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FIXED POINT APPROACH THROUGH SIMULATION FUNCTION AND
ASYMPTOTIC REGULARITY

Kushal Roy*

In this paper, we have introduced a new contractive mapping known as Z-
Proinov-Gornicki contractive mapping as a generalization of Kannan contractive map-
ping. Also some fized point and common fized point theorems have been proved for such
type of mapping in the setting of metric space via asymptotic reqularity and weak conti-
nuity. Our results extend and improve some theorems of other researchers available in
several literatures. Finally this paper has been furnished by some examples that support
our proven theorems.
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1. Introduction and Preliminaries

The definition of simulation function was given by Khojasteh et al. (see [7]). Such
functions have been used in the contractive type mapping known as Z—contraction intro-
duced by Khojasteh et al. in the year 2015.

Definition 1.1. [7] A function ¢ : [0,00)? — R is called simulation function, if it satisfies
the following conditions:

(¢1) €(0,0) =0,

((2) C(t,s) < s—t forall s,t >0,

(G3) If {t,} and {s,} are sequences in (0,00) such that lim, .o t, = lim, o s, > 0,
then limsup,, , o C(tn, sn) < 0.

Here we give an example of simulation function.
Example 1.1. [7] (i) Let (1 : [0,00)% — R be defined by
Ci(t,s) =
(ii) Also let ¢3 : [0,00)% — R be given by
Ca(t,s) =s—p(s)—t for allt,s € [0,00), (2)

Sj_lftfor all t,s € [0, 00). (1)

where ¢ : [0,00) — [0,00) is a continuous function such that ¢(t) = 0 if and only if t = 0.
Then (1, (o are simulation functions.

Another examples of simulation functions can be found in [4], [12].
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Definition 1.2. [7] A self mapping T on a metric space (X,d) is said to be Z— contraction
if there exists a simulation function ¢ such that for all z,y € X, ((d(Tz,Ty),d(z,y)) > 0.

Theorem 1.1. [7] Let (X, d) be a complete metric space and T : X — X be a Z— contraction
with respect to some simulation function (. Then T has a unique fixed point in X.

Recently Radenovié et al. [12] have extended and improved some results on simulation
functions established by several authors. By using the following Lemma they have got much
shorter proofs than the corresponding ones given in the literature.

Lemma 1.1. [12] Let {z,} be a sequence in a metric space (X, d) such that lim,

d(Xp, Tpt1) = 0. If {xn} is not a Cauchy sequence in X then there exists ¢ > 0 and two
sequences {my}, {nx} of positive integers such that ny > my > k and such that the following
sequences

{d(xmk ) xﬂk)}’ {d(mmk ) xnk+1)}7 {d(‘rmkflﬂ wnk)}v {d(mmk*h xnk+1)}7
{d(mmk+1’ xnk+1)} (3)

converge to € as k — oo.

Recently J. Gérnicki [9] studied a new class of contractive mappings and proved a fixed
point theorem for such mappings over metric spaces with assumption of continuity, which
is given as follows. It is to be noted that asymptotic regularity [2, 1] has been assumed for
these mappings in all over the metric space.

Theorem 1.2. [9] In a complete metric space (X, d) a continuous and asymptotically reqular
map T : X — X satisfying

d(Tz, Ty) < ad(z,y) + K{d(z,Tx) + d(y, Ty)} for allz,y € X (4)

for some « € [0,1) and for some K > 0 has a unique fized point u € X and for each x € X,
Tz — u as n — 0.

Bisht [3] replaced the assumption of continuity in Theorem 1.2 by a weaker version
of continuity condition like orbital continuity or k-continuity (For definitions of orbital con-
tinuity and k-continuity one may refer [3]).

Panja et al. [10] have generalized the contractive condition (4) and have introduced
a new type of contractive mapping called Ciri¢-Proinov-Gérnicki type mapping.

Let us consider the class F of all functions F : [0, 00) X [0, 00) — [0, 00) satisfying the
following conditions:

(i) F(0,0) =0, (ii) F is continuous at (0,0).

Definition 1.3. [10] In a metric space (X,d) a mapping T : X — X is said to be Ciric-
Proinov-Gdrnicki type mapping if there exists a € [0,1) such that

d(Tz,Ty) < amax{d(z,y),d(z,Ty),d(y, Tx)} + F(d(z, Tz),d(y, Ty)) (5)
for all x,y € X and for some F € F.

