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FIXED POINT APPROACH THROUGH SIMULATION FUNCTION AND

ASYMPTOTIC REGULARITY

Kushal Roy1

In this paper, we have introduced a new contractive mapping known as Z-

Proinov-Górnicki contractive mapping as a generalization of Kannan contractive map-

ping. Also some fixed point and common fixed point theorems have been proved for such

type of mapping in the setting of metric space via asymptotic regularity and weak conti-

nuity. Our results extend and improve some theorems of other researchers available in

several literatures. Finally this paper has been furnished by some examples that support

our proven theorems.
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1. Introduction and Preliminaries

The definition of simulation function was given by Khojasteh et al. (see [7]). Such

functions have been used in the contractive type mapping known as Z−contraction intro-

duced by Khojasteh et al. in the year 2015.

Definition 1.1. [7] A function ζ : [0,∞)2 → R is called simulation function, if it satisfies

the following conditions:

(ζ1) ζ(0, 0) = 0,

(ζ2) ζ(t, s) < s− t for all s, t > 0,

(ζ3) If {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,

then lim supn→∞ ζ(tn, sn) < 0.

Here we give an example of simulation function.

Example 1.1. [7] (i) Let ζ1 : [0,∞)2 → R be defined by

ζ1(t, s) =
s

s+ 1
− t for all t, s ∈ [0,∞). (1)

(ii) Also let ζ2 : [0,∞)2 → R be given by

ζ2(t, s) = s− φ(s)− t for all t, s ∈ [0,∞), (2)

where φ : [0,∞) → [0,∞) is a continuous function such that φ(t) = 0 if and only if t = 0.

Then ζ1, ζ2 are simulation functions.

Another examples of simulation functions can be found in [4], [12].
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Definition 1.2. [7] A self mapping T on a metric space (X, d) is said to be Z−contraction

if there exists a simulation function ζ such that for all x, y ∈ X, ζ(d(Tx, Ty), d(x, y)) ≥ 0.

Theorem 1.1. [7] Let (X, d) be a complete metric space and T : X → X be a Z−contraction

with respect to some simulation function ζ. Then T has a unique fixed point in X.

Recently Radenović et al. [12] have extended and improved some results on simulation

functions established by several authors. By using the following Lemma they have got much

shorter proofs than the corresponding ones given in the literature.

Lemma 1.1. [12] Let {xn} be a sequence in a metric space (X, d) such that limn→∞

d(xn, xn+1) = 0. If {xn} is not a Cauchy sequence in X then there exists ϵ > 0 and two

sequences {mk}, {nk} of positive integers such that nk > mk > k and such that the following

sequences

{d(xmk
, xnk

)}, {d(xmk
, xnk+1)}, {d(xmk−1, xnk

)}, {d(xmk−1, xnk+1)},

{d(xmk+1, xnk+1)} (3)

converge to ϵ as k → ∞.

Recently J. Górnicki [9] studied a new class of contractive mappings and proved a fixed

point theorem for such mappings over metric spaces with assumption of continuity, which

is given as follows. It is to be noted that asymptotic regularity [2, 1] has been assumed for

these mappings in all over the metric space.

Theorem 1.2. [9] In a complete metric space (X, d) a continuous and asymptotically regular

map T : X → X satisfying

d(Tx, Ty) ≤ αd(x, y) +K {d(x, Tx) + d(y, Ty)} for all x, y ∈ X (4)

for some α ∈ [0, 1) and for some K ≥ 0 has a unique fixed point u ∈ X and for each x ∈ X,

Tnx → u as n → ∞.

Bisht [3] replaced the assumption of continuity in Theorem 1.2 by a weaker version

of continuity condition like orbital continuity or k-continuity (For definitions of orbital con-

tinuity and k-continuity one may refer [3]).

Panja et al. [10] have generalized the contractive condition (4) and have introduced

a new type of contractive mapping called Ćirić-Proinov-Górnicki type mapping.

Let us consider the class F of all functions F : [0,∞)× [0,∞) → [0,∞) satisfying the

following conditions:

(i) F (0, 0) = 0, (ii) F is continuous at (0, 0).

Definition 1.3. [10] In a metric space (X, d) a mapping T : X → X is said to be Ćirić-

Proinov-Górnicki type mapping if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αmax{d(x, y), d(x, Ty), d(y, Tx)}+ F (d(x, Tx), d(y, Ty)) (5)

for all x, y ∈ X and for some F ∈ F.

