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COMPUTATION OF HURST EXPONENT OF TIME SERIES 
USING DELAYED (LOG-) RETURNS. APPLICATION TO 

ESTIMATING THE FINANCIAL VOLATILITY  

Cristina STAN1, Cristina-Maria CRISTESCU2, Constantin P. CRISTESCU3 

We present a simple and straightforward method for computing Hurst 
exponent of fractal, self-similar time-series by direct use of the defining relationship. 
It is based on a set of series derived from the original time series constructed 
considering log-returns for increasing delays. The method can be applied to self-
similar time series of any kind, irrespective of their origin. In the present study we 
only consider financial time series and the computed Hurst exponent is used for 
estimation of market volatility. As case study, the exchange rates of ROL, CZK, GBP 
and SEK versus US Dollar and Euro are considered. 

 
Keywords: Hurst exponent, fractal analysis, financial time series, volatility 

1. Introduction 

 The Hurst exponent, introduced by H. E. Hurst [1] was later proposed for 
use in fractal analysis [2,3], and used to many research fields such as biology 
[4,5], geophysical dynamics [6,8], turbulence in fluids and plasmas [9,10]. 
Recently, the fractal analysis has become popular in the finance research, 
particularly in the context of Econophysics [11], a relatively new area of study, 
developed by cooperation between economists, mathematicians and physicists. It 
applies ideas, methods and models of statistical physics and complexity theory to 
analyze data from economical phenomena. Especially it extended the fractal 
analysis to economic-financial dynamics [12-16].  
 The Hurst exponent provides a measure for long term memory of time 
series, very useful in forecasting, where the first question we want to answer is 
whether the time series under study is more or less predictable.  
 In this work we present a new simple and straightforward method for 
computing Hurst exponent of fractal, self-similar time-series by direct use of the 
defining relationship. It is based on a set of series derived from the original time 
series constructed considering returns or log-returns for increasing delays. The 
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method can be applied to self-similar time series of any kind, irrespective of their 
origin. In the present study we only consider financial time series and the 
computed Hurst exponent is used for estimation of market volatility. 
 Every economic agent has a certain strategy to obtain profit. The greater 
the company, the longer the time horizon of the plan, and the higher the impact of 
the decisions taken at the top management level. Clearly, the government policy, 
central bank policy and powerful corporations represent a biasing presence in all 
planning actions and decisions of the business management of the firm in all its 
components such as financial, labor or risk management. Risks can come from 
uncertainty in financial markets, project failures, legal liabilities, credit risk, 
accidents, natural situations or disasters, as well as deliberate attack from an 
adversary, or events of uncertain origin or unpredictable cause [17]. 
 An important role in management is occupied by the time series analysis 
as any industrial or agricultural processes, banking and financial activity, 
insurance and pension systems or markets and stock exchange can be 
characterized by a succession of data such as daily output, foreign exchange rates, 
monthly sales volumes, etc. The analysis is based on the hypothesis that a 
realistic, efficient business management has to rely on previous data, usually 
organized as time series. These show the past evolution of the own business as 
well as those of partner or competitive businesses. The degrees of correlation 
between them can be an important factor in the decision making process. 

Analysis of economic and financial time series for identifying their 
characteristic parameters, particularly the volatility is of great importance in the 
risk management and risk prevention activity. Volatility is the up-and-down 
movement of the market. Any movement up or down from its expectation, 
measured by the mean of the time series of that particular stock or exchange rate, 
is the volatility [18]. 

The analysis in the present work is limited to financial time series of the 
exchange rates for four currencies: Romanian Leu (ROL), Czech Koruna (CZK), 
British Pound (GBP) and Swedish Krona (SEK) versus US Dollar (USD) and 
versus Euro (EUR). However, this type of analysis was already used to exchanges 
rates particularly involving ROL [19], and is also applicable to other types of 
financial series such as market daily sales volume, stock market closing index, 
monthly production output of a factory, etc. 

The studied daily exchange rates were taken from the site FOREX Trading 
and Exchange Rates Services (OANDA) and correspond to the interval June 
1999-March 2013, i.e. 5083 values [20]. 
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2. Theoretical considerations  

A geometrical structure is called self-similar if it is exactly or 
approximately similar to its parts. Many objects of the real world are statistically 
self-similar i.e. their parts have the same statistical properties as the whole 
structure. Self-similarity is a characteristic property of fractal objects [21,22]. 

