∑

j∈Jγ

µjgj(.), there exist positive constants c and c
′
respectively such that

p∑
i=1

λif(x, ȳi) + xTAv +
∑
j∈J0

µjgj(x)−
p∑

i=1

λif(z, ȳi)− zTAv −
∑
j∈J0

µjgj(z)

≥ (x− z)T

(
p∑

i=1

λi∇f(z, ȳi) +Av +
∑
j∈J0

µj∇gj(z)

)
+ c∥x− z∥m,

∑
j∈Jγ

µjgj(x)−
∑
j∈Jγ

µjgj(z) ≥ (x− z)T

( ∑
j∈Jγ

µj∇gj(z)

)
+ c

′
∥x− z∥m.

On adding the above two inequalities we obtain

p∑
i=1

λif(x, ȳi) + xTAv +

k∑
j=1

µjgj(x)−
p∑

i=1

λif(z, ȳi)− zTAv −
∑
j∈J0

µjgj(z)−
∑
j∈Jγ

µjgj(z)

≥ (x− z)T

(
p∑

i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

)
+ (c+ c

′
)∥x− z∥m. (5.6)

From (5.4), (5.5), (5.6) and the feasibility of x in the problem (NP) we get

(x− z)T

(
p∑

i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

)
+ (c+ c

′
)∥x− z∥m < 0.
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Obviously (c+ c
′
) > 0. Therefore, it follows from the above inequality

(x− z)T

(
p∑

i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

)
< 0,

which contradicts inequality (5.1). This completes the proof. □

Theorem 5.2. (Weak duality). Let x and (z, v, µ, p, λ, ỹ) be feasible solution of (NP) and

(MD), respectively. Assume that
p∑

i=1

λif(., ȳi)+ (.)TAv+
k∑

j=1

µjg(.) is strongly pseudoconvex

of order m at z. Then

sup
y∈Y

(f(x, y) + (xTAx)
1
2 ) ≥

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z).

Proof. Suppose, contrary to the result, that

sup
y∈Y

(f(x, y) + (xTAx)
1
2 ) <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z).

Now, proceeding on same line as in the Theorem 5.1, we see that
p∑

i=1

λif(x, ȳi) + xTAv <

p∑
i=1

λif(z, ȳi) + zTAv +
∑
j∈J0

µjgj(z). (5.7)

Using the feasibility of x in the problem (NP) and µj , j = 1, 2, ..., k, we get

k∑
j=1

µjgj(x) ≤ 0. (5.8)

By (5.2), (5.7) and (5.8) it follows that

p∑
i=1

λif(x, ȳi) + xTAv +

k∑
j=1

µjgj(x) <

p∑
i=1

λif(z, ȳi) + zTAv +

k∑
j=1

µjgj(z),

which by strong pseudoconvexity of order m at z of
p∑

i=1

λif(., ȳi) + (.)TAv +
k∑

j=1

µjgj(.)

implies that there exists a positive constant c such that

(x− z)T

(
p∑

i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

)
+ c∥x− z∥m < 0.

Obviously c > 0. Therefore, it follows from the above inequality

(x− z)T

(
p∑

i=1

λi∇f(z, ȳi) +Av +

k∑
j=1

µj∇gj(z)

)
< 0,

which contradicts inequality (5.1). This completes the proof. □

Theorem 5.3. (Strong duality). Let x∗ be an optimal solution for (NP) and the vectors
∇gj(x

∗), j ∈ J(x∗) are linearly independent. Then there exist (p∗, λ∗, ỹ∗) ∈ M(x∗) and
(x∗, v∗, µ∗) ∈ F2(p

∗, λ∗, ỹ∗) such that (x∗, v∗, µ∗, p∗, λ∗, ỹ∗) is a feasible solution of (MD).
In addition, if the assumptions of weak duality theorem (Theorem 5.1 or Theorem 5.2) hold
for all feasible solutions of (MD), then the point (x∗, v∗, µ∗, p∗, λ∗, ỹ∗) is an optimal solution
of (MD) and the two problems (NP) and (MD) have the same optimal value.