Theorem 1.3. [10] Let (X, d) be a complete metric space and T : X → X be asymptotically

regular Ćirić-Proinov-Górnicki type mapping. Then T has a unique fixed point provided

either T is k-continuous for k ≥ 1 or T is orbitally continuous.
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Definition 1.4. In a metric space (X, d), let T, S : X → X be two mappings. Then,

(i) T is said to be asymptotic regular with respect to S at a point x0 ∈ X [15] if

there exists a sequence {xn}n=0,1,··· in X such that Txn = Sxn+1 for all n = 0, 1, · · · and

d(Sxn+1, Sxn+2) → 0 as n → ∞.

(ii) Let {xn} be a sequence in X such that Txn = Sxn+1 for all n = 0, 1, · · · and

Txn → z as n → ∞ for some z ∈ X. Then T (resp. S) is said to be (T, S)-orbitally

continuous [11] if TTxn → Tz as n → ∞ (resp. STxn → Sz as n → ∞).

Definition 1.5. [5] In a metric space (X, d), two maps T, S : X → X are said to be compat-

ible if limn→∞ d(TSxn, STxn) = 0, whenever {xn} is a sequence in X with limn→∞ Txn =

limn→∞ Sxn = u, for some u ∈ X.

Roy et al. [14] have recently proved two common fixed point theorems using the

contractive condition (5) which are given below.

Theorem 1.4. [14] Let (X, d) be a complete metric space and T, S : X → X be two

asymptotically regular mappings satisfying

d(Tx, Sy) ≤ λmax{d(x, y), d(x, Sy), d(y, Tx)}+ F (d(x, Tx), d(y, Sy)) (6)

for all x, y ∈ X, for some λ ∈ [0, 1) and for some F ∈ F. Then T and S have a unique

common fixed point in X, provided T and S are either k-continuous for some k ≥ 1 or

orbitally continuous.

Theorem 1.5. [14] Let X, d) be a complete metric space and T, S : X → X be two mappings

such that T is asymptotic regular with respect to S at a point x0 ∈ X and satisfy the following

condition

d(Tx, Ty) ≤ λmax {d(Sx, Sy), d(Tx, Sy), d(Sx, Ty)}+ F (d(Tx, Sx), d(Ty, Sy)) (7)

for all x, y ∈ X, for some λ ∈ [0, 1) and for some F ∈ F. Then T and S have a unique

common fixed point in X, provided T and S are (T, S)-orbitally continuous and compatible.

2. Some fixed point and common fixed point theorems for Górnicki con-

tractive type mappings

In this section we introduce a new generalized Kannan type contractive mapping

with the help of simulation functions. In the following we denote the set of all simulations

functions as S.

Definition 2.1. Let (X, d) be a metric space and T : X → X be a mapping. Then T is said

to be Z-Proinov-Górnicki contractive mapping if

ζ(d(Tx, Ty), d(x, y)) +K[d(x, Tx) + d(y, Ty)] ≥ 0 for all x, y ∈ X, (8)

where ζ ∈ S and K ≥ 0.

Example 2.1. (a) Let us consider X = [0,+∞) endowed with the usual metric of reals.

Also let T : X → X be given by

Tx =
x

x+ 1
for all x ∈ X. (9)

Then T is a Z-Proinov-Górnicki contractive mapping for the simulation function ζ1 defined

by ζ1(t, s) =
s

s+1 − t for all t, s ≥ 0 but not usual Górnicki type contractive mapping.
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(b) Let us consider X = [0,+∞) endowed with the usual metric of reals and T : X →
X be given by

Tx =
x

x2 + 1
for all x ∈ X. (10)

Then T is a Z-Proinov-Górnicki contractive mapping for the simulation function ζ3 defined

by ζ3(t, s) =
s√

s2+1
−t for all t, s ∈ [0,+∞) but not usual Górnicki type contractive mapping.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be a Z-Proinov-

Górnicki contractive mapping. If T is asymptotically regular and additionally k-continuous

or orbitally continuous then T has a unique fixed point in X.