Theorem 1.3. [10] Let (X, d) be a complete metric space and T : X — X be asymptotically
reqular Cirié-Proinov-Gérnicki type mapping. Then T has a unique fixed point provided
either T is k-continuous for k > 1 or T is orbitally continuous.
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Definition 1.4. In a metric space (X,d), let T, S : X — X be two mappings. Then,

(i) T is said to be asymptotic reqular with respect to S at a point zy € X [15] if
there exists a sequence {xy }n=0.1,.. in X such that Tz, = Sxpi1 for alln =0,1,--- and
d(Stpi1,STpi2) = 0 asn — co.

(ii) Let {x,} be a sequence in X such that Tx, = Sxypy1 for alln = 0,1,--- and
Tr, — z asn — oo for some z € X. Then T (resp. S) is said to be (T,S)-orbitally
continuous [11)] if TTx, — Tz as n — oo (resp. STz, — Sz asn — o0).

Definition 1.5. [5] In a metric space (X,d), two maps T, S : X — X are said to be compat-
ible if lim, oo d(T'Sxy, STxy) = 0, whenever {x,} is a sequence in X with lim, oo Tx, =
lim,, o0 ST, = u, for some u € X.

Roy et al. [14] have recently proved two common fixed point theorems using the
contractive condition (5) which are given below.

Theorem 1.4. [14] Let (X,d) be a complete metric space and T,S : X — X be two
asymptotically reqular mappings satisfying

d(Tz, Sy) < Amax{d(z,y),d(z, Sy),d(y, Tx)} + F(d(z, Tz),d(y, Sy)) (6)
for all x,y € X, for some A € [0,1) and for some F € F. Then T and S have a unique

common fized point in X, provided T and S are either k-continuous for some k > 1 or
orbitally continuous.

Theorem 1.5. [14] Let X, d) be a complete metric space and T, S : X — X be two mappings
such that T is asymptotic regular with respect to S at a point xo € X and satisfy the following
condition

d(Tz,Ty) < Amax {d(Sz, Sy),d(Tx, Sy),d(Sx,Ty)} + F(d(Tx,Sz),d(Ty, Sy)) (7)

for all x,y € X, for some A € [0,1) and for some F € F. Then T and S have a unique
common fized point in X, provided T and S are (T, S)-orbitally continuous and compatible.

2. Some fixed point and common fixed point theorems for Gdérnicki con-
tractive type mappings

In this section we introduce a new generalized Kannan type contractive mapping
with the help of simulation functions. In the following we denote the set of all simulations
functions as &.

Definition 2.1. Let (X,d) be a metric space and T : X — X be a mapping. Then T is said
to be Z-Proinov-Gornicki contractive mapping if

C(d(Tz,Ty),d(z,y)) + K[d(z, Tz) + d(y, Ty)] > 0 for all z,y € X, (8)
where ( € G and K > 0.

Example 2.1. (a) Let us consider X = [0,4+00) endowed with the usual metric of reals.
Also let T : X — X be given by

x
Tr = —— X.
T= forall z € (9)

Then T is a Z-Proinov-Gornicki contractive mapping for the simulation function (1 defined

by ¢1(t,s) = 1 ¢ for all t,s > 0 but not usual Gornicki type contractive mapping.
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(b) Let us consider X = [0,+00) endowed with the usual metric of reals and T : X —
X be given by

x
Tz = o for all z € X. (10)

Then T is a Z-Proinov-Gornicki contractive mapping for the simulation function (3 defined
by C3(t, s) = \/s%ﬁ —t forallt,s € [0,4+00) but not usual Gérnicki type contractive mapping.

Theorem 2.1. Let (X,d) be a complete metric space and T : X — X be a Z-Proinov-
Gornicki contractive mapping. If T is asymptotically reqular and additionally k-continuous
or orbitally continuous then T has a unique fized point in X.

