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A SHORT NOTE ON APPROXIMATIONS IN A RING BY USING

A NEIGHBORHOOD SYSTEM AS A GENERALIZATION OF

PAWLAK’S APPROXIMATIONS

Bijan Davvaz1

Let R be a ring. We consider the relation α and its transitive closure
α∗. The relation α is the smallest equivalence relation on R so that R/α∗ is a
commutative ring. Based on the relation α, we define a neighborhood system for
each element of R, and we present a general framework of the study of approxi-
mations in rings. The connections between rings and operators are examined.
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1. Introduction

We are familiar with the binary operations of addition and multiplication
among many objects that appear in applied mathematics: complex numbers, square
matrices with entries in a field, real or complex valued functions defined on a set,
polynomials and power series with coefficients in a field, integers with modular
arithmetic, etc. Ring theory deals with such objects. A ring R is an abelian group
with a multiplication operation (a, b) 7→ ab which is associative and satisfies the
distributive laws a(b+ c) = ab+ ab and (a+ b)c = ac+ bc. The multiplication may
or may not be commutative. This distinction yields two quite different theories:
the theory of respectively commutative or non-commutative rings. Commutative
ring theory originated in algebraic number theory, algebraic geometry, and invariant
theory. Noncommutative ring theory began with attempts to extend the complex
numbers to various hyper-complex number systems. The genesis of the theories of
commutative and noncommutative rings dates back to the early 19th century.

Rough set theory, proposed in 1982 by Pawlak [7], is in a state of constant
development. Its methodology is concerned with the classification and analysis of
imprecise, uncertain or incomplete information and knowledge, and of is considered
one of the first non-statistical approaches in data analysis. The theory has found
applications in many domains, such as decision support, engineering, environment,
banking, medicine and others. The theory of rough set is an extension of set theory,
in which a subset of a universe is described by a pair of ordinary sets called the
lower and upper approximations. A key notion in Pawlak rough set model is an
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equivalence relation. In Pawlak rough sets, the equivalence classes are the build-
ing blocks for the construction of the lower and upper approximations. The lower
approximation of a given set is the union of all the equivalence classes which are
subsets of the set, and the upper approximation is the union of all the equivalence
classes which have a non-empty intersection with the set. Lin [8] proposed a more
general framework for the study of approximation operators by using the so-called
neighborhood systems from a topological space. In a neighborhood system, each
element of a universe is associated with a family of subsets of the universe. This
family is called a neighborhood system of the element, and each member in the
family is called a neighborhood of the element. Any subset of the universe can be
approximated based on neighborhood systems of all elements in the universe, also
see [9]. Davvaz et al [1, 2, 3, 5, 6, 10, 11] studied relationships between ring theory
and rough sets. In [4], Davvaz considered the relation γ and its transitive closure γ∗

on a semigroup. The relation γ is the smallest equivalence relation on S so that S/γ∗

is a commutative semigroup. Based on the relation γ, he defined a neighborhood
system for each element of S, and presented a general framework of the study of
approximations in semigroups.

2. α-relation on rings

Definition 2.1. Let R be a ring. A congruence relation ρ on R is an equivalence
relation that satisfy

r1 + s1 ρ r2 + s2 and r1s1 ρ r2s2,

whenever r1ρr2 and s1ρs2.
For a congruence on a ring, the equivalence class containing 0 is always a

two-sided ideal, and the two operations on the set of equivalence classes define the
corresponding quotient ring.

Lemma 2.1. Let R be a ring and ρ be an equivalence relation on R. Then, ρ is a
congruence relation on R if and only if for every x, y, a ∈ R,

xρy ⇒
{

x+ a ρ y + a, a+ x ρ a+ y,
x · a ρ y · a, a · x ρ a · y.