Proof. Let x0 ∈ X be chosen as arbitrary and consider the Picard iterating sequence {xn}
in X defined by xn = Tnx0 for all n ≥ 1. Since T is asymptotically regular it follows that

limn→∞ d(xn, xn+1) = 0. If {xn} is not Cauchy then by Lemma 1.1 we see that there exists

ϵ > 0 and two sequences {mk}, {nk} of positive integers such that nk > mk > k and the

sequences {d(xmk
, xnk

)}, {d(xmk
, xnk+1)}, {d(xmk−1, xnk

)},
{d(xmk−1, xnk+1)}, {d(xmk+1, xnk+1)} converge to ϵ as k → ∞. Now from the contractive

condition (8) we have

ζ(d(xmk+1, xnk+1), d(xmk
, xnk

)) +K[d(xmk
, xmk+1) + d(xnk

, xnk+1)] ≥ 0

for all k ∈ N. (11)

Taking k → ∞ we get,

lim
k→∞

ζ(d(xmk+1, xnk+1), d(xmk
, xnk

)) ≥ 0. (12)

Now since limk→∞ d(xmk
, xnk

) = ϵ = limk→∞ d(xmk+1, xnk+1). So by the property (ζ3) of

ζ we obtain

lim
k→∞

ζ(d(xmk+1, xnk+1), d(xmk
, xnk

)) < 0, (13)

which leads us to a contradiction. Therefore {xn} must be Cauchy sequence in X. By

the completeness of X it follows that {xn} converges to some u ∈ X. Since T is either

k-continuous or orbitally continuous in X, implies that Tu = u. Let u and v be two fixed

points of T . Then

ζ(d(Tu, Tv), d(u, v)) +K[d(u, Tu) + d(v, Tv)] ≥ 0, (14)

which implies that ζ(d(u, v), d(u, v)) ≥ 0. If u ̸= v then by the property (ζ2) of ζ we have

0 ≤ ζ(d(u, v), d(u, v)) < d(u, v)− d(u, v) = 0, which is not possible. (15)

Hence T has a unique fixed point in X. □

Theorem 2.2. Let (X, d) be a complete metric space and T, F : X → X be two mappings

such that T is asymptotic regular with respect to F at x0 ∈ X and satisfy the following

condition

ζ(d(Tx, Ty), d(Fx, Fy)) +K[d(Fx, Tx) + d(Fy, Ty)] ≥ 0 for all x, y ∈ X, (16)

for all x, y ∈ X, for some K ≥ 0 and for some ζ ∈ S. Then T and F have a unique common

fixed point provided T and F are (T, F )-orbitally continuous and compatible.
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Proof. Since T is asymptotic regular with respect to F at x0 ∈ X, so there exists a sequence

{xn} inX such that Txn = Fxn+1 = hn (say) for all n = 0, 1, 2, · · · and d(Fxn+1, Fxn+2) →
0 as n → ∞, i.e., d(hn, hn+1) → 0 as n → ∞.

First we will show that hn is a Cauchy sequence in X. If {hn} is not Cauchy then by

Lemma 1.1 we see that there exists ϵ > 0 and two sequences {mk}, {nk} of positive integers

such that nk > mk > k and the sequences {d(hmk
, hnk

)},
{d(hmk

, hnk+1)}, {d(hmk−1, hnk
)}, {d(hmk−1, hnk+1)}, {d(hmk+1, hnk+1)} converge to ϵ as

k → ∞. From the contractive condition (16) we have for all k ∈ N

ζ(d(Txmk+1, Txnk+1), d(Fxmk+1, Fxnk+1))+

K[d(Fxmk+1, Txmk+1) + d(Fxnk+1, Txnk+1)] ≥ 0

⇒ ζ(d(hmk+1, hnk+1), d(hmk
, hnk

)) +K[d(hmk
, hmk+1) + d(hnk

, hnk+1)] ≥ 0. (17)

Taking k → ∞ we see that

lim
k→∞

ζ(d(hmk+1, hnk+1), d(hmk
, hnk

)) ≥ 0, a contradiction. (18)

Therefore {hn} is Cauchy and completeness of X implies that there exists z ∈ X such that

hn → z as n → ∞, i.e. limn→∞ Txn = limn→∞ Fxn+1 = z.

Since T and F are (T, F )-orbitally continuous, it follows that limn→∞ T 2xn−1

= limn→∞ TFxn = Tz and limn→∞ F 2xn+1 = limn→∞ FTxn = Fz. Due to the compat-

ibility of T and F it is seen that Tz = Fz and T 2z = T (Fz) = F (Tz) = F 2z. Therefore

using the contractive condition (16) we get

ζ(d(Tz, T 2z), d(Fz, F (Tz))) +K[d(Fz, Tz) + d(F (Tz), T 2z)] ≥ 0

⇒ ζ(d(Tz, T 2z), d(Tz, T 2z)) ≥ 0. (19)