The self-similarity property is also a characteristic of stochastic 
processses. Stochastic self-similarity is defined as follows: a real-valued process 

( ){ }RttX ∈,  is statistically self-similar (or self-afine) of index 0>H , if for any 
0>a , the statistical distribution of ( ){ }RtatX ∈,  is identical to the distribution of 
( ){ }RttXa H ∈, . To put it slightly differently, if Rttt n ∈,,, 21  then 

  ( ) ( ) ( )( ) ( ) ( ) ( )( )nn
HHH atXatXatX

d
tXatXatXa ,,,,,, 2121 =           (1) 

i.e. the distributions of values of the two processes are identical. For given Rt ∈ , 

         ( ) ( )atX
d

tXaH = .                (2) 

The symbol 
d
=  should be read ”identity in distribution”, and signifies statistical 

identity, i.e. that the functions in the two sides of the equation are statistically 
indiscernable. The impossibility to verify this identity for all the moments of the 
two distributions leads to a more loose criteria which requests that the identity 
must be satisfied only by the first two moments: the mean and the variance.  
 If the scales on the two „directions” are different, xk for the parameter 
direction,  and tk  for the time direction, then H

x ak =  and akt =   such that, the 
ratio  

t

x

k
k

H
log
log

=                (3) 

is defined for the respective stochastic process. The index H is called Hurst 
exponent, because its introduction was suggested by Hurst’s study on the 
dynamics of river Nile flow [1]. 

Unlike the self-similar curves (such as e.g. the von Koch curve [9]), where 
the two directions are both spatial variables, characterized by the same value of 
the scaling factor, a function associated to a stochastic process is characterized by 
different scaling factors for the two (different) variables, c for t and Hc  for X. 
Usually, the structures with nonuniform scaling are called self-afine. However, 
very frequently, this distinction is not observed, and the name self-similarity is 
used for both situations.  

Perhaps the earliest example of a self-similar series is the one-dimensional 
Brownian motion. It represents the successive positions of a small particle 
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immersed in a fluid projected on a particular direction, say the x axis, generating a 
series of data ( )Nitxx ii ,,2,1)( == . The theoretical treatment by Langevin 
and Einstein at the beginning of the 20-th Century [23], demonstrated that the 
variance of this series depends on the time interval between successive 
observations ii ttt −=Δ +1  in the form  

  ( ) tx ΔΔ= ~22σ ,     (4) 

where the angular parantheses describe an ensamble average. 
In many fields of science, as well as in the case of algorithmic modeling, for 

a prescribed stochastic process, an arbitrary number of realizations can be 
generated as particular time series, forming a statistical ensemble. In the case of 
real economic-financial processes this is impossible, and as consequence, each 
time series has to be considered as representing a unique realization of the 
underlying stochastic process and the ensemble average in Eq.(4) has to be 
removed. Taking into consideration the alteration of precision on Hurst exponent 
computation with shortening of the series, irrespective of the used algorithm, we 
do not consider breaking the series in partial segments as recommended in [24]. 
 According to (3), the Hurst exponent for the Brownian process is 

 
2
1

=H  .      (5) 

The succesive variations xΔ  are totally un-correlated and constitute a Gaussian 
white noise characterized by zero mean and normal distribution. 

The special interest of the Brownian process for economic analysis and 
finance originates in the fact that, at about the same time with Langevin and 
Einstein, Bachelier [25], observed that the output of industrial and financial 
processes registered at constant time intervals generates a data sequence very 
similar to a Brownian motion time series. 
 Later, at mid 20-th Century, Mandelbrot [2,3,21] defined the so called 
“fractional Brownian motion” characterized by Hurst exponents with values in the 
interval (0,1), extensively used as models for financial processes. 
 For a fractional Brownian motion of index 0 < H < 1, Eq. (4) becomes 

( )HtΔ~σ      (6) 
with H=1/2 for regular Brownian motion.  

 The Hurst exponent refers to aspects related to the memory of the process. 
Thus, if 15.0 << H , the system is characterized by long-memory effects 
demonstrating persistence (an incresing is more likely to be followed by another 
incresing than by a decreasing) while systems with 5.00 << H  are antipersistent 
(an incresing is more likely to be followed by a decreasing than by another 
increasing). The Hurst exponent can be conceived as measure for the degree of 
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irregularity of the graph of a time series: a large value of H corresponds to a time 
series with a graph smoother than another one characterized by lower value of  H. 

