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BIOCHEMICAL REACTIONS MODELS USING THE PETRI 
NETWORK APPROACH 

 
Ştefan A. POPA1 

 
În aceast articol sunt propuse modele computaţionale pentru reacţii chimice 

ireversibile, reversibile, bimoleculare şi cinetica enzimelor cu un singur substrat, 
bazate pe formalismul reţea Petri diferenţială. Căile metabolice de semnalizare 
conţin reacţii biochimice în care substraturile sunt catalizate enzimatic şi sunt 
transformate în produse biochimice active. Reacţiile enzimatice sunt descrise 
cantitativ prin ecuaţii diferenţiale ordinare, în modelul propus de reţea Petri. 
Specificitatea reacţiilor biochimice sunt captate în modelul propus de reţea Petri. 
Studiul simulării arată validarea calitativă a acurateţii modelului propus de reţea 
Petri, cu rezultate bazate pe un studiu de caz pentru cinetica enzimelor. 

 
In this paper we propose computational models for irreversible, reversible, 

bimolecular and single substrate enzyme kinetics based on the differential Petri 
network formalism. Metabolic signalling pathways contain biochemical reactions in 
which substrates are enzymatically catalyzed and turn them into active biochemical 
products. The enzyme reactions are described quantitatively through ordinary 
differential equations (ODEs) in the proposed Petri network model. The specificity 
of the biochemical reactions are captured in the proposed Petri network model. The 
simulation study shows qualitative validation of the dependability of the proposed 
Petri network model with case study results for enzyme kinetics. 

 
Keywords: Enzyme kinetics, computational model, Petri network, ordinary 

differential equations, penicillin 
 
1. Introduction 
 
Metabolic network modelling and simulation is an important step in 

complex biological system development and allows for the comprehension of the 
molecular mechanisms that take place in the cell. The metabolic network 
modelling breaks down metabolism pathways into their respective reactions and 
enzymes, and analyzes them within the perspective of the entire network. 
Quantitative models of biochemical networks are a central component of modern 
systems biology. Building and managing these complex models is a major 
challenge that can benefit from the application of formal methods adopted from 
theoretical computing science [1]. 
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Many approaches exist for modelling metabolic network. Some of the 
approaches have constructs that are specifically tailored for modelling only the 
biological aspects. Few of these approaches have tools which facilities the study 
and analysis of the dynamic behaviour of the system together with the discrete 
elements and presents dependable characteristics. Biochemical reaction systems 
have by their very nature three distinctive characteristics [2]: 1) they are 
inherently bipartite, i.e. they consist of two types of players, the species and their 
interactions; 2) they are inherently concurrent, i.e. several interactions can usually 
happen independently and in parallel and 3) they are inherently stochastic, i.e. the 
timing behaviour of the interactions is governed by stochastic laws. So it seems to 
be a natural choice to model and analyse them with a formal method, which 
shares exactly these distinctive characteristics: the Petri networks. 

There are three major ways of modelling biochemical networks 
(qualitative, stochastic and continuous) in the context of Petri nets [3]. The 
qualitative time-free description is the most basic, with discrete values 
representing levels of concentrations [4]. In the stochastic description, discrete 
values for the amounts of species are retained, but a stochastic rate is associated 
with each reaction [5]. A continuous model describes amounts of species using 
continuous values and associates a deterministic rate with each reaction [6]. Many 
other authors have studied and described particular biologic Petri models ([7], [8], 
[9]). Two important surveys on applying Petri nets for biochemical networks are 
[10] and [11], offering a rich choice of further reading pointers, among them 
numerous case studies. Finally, is important to mention the most used framework 
for representation of biochemical network models [12]. 

The main advantages of using Petri networks are: intuitive modelling 
style, mathematically founded analysis techniques, coverage of structural and 
behavioural properties as well as their relations, integration of qualitative and 
quantitative analysis techniques and reliable tool support. 