Proof. It is straightforward. �

Definition 2.2. Let R be a (non-commutative) ring. We define the relation α as
follows:
x α y ⇐⇒ ∃n ∈ N, ∃(k1, . . . , kn) ∈ Nn and [∃(xi1, . . . , xiki) ∈ Rki, ∃σi ∈ Ski ,
(i = 1, . . . , n)] such that

x =
n∑

i=1
(
ki∏
j=1

xij) and y =
n∑

i=1
(
ki∏
j=1

xiσi(j)).

The relation α is reflexive and symmetric. Let α∗ be the transitive closure of
α.

Theorem 2.1. α∗ is a congruence relation on R.



A short note on approximations in a ring by using a neighborhood system 79

Proof. If xαy, then ∃n ∈ N, ∃(k1, . . . , kn) ∈ Nn, and [∃(xi1, . . . , xiki) ∈ Rki , ∃σi ∈
Ski , (i = 1, . . . , n)] such that

x =
n∑

i=1
(
ki∏
j=1

xij) and y =
n∑

i=1
(
ki∏
j=1

xiσi(j)).

and so

x+ a =
n∑

i=1
(
ki∏
j=1

xij) + a and y + a =
n∑

i=1
(
ki∏
j=1

xiσi(j)) + a.

Now, let kn+1 = 1, xn+1 1 = a, σn+1 = id. Thus,

x+ a =
n+1∑
i=1

(
ki∏
j=1

xij) and y + a =
n+1∑
i=1

(
ki∏
j=1

xiσi(j)).

Therefore, x+ a α y+ a. In the same way, we can show that a+ x α a+ y. Now, it
is easy to see that

x+ a α∗ y + a and a+ x α∗ a+ y.

Now, note that

xa =
( n∑
i=1

(
ki∏
j=1

xij)
)
a and ya =

( n∑
i=1

(
ki∏
j=1

xiσi(j))
)
a,

which yields that

xa =
n∑

i=1

(
(
ki∏
j=1

xij)a
)

and ya =
n∑

i=1

(
(
ki∏
j=1

xiσi(j))a
)
.

We put k′i = ki + 1, xik′i = a and define τi(r) = σi(r) for all r = 1, . . . , ki and

τi(ki + 1) = ki + 1. In this case, τi ∈ Sk′i (i = 1, . . . , n). Thus,

xa =
n∑

i=1
(
k′i∏
j=1

xij) and ya =
n∑

i=1
(
k′i∏
j=1

xiτi(j)).

Therefore, xa α ya and so xa α∗ ya. Similarly, we obtain ax α∗ ay. This completes
the proof. �

We define ⊕ and ⊙ on R/α∗ in the usual manner:

α∗(a)⊕ α∗(b) = α∗(a+ b),
α∗(a)⊙ α∗(b) = α∗(ab).

Corollary 2.1. The quotient R/α∗ is a commutative ring.

Proof. Since α∗ is a congruence relation, R/α∗ is a ring. Suppose that σ is the
permutation of S2 such that σ(1) = 2. Clearly, we have x1x2 α xσ(1)xσ(2). Then,
x1x2 α∗ xσ(1)xσ(2). Therefore, R/α∗ is a commutative ring. �

Theorem 2.2. The relation α∗ is the smallest equivalence relation such that the
quotient R/α∗ is a commutative ring.
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Proof. Let θ be an equivalence relation such that R/θ is a commutative ring and
let φ : R −→ R/θ be the canonical projection. If xαy, then there exist n ∈ N,
(k1, . . . , kn) ∈ Nn and there exist (xi1, . . . , xiki) ∈ Rki and σi ∈ Ski (i = 1, . . . , n)
such that

x =
n∑

i=1
(
ki∏
j=1

xij) and y =
n∑

i=1
(
ki∏
j=1

xiσi(j)).

Hence,

φ(x) =
n∑

i=1
(
ki∏
j=1

φ(xij)) and φ(y) =
n∑

i=1
(
ki∏
j=1

φ(xiσi(j))).