Proof. The proof follows on similar lines of Theorems 4.3. □
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Theorem 5.4. (Strict converse duality). Let x∗ and (z∗, v∗, µ∗, p∗, λ∗, ỹ∗) be feasible solu-

tions of (NP) and (MD), respectively. Assume that
p∗∑
i=1

λif(., ȳ∗i )+(.)TAv+
∑
j∈J0

µjgj(.) and∑
j∈Jγ

µjgj(.) are strictly strongly convex of order m at z. Further, assume that ∇g(x∗), j ∈

J(x∗) are linear independent. Then, z∗ = x∗; that is, z∗ is an optimality solution of (NP).

Proof. The proof follows on similar lines of Theorems 4.4. □

Remark 5.2. Let A = 0. Then (NP) and (WD) become the problems proposed by Tanimoto
[20].

6. Conclusion

In the present work, we have established the sufficient optimality conditions for a
nondifferentiable minimax programming problem under strong convexity/generalized con-
vexity of order m. Weak, strong and strict converse duality results for two types of duals
viz., Wolfe and general Mond-Weir type dual problems were also established by using the
aforesaid convexity/generalized convexity concepts. It seems that the techniques developed
in this paper can also be used to provide similarly results for a nonsmooth minimax pro-
gramming problem. This will be the future task of the authors.

REFERENCES

[1] I. Ahmad, Z. Husain and S. Sharma, Second-order duality in nondifferentiable minmax programming

involving type-I functions, J. Comput. Appl. Math., 215(2008), No. 1, 91-102.

[2] I. Ahmad, Z. Husain and S. Sharma, Higher-order duality in nondifferentiable minimax programming

with generalized type I functions, J. Optim. Theory Appl., 141(2009), No. 1, 1-12.

[3] I. Ahmad, K. Kummari, V. Singh and A. Jayswal, Optimality and duality for nonsmooth minimax

programming problems using convexifactor, Filomat 31(2017), No. 14, 4555-4570.

[4] C.R. Bector and B.L. Bhatia, Sufficient optimality conditions and duality for a minimax problem,

Utilitas Math., 27(1985), 229-247.

[5] C.R. Bector, S. Chandra and V. Kumar, Duality for minimax programming involving V -invex functions,

Optimization 30(1994), No. 2, 93-103.

[6] J.M. Danskin, The Theory of Max-Min and its Applications to Weapons Allocation Problems, Springer-

Verlag, New York, 1967.

[7] V.F. Demyanov and V.N. Malozemov, Introduction to Minmax [Translated from the original Russian

publication (Nauka, 1972) by D.Louvish], Dover Publications, Inc., New York (1990); republication of

the english translation published by Keter Publishing House Jerusalem Ltd. (1974)

[8] Z. Husain, A. Jayswal and I. Ahmad, Second order duality for nondifferentiable minimax programming

problems with generalized convexity, J. Glob. Optim., 44(2009), No. 4, 593-608.

[9] A. Jayswal and K. Kummari, Second order duality for non-differentiable minimax programming prob-

lems involving generalised α-type-I functions, Int. J. Math. Oper. Res., 6(2014), No.3, 393-406.

[10] A. Jayswal and I. Stancu-Minasian, Higher-order duality for nondifferentiable minimax programming

problem with generalized convexity, Nonlinear Analysis, Ser A, Theory Methods. Appl., 74(2011), No.

2, 616-625.

[11] A. Jayswal, V. Singh and I. Ahmad, Optimality and duality in multiobjective programming involving

higher order semilocally strong convexity, Int. J. Math. Oper. Res., 11(2017), No. 2, 204-218.

[12] S. Karmardian, The nonlinear complementarity problem with applications , Part 2. J. Optim. Theory

Appl., 4(1969), No. 3, 167-181.



62 Neelima Shekhawat, Ioan Stancu-Minasian, Andreea Mădălina Rusu-Stancu and Vivek Singh
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