This paper presents preliminary results in modelling and simulation of 
biochemical metabolic pathways with the Petri network formalism which 
translates biological and chemical processes to Petri network formalisms and uses 
Petri network based tools to study the behaviour of these processes. The example 
models the Penicillin N production. 

 
2. Petri network formalism for studying system dynamics 
 
The Petri networks are used extensively for the representation and the 

simulation of concurrent discrete-event dynamic systems. A Petri network is a 
directed bipartite graph, in which nodes represent transitions, which are events 
that may occur, and places, which are seen as conditions, and directed arcs that 
describe which places are pre- and/or post- conditions for which transitions. [13] 
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Tokens that are placed in places signify that the condition that represents 
the place holds. The placement of tokens in the network, called marking, defines 
the network’s state. The Petri network can be simulated by moving tokens 
according to a firing rule; when all the places with arcs leading to a transition 
have a token, the transition is enabled, and may fire, by removing a token from 
each input place and adding a token to each output place. The results of the 
simulation can be plotted as graphs, or otherwise analyzed. 

The Petri networks can also be structurally examined to verify desired 
system properties, such as boundedness and liveness. Boundedness guarantees 
that in every place of the network, the number of tokens is always less than some 
finite number, for example there is no toxic accumulation of metabolites. Liveness 
guarantees that all transitions can be enabled. Another type of analysis involves 
determining whether we can move from one state of the system to another state, 
for example there are met the conditions for taking place the enzyme-substrate 
reaction from the specific metabolic pathway. 

 
3. Particular models for enzyme kinetics 
 
Almost all processes in a biological cell need enzymes to occur at 

significant rates. Since enzymes are selective for their substrates and speed up 
only a few reactions from among many possibilities, the set of enzymes in a cell 
determines which metabolic pathways occur in that cell. This study is limited to 
the Michaelian enzymes. 

In biochemistry, a metabolic pathway is the series of chemical reactions 
that occurs in a cell. In each pathway, a principal species is modified by chemical 
reactions. Enzymes catalyze these reactions, and often require additional minerals, 
vitamins and other factors in order the reactions to take place. Pathways may be 
very elaborate because of the many chemicals that are involved. The entire 
collection of pathways that exists in the cell is called the metabolic network. The 
importance of the pathways is that they maintain the homeostasis of the organism. 

The metabolism modifies the initial molecule and shapes it into an end 
product. The end product can be stored by the cell, used as a metabolic product or 
used to initiate another metabolic pathway. A molecule called a substrate enters a 
metabolic pathway depending on the needs of the cell and the availability of the 
substrate. An increase in concentration of anabolic and catabolic end products 
would slow the metabolic rate for that particular pathway. 

 
4. Enzyme kinetics modelling with ordinary differential equations 
 
Most of the biological cells’ dynamic behaviour may be reduced to the 

biochemical reactions which take place within, may be reduced to the way in 
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which molecules like genes, proteins and RNA interact, catalyze the reactions and 
contribute to the good functioning of the cells. 

The simplest chemical reaction is the first order irreversible reaction, 
presented in Equation 1, in which 1k  represents the rate at which substance S is 
converted in substance P. 
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Equation 1 First order irreversible reaction 
The first order reversible reaction is presented in Equation 2. 
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Equation 2 First order reversible reaction 
Both reactions presented in Equation 1 and in Equation 2 are linear. The 

simplest non-linear chemical reaction is the bimolecular reaction presented in 
Equation 3. 
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Equation 3 Bimolecular reaction 
The kinetics presented in Equation 1, in Equation 2 and in Equation 3 is 

mass-action kinetic law type. The equations may be more complicated like the 
case of the enzyme-substrate chemical reactions presented in Equation 4 and in 
Equation 5 

Enzyme kinetics is the investigation of how enzymes E bind substrates S 
and turn them into products P. Equation 4 shows most of the enzyme kinetics 
characterized by single-substrate reactions based on Michaelis–Menten–Henri 
kinetics [14]. 