By the commutativity of R/θ, it follows that φ(x) = φ(y). Thus xαy implies that
xθy. Finally, let xα∗y. Then, there exist z1, . . . , zm ∈ R such that x = z1αz2, z2αz3,
. . ., zn−1αzn = y, and so x = z1θz2, z2θz3, . . ., zn−1θzn = y

Since θ is transitively closed, we obtain xθy. Hence,

x ∈ α∗(y) =⇒ x ∈ θ(y).

Therefore α∗ ⊆ θ. �

3. Neighborhood operators

Definition 3.1. For the relation α on R and a positive integer k, we now define a
notion of binary relation αk called the k-step-relation of α as follows:

(1) α1 = α,
(2) αk = {(x, y) ∈ R×R | there exist y1, y2, . . . , yi ∈ R, 1 ≤ i ≤ k − 1, such that

xαy1, y1αy2, . . ., yiαy} ∪ α1, k ≥ 2.

It is easy to see that

αk+1 = αk ∪ { (x, y) ∈ R×R | there exist y1, . . . , yk ∈ R, such that
xαy1, y1αy2, . . . , ykαy}.

Obviously, αk ⊆ αk+1, and there exists n ∈ N such that αk = αn for all k ≥ n.
(In fact αn = α∗ is nothing else but the transitive closure of α). Of course α∗ is
transitive. The relation αk can be conveniently expressed as a mapping from R to
℘(R), Nk(x) = {y ∈ R | xαky} by collecting all αk-related elements for each element
x ∈ R. The set Nk(x) may be viewed as a αk-neighborhood of x defined by the binary
relation αk.

Based on the relation αk on R, we can obtain a neighborhood system for each
element x: {Nk(x) | k ≥ 1}. This neighborhood system is monotonically increasing
with respect to k. We can also observe that

Nk(x) = {y ∈ R | there exist y1, y2, . . . , yi ∈ R such that xαy1, y1αy2, . . . , yiαy,
1 ≤ i ≤ k − 1, or xαky}.

If A and B are non-empty subsets of a ring R, then A + B = {a + b | a ∈
A, b ∈ B} and AB denote the set of all finite sums {a1b1 + a2b2 + . . . + anbn| n ∈
N, ai ∈ A, bi ∈ B}.

Theorem 3.1. For each a, b ∈ R and natural numbers k, l we have

Nk(a) +Nl(b) ⊆ Nk+l−1(a+ b).



A short note on approximations in a ring by using a neighborhood system 81

Proof. Suppose that x ∈ Nk(a) + Nl(b). Then there exist a′ ∈ Nk(a) and b′ ∈
Nl(b) such that x = a′ + b′. Since a′ ∈ Nk(a), then a′αka and so there exist
{x1, . . . , xk+1} ⊆ R with x1 = a′, xk+1 = a such that x1 α x2, x2 α x3, . . .,
xk α xk+1. Hence, for t = 1, . . . , k,

xt α xt+1 ⇔ ∃nt ∈ N, ∃(ht1, . . . , htnt) ∈ Nnt and [∃(uti1, . . . , utihti
) ∈ Rhti ,

∃σi ∈ Shti
, (i = 1, . . . , nt)] such that

xt =
nt∑
i=1

(
hti∏
j=1

utij) and xt+1 =
nt∑
i=1

(
hti∏
j=1

utiσi(j)).

Also, since b′ ∈ Nl(b), then b′ αl b and so there exist {y1, . . . , yl+1} ⊆ R with
y1 = b′, yl+1 = b such that y1 α y2, y2 α y3, . . ., yl α yl+1. Hence, for s = 1, . . . , l,

ys α ys+1 ⇔ ∃ms ∈ N, ∃(h′s1, . . . , h′sms
) ∈ Nms and [∃(vsi1, . . . , vsih′

si
) ∈ Rh′

si ,

∃σi ∈ Sh′
si
, (i = 1, . . . ,ms)] such that

ys =
ms∑
i=1

(
h′
si∏

j=1
vsij) and ys+1 =

ms∑
i=1

(
h′
si∏

j=1
vsiσi(j)).