3. New method to estimate the Hurst exponent  

In this analysis we introduce a method for estimation of the Hurst 
exponent for any particular time series, based on Eq. (6). The same equation was 
used in [24] but in a different type of analysis. We consider the following 
procedure. Let’s consider a financial time series expressed as Nxxx ,, ,21 . 
Initially, the series of variation for a delay of one time step is computed according 
to the relationship 

( ) ( )1,2,11
1 −=−= + Nnxxy nnn    (7) 

This is generalized to a delay of an arbitrary number k of time steps  
( ) ( )kNnxxy nkn
k

n −=−= + ,2,1 .   (8) 
In the following, instead of “variation for a delay of k time steps” for short, the 
name “(delayed) return”, will be adopted. Then, the series of log-returns which, in 
financial analysis are usually called  “returns” is generated according to  

( ) ( )1,2,1loglog 1
1 −=−= + Nnxxz nnn    (9) 

and generalized for an arbitrary k step delay 
( ) ( )kNnxxz nkn
k

n −=−= + ,2,1loglog .   (10) 
Subsequently, the standard deviation for the obtained series is  : 

( ) ( ) ( )( )∑ −
−

=σ
n
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where the average values (the means) are given by  
( ) ( ) ( ) ( ) ( )kNnz

kN
zy

kN
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k
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k
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k
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k −=
−

=
−

= ∑∑ ,,2,11and,1   (12) 

respectively. 
 With increasing the k, the (log-)return series show larger and larger 
fluctuations or equivalently fatter and fatter frequency distributions (histograms). 
If in the absence of averaging requested by Eq. (4) the dependence of this 
increasing on the delay is power law type, then, the graph ( )k

yσlog  versus klog  
will be a straight line and the value of the Hurst exponent is computed as its slope. 

4. Results and discussions 

 In order to apply Eq.(6) we make a graph of )(log k
yσ  versus klog  for all 

considered values of k, including k=1. The graph corresponding to the ROL/EUR 
exchange rate time series is presented in figure 1.  
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Fig.1. Graph for computation of Hurst exponent as slopes of the log σ versus log k curves: 

H(returns)=0.568; H(log-returns)=0.565 
 
 As for a given series, ( ) ( )k

z
k

y σσ  is a number, it is to be expected that the 
same type of dependence (6) should be satisfied when the standard deviation of 
the return series is replaced by the standard deviation of the log-returns one, 
certainly with a different proportionality constant. Intuitively, it is clear that the 
results obtained using the two types of return should be consistent, because the 
distribution of the data in the two wings of the frequency distribution is the same 
and this is related to the persistence in the series [26]. Figure 1 illustrates this 
situation. At the same time it shows that the graph is with very good 
approximation a straight line with equal slope, in support of our hypothesis. This 
demonstrates that by the proposed method, the Hurst exponent can be computed 
using either the returns series or the log-returns one. 
 Next, we applied the method for the exchange rate time series of ROL, 
CZK, GBP and SEK versus EUR and Versus USD, using the associated log-
returns series. The results are graphically presented in Fig.2 for the following 
values of the delay: k=1, 2, 5, 10, 20, and 50. We observe that in all cases the 
graph of ( )k

yσlog  versus klog  is extremely well approximated as a linear 
dependence. According to the theoretical aspects previously presented, the slope 
of the line has to be interpreted as the value of the Hurst exponent of the nx  
series. The numerical results are synthesized in Table 1.  
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Fig.1. Graphs for computation of Hurst exponent as slopes of the log σ versus log k 
curves for eight exchange rate time series as specified on each graph 

 
We can observe two different situations: in the case of the two former 

socialist countries, the Hurst exponent for the exchange rate against Euro is 
smaller than the Hurst exponent for the exchange rate versus USD while, for the 
two analyzed western countries the Hurst exponent has the same value, within 
computational errors, irrespective of the currency versus which the exchange rate 
is considered. This can be interpreted as consequence of the attitude of the 
respective economic-financial community towards the two reference currencies. 

5. Volatility and computation of volatility for specified time horizon 

 A measure of risk is based on the volatility (standard deviation) of the 
asset log-return series. In finance, volatility is a statistical measure for the 
tendency of a security's price to change over time. For technical reasons, volatility 
is usually computed based on log-return rather than return series computed for a 
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one time step delay. For example, volatility appears in option pricing formulas, 
where it quantifies the variability of the underlying asset return from now to the 
expiration of the option.  