PEESSE kkk r +⎯→⎯⎯⎯ →←+ 211 ,                                               (4) 



Simulation of biochemical reactions with the Petri network                          169 

Equation 4 Single-substrate mechanism for enzyme kinetics 
Enzyme reactions take place in two stages. In the first stage, the substrate 

S binds reversibly to the enzyme E, which forms the enzyme-substrate complex 
ES. The enzyme-substrate complex ES is sometimes called the Michaelis 
complex. The enzyme E then catalyzes the chemical step in the reaction and 
releases the product P. 1k  represents the constant rate at which the enzyme-
substrate complex ES is obtained. rk1  represents the constant rate at which the 
enzyme-substrate complex ES dissociate back in enzyme E and substrate S. 2k  
represents the rate constant at which the enzyme-substrate complex ES dissociates 
in enzyme E and product P. 2k , also called catk  or the turnover number, is the 
maximum number of enzymatic reactions catalyzed per second. 

The set of ordinary differential equations used to model the enzyme 
kinetics described in the above paragraph are presented below in Equation 5. 
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Equation 5 Ordinary differential equations for enzyme kinetics 
Michaelis-Menten kinetics relies on the law of mass action, which is 

derived from the assumptions of free diffusion and thermodynamically-driven 
random collision. However, many biochemical or cellular processes deviate 
significantly from these conditions, because of macromolecular crowding, phase-
separation of the enzyme/substrate/product, or one or two-dimensional molecular 
movement. This is why the time variation of the enzyme-substrate product 
concentration is not assumed in the differential equations presented in Equation 5 
to be zero.  

Several enzymes can work together in a specific order, creating metabolic 
pathways. In a metabolic pathway, one enzyme takes the product of another 
enzyme as a substrate. After the catalytic reaction, the product is then passed on to 
another enzyme. Sometimes more than one enzyme can catalyze the same reaction 
in parallel, this can allow more complex regulation: with for example a low 
constant activity being provided by one enzyme but an inducible high activity 
from a second enzyme. 
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Enzymes determine what steps occur in these pathways. Without enzymes, 
metabolism would neither progress through the same steps, nor be fast enough to 
serve the needs of the cell. 

In the following we will synthesize the philosophy in using Petri models, 
which is the possibility to build a complex network with simple circuits which can 
be extracted from a dedicated library. Fig. 1 represents three simple reactions 
representing as follows: a) simple enzymatic reaction, Michaelis-Menten kinetics; 
b) reversible enzymatic reaction, Michaelis-Menten kinetics; b) an enzymatic 
reaction, mass action kinetics. Fig. 2 illustrate how we can obtain a more complex 
model from simple ones: two enzymatic reactions, mass action kinetics, building a 
cycle. 

 
Fig. 1 Petri net components for some typical basic structures of biochemical reactions 

 
Fig. 2 Building a complex Petri model from basic structures 

 
5. Enzyme kinetics modelling with Petri network 
 
Differential Petri networks are a kind of Petri networks which contains 

differential places and differential transitions [15]. 
If all the markings and all the arc weights were non-negative, the 

behaviour of a differential Petri network could be modelled by a hybrid Petri 
network with special speeds for continuous transitions [16]. 

Differential predicate transition Petri networks are a special type of 
Differential Petri networks that can monitor sets of differential equations 
associated with specific places. In particular, when a token is produced in a place 
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p, the corresponding set of differential equations is activated and continuous 
variables associated with the produced token can evolve. 

Enabling functions are associated with transitions and depend on the 
continuous values associated to the tokens located in the input places of the 
corresponding transition. 

Junction functions, associated with transitions too, allow modifying and 
communicating the values of the continuous variables to the tokens produced in 
the output places of the fired transitions. 