Proof. Let xy € X be chosen as arbitrary and consider the Picard iterating sequence {z,}
in X defined by x,, = T"zq for all n > 1. Since T is asymptotically regular it follows that
lim,, o d(xp, Tpy1) = 0. If {x,,} is not Cauchy then by Lemma 1.1 we see that there exists
e > 0 and two sequences {my}, {ny} of positive integers such that n; > my > k and the
sequences {d(xmk ’ xnk)}7 {d(xmw xnlle)}v {d(xmk*17 xnk)}v

{d(®my, -1, Tny+1) }s {d(@my 41, Tny+1) } converge to € as k — oco. Now from the contractive
condition (8) we have

C(d(xmk+1’ mnk-‘rl)v d(xmkvxnk)) + K[d(xmkvxmk-i-l) + d(xnk7xnk+1)] >0
for all k € N. (11)

Taking k — oo we get,

hm C(d(xmk+l7 Ink—i-l)v d(xmk ) I’nk)) Z O (12)

k—o0
Now since limy o0 d(Tmy, Tny) = € = limg o0 d(Tmy+1, Tnypt1). So by the property ((3) of
¢ we obtain

lim C(d(xmk“l‘l?xnk“rl)? d(xmk7znk>) < 07 (13)

k—o0

which leads us to a contradiction. Therefore {z,} must be Cauchy sequence in X. By
the completeness of X it follows that {z,} converges to some u € X. Since T is either
k-continuous or orbitally continuous in X, implies that Tu = u. Let u and v be two fixed
points of T'. Then

C(d(Tu, Tv),d(u,v)) + K[d(u, Tu) + d(v, Tv)] > 0, (14)

which implies that ¢(d(u,v),d(u,v)) > 0. If u # v then by the property ((3) of ¢ we have
0 < ¢(d(u,v),d(u,v)) < d(u,v) — d(u,v) = 0, which is not possible. (15)
Hence T has a unique fixed point in X. O

Theorem 2.2. Let (X,d) be a complete metric space and T, F : X — X be two mappings
such that T is asymptotic regular with respect to F at xqg € X and satisfy the following
condition

C(d(Tz,Ty),d(Fz, Fy)) + K[d(Fz,Tx) + d(Fy,Ty)] > 0 for all x,y € X, (16)

forallz,y € X, for some K > 0 and for some ( € &. ThenT and F have a unique common
fized point provided T and F are (T, F)-orbitally continuous and compatible.
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Proof. Since T is asymptotic regular with respect to F' at ¢ € X, so there exists a sequence
{zn} in X such that Tx,, = Fx,y1 = h, (say) foralln =0,1,2,--- and d(Fz,q1, Fxni2) —
0 as n — o0, i.e., d(hy, hypy1) = 0 as n — oco.

First we will show that h,, is a Cauchy sequence in X. If {h,} is not Cauchy then by
Lemma 1.1 we see that there exists € > 0 and two sequences {my, }, {n;} of positive integers
such that ng, > my > k and the sequences {d(hm, , hn, )},

{d(hmk ) hnk-i-l)}v {d(hmk—h hnk)}’ {d(hmk—h h"k+1)}’ {d(hmk-i-lv hnk-i-l)} converge to € as
k — oo. From the contractive condition (16) we have for all k € N

C(d(Txmk+17TInk+1)7 d(F‘rmk-i-l’ ank+1))+
K[d Fxkarlvakarl) + d(Fxnk+1’Txnk+1)] >0
0

= C(d(hmk+17 hnk"l‘l)? d(hmk,hnk)) + K[d(hmk7hmk+1) + d(hnk’hnk+1)] 2 (17)
Taking k — oo we see that
Hm C(d(hmy+15Png+1)s A(humy,, By, )) > 0, a contradiction. (18)

k—ro0
Therefore {h,} is Cauchy and completeness of X implies that there exists z € X such that
hy, = z asn — o0, ie. lim, oo Tz, = limy, oo Fxpy1 = 2.
Since T and F are (T, F)-orbitally continuous, it follows that lim,, .o 7?2, _1
= lim,, yoo TFz,, = Tz and lim,, oo F22,,1 = lim, ,o FTx, = Fz. Due to the compat-
ibility of 7" and F it is seen that Tz = Fz and T?z = T(Fz) = F(Tz) = F?z. Therefore
using the contractive condition (16) we get