If T 2z ̸= Tz then from the property of ζ we see that

0 ≤ ζ(d(Tz, T 2z), d(Tz, T 2z)) < d(Tz, T 2z)− d(Tz, T 2z) = 0, a contradiction. (20)

Hence T 2z = F (Tz) = Tz and T and F have a common fixed point in X. Uniqueness of

common fixed point of T and F can be proved in a similar way as in Theorem 2.3. □

Theorem 2.3. Let (X, d) be a complete metric space and T, S : X → X be two mappings

satisfying

ζ(d(Tx, Sy), d(x, y)) +K[d(x, Tx) + d(y, Sy)] ≥ 0 for all x, y ∈ X, (21)

where ζ ∈ S and K ≥ 0. If T and S both are asymptotically regular and {d(Tnx0, S
nx0)} is

convergent for some x0 ∈ X, then T and S have a unique common fixed point in X, provided

T, S are either k-continuous or orbitally continuous in X.

Proof. First we show that limn→∞ d(Tnx0, S
nx0) = 0. If there exists some N ≥ 1 such that

Tnx0 = Snx0 for all n ≥ N then clearly limn→∞ d(Tnx0, S
nx0) = 0. So let {ni} ⊂ N be

such that Tnix0 ̸= Snix0 for all i ≥ 1. If limi→∞ d(Tnix0, S
nix0)

= 0 then we have nothing to prove. So let us assume that limi→∞ d(Tnix0, S
nix0)

= ϵ > 0. Now since {d(Tnx0, S
nx0)} is convergent then d(Tnx0, S

nx0) → ϵ as n → ∞.
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Therefore limi→∞ d(Tni−1x0, S
ni−1x0) = ϵ and by using the contractive condition (21) we

see that

ζ(d(Tnix0, S
nix0), d(T

ni−1x0, S
ni−1x0))+

K[d(Tni−1x0, T
nix0) + d(Sni−1x0, S

nix0)] ≥ 0 for all i ∈ N

⇒ lim sup
i→∞

ζ(d(Tnix0, S
nix0), d(T

ni−1x0, S
ni−1x0)) ≥ 0, a contradiction. (22)

Hence we have limn→∞ d(Tnx0, S
nx0) = 0. Let xn = Tnx0 for all n ≥ 1. Now we prove

that {xn} is Cauchy in X. If not then by Lemma 1.1 we see that there exists δ > 0 and

two sequences {mk}, {nk} of positive integers such that nk > mk > k and the sequences

{d(xmk
, xnk

)}, {d(xmk+1, xnk+1)} converge to δ as k → ∞. Now,

d(Tmkx0, S
nkx0) ≤ d(Tmkx0, T

nkx0) + d(Tnkx0, S
nkx0) and

d(Tmkx0, T
nkx0) ≤ d(Tmkx0, S

nkx0) + d(Snkx0, T
nkx0) for all k ≥ 1. (23)

Thus by taking k → ∞ we have limk→∞ d(Tmkx0, S
nkx0) = δ = limk→∞ d(xmk

, xnk
).

Similarly we can show that limk→∞ d(Tmk+1x0, S
nk+1x0) = δ =

limk→∞ d(xmk+1, xnk+1). Now,

ζ(d(Tmk+1x0, S
nk+1x0), d(T

mkx0, S
nkx0))+

K[d(Tmkx0, T
mk+1x0) + d(Snkx0, S

nk+1x0)] ≥ 0 for all k ≥ 1

⇒ lim sup
i→∞

ζ(d(Tmk+1x0, S
nk+1x0), d(T

mkx0, S
nkx0)) ≥ 0, a contradiction. (24)

Therefore {xn} is Cauchy in X and due to the completeness of X there exists u ∈ X such

that Tnx0 → u as n → ∞. Since limn→∞ d(Tnx0, S
nx0) = 0 we have also Snx0 → u

as n → ∞. As T, S are either k-continuous or orbitally continuous in X it follows that

Tu = u = Su i.e. u is a common fixed point of T and S in X. Now we prove the uniqueness

of the common fixed point of T and S. Let v be another common fixed point of T and S in

X then we have

ζ(d(Tu, Sv), d(u, v)) +K[d(u, Tu) + d(v, Sv)] ≥ 0, (25)

implying that 0 ≤ ζ(d(u, v), d(u, v)) < d(u, v) − d(u, v) = 0, which can not possible. Hence

T and S have a unique common fixed point in X. □

Corollary 2.1. (a) If we consider ζ(t, s) = λs− t, λ ∈ [0, 1) then the contractive condition