Therefore, we obtain

xt + y1 =
nt∑
i=1

(
hti∏
j=1

utij) +
m1∑
i=1

(
h′
1i∏

j=1
v1ij),

xt+1 + y1 =
nt∑
i=1

(
hti∏
j=1

utiσi(j)) +
m1∑
i=1

(
h′
1i∏

j=1
v1ij),

and

xk+1 + ys =
nk∑
i=1

(
hki∏
j=1

ukiσi(j)) +
ms∑
i=1

(
h′
si∏

j=1
vsij),

xk+1 + ys+1 =
nk∑
i=1

(
hki∏
j=1

ukiσi(j)) +
ms∑
i=1

(
h′
si∏

j=1
vsiσi(j)).

If we pick up elements z1, . . . , zk+l such that

zi = xi + y1, i = 1, . . . , k,
zk+j = xk+1 + yj+1, j = 1, . . . , l.

Then, z1 α
k+l−1 zm+1. So x = a′+b′ = x1+y1 α

k+l−1 xk+1+yl+1 = a+b. Therefore
x ∈ Nk+l−1(a+ b). �

For a neighborhood operator Nk on R, we can extend Nk from ℘(R) to ℘(R)
by: Nk(X) =

∪
x∈X

Nk(x) for all X ⊆ R. So, we can directly deduce that

Proposition 3.1. We have

(1) A ⊆ B ⇒ Nk(A) ⊆ Nk(B),
(2) for all k, l ≥ 1, we have Nl(Nk(x)) ⊆ Nl+k(x).
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4. Approximation operators

If θ∗ is a congruence relation on R such that R/θ∗ is a commutative ring, then
α∗ ⊆ θ∗.

Let R be a ring and A be a non-empty subset of R. We define the lower and
upper approximations of A with respect to α∗ as follows:

α∗(A) = {x ∈ S | α∗(x) ⊆ A} and α∗(A) = {x ∈ S | α∗(x) ∩A ̸= ∅}.
Similarly, we can define the lower and upper approximations of A with respect to
η∗. In this case, we have

θ∗(A) ⊆ α∗(A) ⊆ A ⊆ α∗(A) ⊆ θ∗(A).

In [1], Davvaz gave some properties of the lower and upper approximations
with respect to an ideal of a ring, also see [2, 3, 6]. Since α∗ is a congruence relation,
all the results in [1] are true for the relation α∗.

Definition 4.1. For the relation α, by substituting equivalence class α∗(x) with αk-
neighborhood Nk(x) in the previous definition, we can define a pair of lower and
upper approximation operators with respect to Nk as follows:

apr
k
(A) = {x ∈ R | Nk(x) ⊆ A} and aprk(A) = {x ∈ R | Nk(x) ∩A ̸= ∅}.

The set apr
k
(A) consists of those elements whose αk-neighborhoods are con-

tained in A, and aprk(A) consists of those elements whose αk-neighborhoods have
a non-empty intersection with A.

Proposition 4.1. If A is a non-empty subset of R, then we have

(1) apr
k+1

(A) ⊆ apr
k
(A),

(2) aprk(A) ⊆ aprk+1(A).

Therefore:

Corollary 4.1. We have∪
{x | x ∈ α∗(A)} =

∩
k

apr
k
(A) and

∪
{x | x ∈ α∗(A)} =

∪
k

aprk(A).