C(d(Tz,T?z),d(Fz, F(Tz))) + K[d(Fz,Tz) + d(F(Tz),T?*2)] > 0
= ((d(T2,T?2),d(Tz,T?z)) > 0. (19)

If T2z # Tz then from the property of ¢ we see that
0 < ¢(d(Tz2,T?%2),d(Tz,T?2)) < d(Tz,T?2) — d(Tz,T?z) = 0, a contradiction. (20)

Hence T2z = F(Tz) = Tz and T and F have a common fixed point in X. Uniqueness of
common fixed point of T and F can be proved in a similar way as in Theorem 2.3. O

Theorem 2.3. Let (X,d) be a complete metric space and T,S : X — X be two mappings
satisfying

¢(d(Tz, Sy),d(x,y)) + K[d(z,Tz) + d(y, Sy)] > 0 for all x,y € X, (21)

where ( € S and K > 0. If T and S both are asymptotically reqular and {d(T"xq, S™xo)} is
convergent for some xg € X, then T and S have a unique common fized point in X, provided
T,S are either k-continuous or orbitally continuous in X.

Proof. First we show that lim,,_, o, d(T"xq, S™x¢) = 0. If there exists some N > 1 such that
T"xg = S™xq for all n > N then clearly lim,, o d(T™xo, S"x9) = 0. So let {n;} C N be
such that T™xg # S™ixg for all ¢ > 1. If lim; o0 d(T™ 20, S™ 20)

= 0 then we have nothing to prove. So let us assume that lim;_, . d(T™ zq, S™ x¢)

= ¢ > 0. Now since {d(T"xg,S™xo)} is convergent then d(T"xg, S"xy) — € as n — oc.
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Therefore lim;_, o d(T"i_lmo, S"i_lxo) = e and by using the contractive condition (21) we
see that
C(d(T™ o, S™ o), d(T™ 1o, 8™ )+
K[d(T™ Y2y, T™ x0) + d(S™ 20, 8™ 20)] > 0 for all i € N
= limsup C(d(T™ xg, S™ xq), d(T™ ‘20, S™ 1x0)) > 0, a contradiction. (22)

1—>00
Hence we have lim,, o, d(T"z0, S™"xg) = 0. Let =, = T™xq for all n > 1. Now we prove
that {z,} is Cauchy in X. If not then by Lemma 1.1 we see that there exists 6 > 0 and
two sequences {my}, {ni} of positive integers such that n, > my > k and the sequences
{d(@m,, Tn)}, {d(@myt1, Tnyt1)} converge to 6 as k — oo. Now,
d(T™* xg, S™ 1) < d(T™*x0, T x0) + d(T"* 20, S™ 20) and
d(T™ 2, T™ x0) < d(T™ 20, S™ x0) + d(S™ 20, T"*20) for all k > 1. (23)
Thus by taking k& — oo we have limg_,o0 d(T™ 20, S™x9) = 0 = limg_yoo d(Tm,, Tny)-
Similarly we can show that limy,_, o (T lag, S Hlgg) =6 =
limy o0 d(Tmy+1, Tnypt1). Now,
C(d(T™ g, 8™ ag), d(T™ o, S™ 20) )+
K[d(T™ 2o, T™ M 2) + d(S™ 20, S™ ta0)] > 0 for all k> 1

= lim sup C(d(T™ g, S™ Tl ag), d(T™ g, S™ x0)) > 0, a contradiction. (24)

1—> 00

Therefore {z,} is Cauchy in X and due to the completeness of X there exists u € X such
that T"zg — u as n — oo. Since lim, o d(T™xp, S"x9) = 0 we have also S"zy — u
as n — oo. As T, S are either k-continuous or orbitally continuous in X it follows that
Tu =wu = Sui.e. uisacommon fixed point of T"and S in X. Now we prove the uniqueness
of the common fixed point of T' and S. Let v be another common fixed point of 7" and S in
X then we have

¢(d(Tu, Sv),d(u,v)) + K[d(u, Tu) + d(v, Sv)] >0, (25)

implying that 0 < {(d(u,v),d(u,v)) < d(u,v) — d(u,v) = 0, which can not possible. Hence
T and S have a unique common fixed point in X. O