(2.1) reduces to

d(Tx, Ty) ≤ λd(x, y) +K[d(x, Tx) + d(y, Ty)] for all x, y ∈ X, where K ≥ 0. (26)

(b) If we take ζ(t, s) = φ(s) − t, φ : [0,∞) → [0,∞) is upper semi-continuous and

φ(s) < s then the contractive condition (2.1) reduces to

d(Tx, Ty) ≤ φ(d(x, y)) +K[d(x, Tx) + d(y, Ty)] for all x, y ∈ X, where K ≥ 0. (27)

(c) Let us put ζ(t, s) = sφ(s) − t, where φ : [0,∞) → [0, 1) is a mapping such that

lim supt→r+ φ(t) < 1, for all r > 0 then the contractive condition (2.1) reduces to

d(Tx, Ty) ≤ φ(d(x, y))d(x, y) +K[d(x, Tx) + d(y, Ty)] for all x, y ∈ X,

where K ≥ 0. (28)
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Therefore Theorem 2.1 generalizes Theorem 2.6 of [9], Theorem 2.2 [8] and Theorem 2.1 [8]

which are proved by Górnicki.

Corollary 2.2. If we take ζ(t, s) = λs − t, λ ∈ [0, 1) then the contractive condition (21)

reduces to

d(Tx, Sy) ≤ λd(x, y) +K[d(x, Tx) + d(y, Sy)] for all x, y ∈ X, where K ≥ 0. (29)

Thus Theorem 2.2 of [6] follows from our Theorem 2.3.

Corollary 2.3. If we take ζ(t, s) = λs − t, λ ∈ [0, 1) then the contractive condition (16)

reduces to

d(Tx, Ty) ≤ λd(Fx, Fy) +K[d(Fx, Tx) + d(Fy, Ty)] for all x, y ∈ X,

where K ≥ 0. (30)

Hence Theorem 2.1 of [16] follows from our Theorem 2.2.

Example 2.2. (a) Let X = R+
0 (= [0,∞)) with the usual metric and T : X → X be defined

as in Example 2.1. Then T is a Z-Proinov-Górnicki contractive mapping for ζ1 given in

Example 1.1 and K = 1. Here we see that X is complete and T satisfies all the conditions

of Theorem 2.1. 0 is the unique fixed point of T in X. Also it is to be noted that T does not

satisfy contractive condition (4).

(b) Let X = [0, 4] together with the usual metric and T : X → X be defined by

T (x) =

{
2 if 0 ≤ x ≤ 2

x− 2 if 2 < x ≤ 4
(31)

Then T is a Z-Proinov-Górnicki contractive mapping for ζ(s, t) = s− log(1 + s)− t for all

s, t ≥ 0 and K > 1. Moreover it satisfies all the additional conditions of Theorem 2.1. Here

X is complete and T has a unique fixed point 2.

Example 2.3. Let X = R+
0 (= [0,∞)) together with the usual metric structure. Let us

define T, F : X → X by T (x) = x
x+1 and F (x) = 3x

x+1 for all x ∈ X. Then T and F satisfy

the contractive condition (16). Here T and F fulfil all other conditions of Theorem 2.2 and

it is seen that 0 is unique common fixed point of T and F .

Example 2.4. Let X = {0} ∪ { 1
n : n ≥ 1} endowed with the usual metric structure. Define

T, S : X → X by T (0) = 0, T ( 1n ) =
1

n+1 and S(0) = 0, S( 1n ) =
1

n+2 for all n ∈ N. Then T

and S satisfy the contractive condition (21) for ζ1 given in Example 1.1 and for K = 2. Also

T and S satisfy all other conditions of Theorem 2.3 and we see that 0 is unique common

fixed point of T and S. Moreover it is seen that T and S do not satisfy contractive condition

(29).

Remark 2.1. Theorem 2.1 gives us a totally new answer to the once open question of B. E.

Rhoades [13] on the existence of contractive mappings which can be discontinuous at their

fixed points.
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3. Conclusions

This paper deals with a new generalization of Kannan contractive mappings as well as

Górnicki contractive mappings. Our work shows that, some times contractive conditions and

completeness of the underlying spaces together can not ensure the existence of fixed points

of mappings. There is a huge contribution of the asymptotic regularity and continuity of

the considered mapping on the existence of fixed points. Also with the help of our mapping

we can successfully extend the range of the constant used in Kannan contractive mapping.

Finally Example 2.1 (b) increases the importance of our defined mapping, which provides

discontinuity at its fixed point.
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