A differential predicate transition Petri network is composed of the 
following elements: 
- N = <P, T, Pre, Pos> is a Petri network, where P is the set of places, T the set of 
transitions, Pre and Pos are the matrix that defines arcs connecting places to 
transitions and transitions to places. 
- }{ …,,, 321 ppp XXXX =  is the set of continuous variables. 
- 

ipX  is a vector of variables (which belong to X) associated with each place ip . 
Each marking in the place ip  is actually an instance of

ipX . 
- ie  is an enabling function associated with each transition it . This function 
enables or not the firing of it  according to the values of 

ipX  which are in the 
input places of it . 
- ij  is a junction function associated with each transition it . When considering the 
firing of transition it , this function defines the values of vectors 

ipX  which belong 
to the output places of it . 
- if  is a differential equation system associated with each place ip . This system 
defines the variables evolution associated with tokens in the place ip . 
- 0M  is the initial marking, specifying the number of tokens in each place and the 
variables values associated to each token for the initial time (t = 0 s).  

The proposed Petri network model which uses the differential Petri 
networks is presented below. 

Variables’ vector for the places 1p  and 2p  for the enzyme kinetics model 
is defined as following: 
- For the place 1p , the variables’ vector 

1pX  = ( 1E , 1S , 1ES ) contains the enzyme 

1E , substrate 1S  and enzyme-substrate complex 1ES  concentrations. 
System’s equations are defined by 1f  and 2f , based on the ordinary differential 
equations presented in Equation 2 and are partitioned as follows: 
- 1f : 
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The enabling function 1e  associated with the fire’s enabling of the 
transition 1t  is defined as upper or lower bounds for the enzyme, substrate and 
enzyme-substrate complex concentration values as follows: 
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The threshold values, 
1

treshold , 2treshold  and 3treshold , depend on the 
metabolic pathway characteristics. 

The junction function 1j  associated with the firing of the transition 1t  is 
defined as the same value concentration for enzyme-substrate complex in each 
place 1p  and 2p :  

)()( 21 tEStES =                                               (9) 
Petri network modelling of the enzyme kinetics is presented in Fig. 3 

below. In this model, the place 1p  models the first dynamic step of the single-
substrate mechanism for enzyme kinetics from Equation 4, which is the forming 
of the enzyme-substrate complex ES in the presence of enzyme and substrate 
levels of concentration. The place 2p  models the second dynamic step of the 
single-substrate mechanism for enzyme kinetics from Equation 4, which is the 
forming the product P in the presence of the enzyme-substrate complex level of 
concentration obtained from the previous place, place 1p . 
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Fig. 3 Petri network model of single substrate enzyme kinetics (ESR) 

 
The novelty of this Petri network for enzyme kinetics is the approach of 

partitioning the ODEs to places, which holds actually the dynamic information of 
the biochemical process. 

 
6. Enzyme kinetics modelling with the computational objects 
 
The proposed computational framework for modelling enzyme kinetics 

contains object for modelling irreversible reactions, reversible reactions, 
bimolecular reactions and single substrate enzyme reactions. 

The numerical inputs for the enzyme-substrate reaction (ESR) of the 
computational model are the initial marking which contains the initial species 
concentration values, the constant rates (k values) and the thresholds values (thres 
values): 32110 ,,,,,,

21
tresholdtresholdtresholdkkkM r . The computational model is 

presented in Fig. 4 (d). 
Using the same approach as for modelling single substrate enzyme 

kinetics, the Petri network model of irreversible reaction (IR) have as numerical 
inputs of the computational model the initial marking which contains the initial 
species concentration values, the constant rate (k value) and the threshold values 
(thres values): 

21
,,, 10 tresholdtresholdkM . The computational model in presented 

in Fig. 4 (a). 
The numerical inputs for the reversible reaction (RR) of the computational 

model are the initial marking which contains the initial species concentration 
values, the constant rate (k value) and the thresholds values (thres values): 
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310 ,,,,
21

tresholdtresholdtresholdkM . The computational model in presented in 
Fig. 4 (b). 

Also, the numerical inputs for the bimolecular reaction (BR) of the 
computational model are the initial marking which contains the initial species 
concentration values, the constant rates (k values) and the thresholds values (thres 
values): 3110 ,,,,,

21
tresholdtresholdtresholdkkM r . The computational model in 

presented in Fig. 4 (c). 