Proposition 4.2. If A and B are non-empty subsets of R, then the pair of approx-
imation operators satisfies the following properties:

(1) apr
k
(A) ⊆ A ⊆ aprk(A),

(2) apr
k
(A) = (aprk(A

c))c,

(3) aprk(A) = (apr
k
(Ac))c,

(4) apr
k
(A ∩B) = apr

k
(A) ∩ apr

k
(B),

(5) aprk(A ∪B) = aprk(A) ∪ aprk(B),
(6) apr

k
(A ∪B) ⊇ apr

k
(A) ∪ apr

k
(B),

(7) aprk(A ∩B) ⊆ aprk(A) ∩ aprk(B),
(8) A ⊆ B =⇒ apr

k
(A) ⊆ apr

k
(B),

(9) A ⊆ B =⇒ aprk(A) ⊆ aprk(B).

Proof. It is straightforward. �
Theorem 4.1. Let A be a non-empty subset of R. For all k ≥ l ≥ 1, we have
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(1) A ⊆ apr
l
(aprk(A)),

(2) aprl(aprk(A)) ⊆ A.

Proof. (1) Suppose that a ∈ A. If Nl(a) = ∅. Then it is clear that Nl(a) ⊆ aprk(A),
which implies that a ∈ apr

l
(aprk(A)), and so A ⊆ apr

l
(aprk(A)). If Nl(a) ̸= ∅,

then for each b ∈ Nl(a), we have a ∈ Nl(b). Hence, Nl(b) ∩ A ̸= ∅. Now, we have
b ∈ aprl(A), and by Proposition 4.1, we obtain b ∈ aprk(A). Therefore Nl(a) ⊆
aprk(A), which implies that a ∈ apr

l
(aprk(A)), and so A ⊆ apr

l
(aprk(A)).

(2) Suppose that a ∈ aprl(aprk(A)). Then, we have Nl(a)∩ apr
k
(A) ̸= ∅, and

so there exists b ∈ Nl(a) ∩ apr
k
(A). Therefore a ∈ Nl(b) and Nk(b) ⊆ A. Hence

a ∈ Nl(b) ⊆ Nk(b) ⊆ A, and so we conclude that aprl(aprk(A)) ⊆ A. �

Theorem 4.2. For all k, l ≥ 1 and A ⊆ R, we have

(1) apr
l+k

(A) ⊆ apr
l
(apr

k
(A)),

(2) aprl+k(A) ⊇ aprl(aprk(A)).

Proof. (1) Suppose that a ∈ apr
l+k

(A). Then Nl+k(a) ⊆ A. Using Proposition 3.1,

we have Nk(Nl(a)) ⊆ Nk+l(a) ⊆ A, which implies that Nl(a) ⊆ apr
k
(A). Therefore,

a ∈ apr
l
(apr

k
(A)).

(2) Suppose that a ∈ aprl(aprk(A)). Then Nl(a) ∩ aprk(A) ̸= ∅, and so there
exists b ∈ Nl(a) ∩ aprk(A). Since b ∈ aprk(A), then Nk(b) ∩A ̸= ∅. Now, we have

∅ ̸= Nk(b) ∩A ⊆ Nk(Nl(a)) ∩A ⊆ Nl+k(a) ∩A,

and so Nl+k(a) ∩A ̸= ∅, which implies that a ∈ aprl+k(A). �
Theorem 4.3. If A,B are non-empty subsets of R, then

aprk(A) + aprl(B) ⊆ aprk+l−1(A+B).

Proof. Suppose that z be any element of aprk(A) + aprl(B). Then, there exist
x ∈ aprk(A) and y ∈ aprl(B) such that z = x + y. Since x ∈ aprk(A) and y ∈
aprl(B), then there exist a, b ∈ R such that a ∈ Nk(x) ∩ A and b ∈ Nl(y) ∩ B. So,
a ∈ Nk(x) and b ∈ Nl(y). By Theorem 3.1, we have Nk(x) + Nl(y) ⊆ Nk+l−1(z).
Since a+b ∈ A+B, we obtain a+b ∈ Nk+l−1(z)∩A+B, and so z ∈ aprk+l−1(A+B).
This completes the proof. �
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