Corollary 2.1. (a) If we consider ((t,s) = As —t, A € [0,1) then the contractive condition
(2.1) reduces to

d(Tz, Ty) < Ad(z,y) + Kld(z,Tz) + d(y, Ty)] for all x,y € X, where K > 0. (26)
(b) If we take ((t,s) = ¢(s) — ¢, ¢ : [0,00) — [0,00) is upper semi-continuous and
©(s) < s then the contractive condition (2.1) reduces to
d(Tz,Ty) < o(d(z,y)) + Kld(z,Tx) + d(y, Ty)] for all z,y € X, where K >0.  (27)
(c) Let us put ((t,s) = sp(s) —t, where ¢ : [0,00) — [0,1) is a mapping such that
limsup,_,,+ ¢(t) < 1, for all r > 0 then the contractive condition (2.1) reduces to
d(Tx, Ty) < e(d(z,y))d(z,y) + Kld(z, Tx) + d(y, Ty)] for all z,y € X,
where K > 0. (28)



Fixed point approach through simulation function and asymptotic regularity 93

Therefore Theorem 2.1 generalizes Theorem 2.6 of [9], Theorem 2.2 [8] and Theorem 2.1 [8]
which are proved by Goérnicksi.

Corollary 2.2. If we take ((t,s) = As —t, XA € [0,1) then the contractive condition (21)
reduces to

d(Tz,Sy) < Md(z,y) + K[d(z,Tz) + d(y, Sy)] for all x,y € X, where K > 0. (29)
Thus Theorem 2.2 of [6] follows from our Theorem 2.3.

Corollary 2.3. If we take ((t,s) = As —t, A € [0,1) then the contractive condition (16)
reduces to

d(Tz,Ty) < Md(Fz, Fy) + K[d(Fz,Tz) + d(Fy,Ty)] for all z,y € X,
where K > 0. (30)

Hence Theorem 2.1 of [16] follows from our Theorem 2.2.

Example 2.2. (a) Let X = R (= [0,00)) with the usual metric and T : X — X be defined
as in Example 2.1. Then T is a Z-Proinov-Gérnicki contractive mapping for (1 given in
Ezxample 1.1 and K = 1. Here we see that X is complete and T satisfies all the conditions
of Theorem 2.1. 0 is the unique fixed point of T in X. Also it is to be noted that T does not
satisfy contractive condition (4).

(b) Let X = [0,4] together with the usual metric and T : X — X be defined by

T(x):{Q if0 <z <2 (31)

r—2 if2<zx<A4

Then T is a Z-Proinov-Gdrnicki contractive mapping for ((s,t) = s — log(1 + s) — t for all
s,t >0 and K > 1. Moreover it satisfies all the additional conditions of Theorem 2.1. Here
X is complete and T has a unique fized point 2.

Example 2.3. Let X = R{ (= [0,00)) together with the usual metric structure. Let us
define T,F : X — X by T'(x) = ;75 and F(x) = f—fl for all x € X. Then T and F satisfy
the contractive condition (16). Here T and F fulfil all other conditions of Theorem 2.2 and

it is seen that 0 is unique common fixed point of T and F.

Example 2.4. Let X = {0} U{+ : n > 1} endowed with the usual metric structure. Define
T,5:X = X byT(0) =0, T(£) = 27 and S(0) =0, S(+) = =5 for alln € N. Then T
and S satisfy the contractive condition (21) for (1 given in Example 1.1 and for K = 2. Also
T and S satisfy all other conditions of Theorem 2.3 and we see that 0 is unique common

fized point of T and S. Moreover it is seen that T and S do mot satisfy contractive condition

(29).

Remark 2.1. Theorem 2.1 gives us a totally new answer to the once open question of B. E.
Rhoades [13] on the existence of contractive mappings which can be discontinuous at their
fized points.



94 Kushal Roy

3. Conclusions

This paper deals with a new generalization of Kannan contractive mappings as well as
Gornicki contractive mappings. Our work shows that, some times contractive conditions and
completeness of the underlying spaces together can not ensure the existence of fixed points
of mappings. There is a huge contribution of the asymptotic regularity and continuity of
the considered mapping on the existence of fixed points. Also with the help of our mapping
we can successfully extend the range of the constant used in Kannan contractive mapping.
Finally Example 2.1 (b) increases the importance of our defined mapping, which provides
discontinuity at its fixed point.
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