In most applications based on time series analysis, volatility is estimated 
for particular time horizons such as a day, a month or a year. The historic 
volatility for a time series representing daily data is denoted 1σ  and is also known 
as daily volatility. If we are interested in the volatility for a time horizon of T days 
then, according to equation (6) this is computed as 

H
T T1σσ =      (13) 

where, for simplicity’s sake, 21=H  is frequently considered. 
For a time horizon of one year, the annualized volatility is given by Eq. 

(13) with dNT =  - the average number of trading days in a year. It is well 
established that many financial time series are better approximated as fractional 
Brownian motion of a certain index H. In this case, the power in the time horizon 
volatility (13) must be computed using the corresponding H. The right-most 
column of Table 1 presents the annualized volatility computed considering that 
the average number of trading days in a year is 252=dN . 
 

Table 1– Computational results (maximum delay k=50) 
 

Series Slope Intercept  Annualized 
volatility 

ROL/EUR 0.468 -2.60 0.00251 0.0334
ROL/USD 0.565 -2.61 0.00245 0.0557
CZK/EUR 0.452 -2.63 0.00234 0.0284 
CZK/USD 0.564 -2.59 0.00257 0.0581 
GBP/EUR 0.532 -2.64 0.00229 0.0433 
GBP/USD 0.528 -2.61 0.00245 0.0454 
SEK/EUR 0.523 -2.85 0.00141 0.0254
SEK/USD 0.524 -2.59 0.00257 0.0466

 
 In order to find out the range of acceptable delays we computed two 
additional points, for delays of 100 and 150. While the point corresponding to the 
k=100 is well situated along the line defined by the previous points, the point for 
the delay 150 is slightly but visibly off this line. It is to be concluded that for very 
good results, the maximal value of the delay should not exceed 2% of the length 
of the analyzed series. 
 For estimation of the value of the computed Hurst exponents for 
prediction, a number of 300 Brownian series with the same length of slightly over 
5000 data were generated, and their Hurst exponent computed using the proposed 
method. We found a distribution of frequencies close to Gaussian with average 
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496.0=aveH  and standard deviation 032.0=Hσ . It means that Hurst exponents 
of the analyzed series in the interval between 0.464 and 0.528, with probability of 
68.3% coincide with Hurst exponent for totally uncorrelated series. As seen from 
Table 1, the Hurst exponent of some of the analyzed series are outside this 
interval, indicating the presence of a limited degree of correlation. 

6. Conclusion 

Computing of Hurst exponent of a time series gives valuable information 
on the predictability in the process that generated it. 

The new method presented in this work is based on the analysis of the 
dependence of log-returns on the delay. The Hurst exponent for each time series is 
computed as the slope of the linear fit of the log-log graph of the standard 
deviation (volatility) of the log-returns series versus the time delay. We think that 
the very good approximation as a straight line of this graph is due to some 
compensation for the absence of the averaging in Eq.(6) given by computation of 
returns for the entire original series. The method can be applied to any type of 
time series however, for time series that also contain negative data only the 
analysis based on returns is accessible.  

Application to financial time series shows that the behavior for each 
currency rate can be correlated with the characteristics of the corresponding 
economical system. The foreign exchange time series for the two former socialist 
countries are different from the Western countries. The ROL and CZK exchange 
rates are slightly predictable while GBP and SWK exchange rates present no 
predictability. Also while the rate of former socialist countries against USD shows 
some persistence, their rate against EUR are slightly anti-persistent.  

Application of the results of the analysis to the study of risk management, 
particularly to the FOREX trade is of interest. In this context volatility refers to 
the amount of uncertainty or risk involved with the size of changes in a currency 
exchange rate. As high volatility means that the price of the currency can change 
dramatically over a short time period in either direction, volatility is often used to 
quantify the risk of the currency pair over the time period of interest. The higher 
the volatility, the riskier the trading of the currency pair is. 

Volatility is usually considered a negative as it represents uncertainty and 
risk. However, higher volatility can make FOREX trading more attractive to the 
market players. High volatility markets are especially interesting to traders 
looking for immediate profit, while for long term, buy and hold investors, it is a 
discouraging factor. In the FOREX trading, usually shorter time horizons are of 
interest, such as a few days, a week or a month.  

We found good consistency of the proposed method for Hurst exponent 
computation with the detrended fluctuation analysis method. However, its the 
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consistency with other methods and the applicability to other types of time series 
will be presented in another paper. 
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