 
Fig. 4 Computational Petri network models for the irreversible reaction (a), reversible reaction (b), 

bimolecular reaction (c) and enzyme-substrate reaction (d) 
 
The computational models presented in Fig. 4 may be used for modelling 

and simulating biochemical pathways. There is an actual interest to 
computationally visualize the static and dynamic events that take place in 
biochemical reactions. The proposed computational objects express this static and 
dynamic information in a way suitable to be used for visual modelling which the 
standard approaches, i.e. differential equation solving.  

The standard approach only, i.e. differential equation solving, does not 
capture the discrete information,, which is the biological meaning. The graphical 
display of the curves, solutions of the differential equation system does not self 
contain any biological information. Biologists may add to the mathematical model 
captured through the differential equation systems, the discrete information which 
consists of the particularities of the biological system using the proposed 
approach. These particularities of the biological system are captured in the Petri 
network model. 
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7. Using the Petri network model for penicillin and cephalosporin 
biosynthesis 

 
Penicillin is a large group of natural or semi synthetic antibacterial 

antibiotics derived directly or indirectly from strains of fungi of the genus 
Penicillium and other soil-inhabiting fungi grown on special culture media.[17]. 

Penicillin is a secondary metabolite of fungus Penicillium that is produced 
when growth of the fungus is inhibited by stress. It is not produced during active 
growth. Production is also limited by feedback in the synthesis pathway of 
penicillin. 

Cephalosporins are a large group of broad-spectrum antibiotics obtained 
from Acremonium, formerly Cephalosporium, a genus of soil-inhabiting fungi. 
Cephalosporins are similar in structure and antimicrobial action to penicillin. The 
cephalosporins have been classified according to general features of antimicrobial 
activity, with successive generations having increasing activity against gram-
negative organisms and decreasing activity against gram-positive organisms. 
(Dorland’s, 2007) 

The core set of chemical reactions that generate penicilins and 
cephalosporins are presented in equation 10. 

  edioateaminohexan-2-L +G  penicillin +CoA 
 = OH + Nlin isopenicil +CoA -ylphenylacet

N penicillin = Nlin isopenicil

OH 2 + Nlin isopenicil
 = O + valine-D-cysteinyl-L-tanoyl]carboxypen-5-amino-5-[(5S)-N

valine-D-cysteinyl-L-tanoyl]carboxypen-5-amino-5-[L-N + ediphosphat 3 + AMP 3
 = OH + valine-L + cysteine-L + edioateaminohexan-2-L + ATP 3

2

2

 2

2

                                              (10) 
A N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase or EC 

6.3.2.26 is an enzyme that catalyzes the first chemical reaction from Equation 6. 
The 5 substrates of this enzyme are ATP ( ), L-2-
aminohexanedioate ( , obtained through Lysine degradation), L-cysteine 
((  ), L-valine ( ), and water ( ), whereas its 3 
products are AMP ( ), diphosphate ( ) and N-[L-5-amino-
5-carboxypentanoyl]-L-cysteinyl-D-valine ( ). This enzyme 
belongs to the family of ligases, specifically those forming carbon-nitrogen bonds 
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as acid-D-amino-acid ligases (peptide synthases). The systematic name of this 
enzyme class is L-2-aminohexanedioate:L-cysteine:L-valine ligase (AMP-
forming, valine-inverting). Other names in common use include L-delta-(alpha-
aminoadipoyl)-L-cysteinyl-D-valine synthetase, ACV synthetase, and L-alpha-
aminoadipyl-cysteinyl-valine synthetase. This enzyme participates in penicillin 
and cephalosporin biosynthesis. 

Isopenicillin-N synthase (IPNS) is a non-heme iron-dependent enzyme 
belonging to the oxidoreductase family. This enzyme catalyzes the formation of 
isopenicillin-N from δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine as it can be seen 
in the second chemical equation from Error! Reference source not found.. This 
reaction is a key step in the biosynthesis of penicillin and cephalosporin 
antibiotics. The active site of most isopenicillin-N synthases contains an iron ion. 

An isopenicillin-N epimerase or EC 5.1.1.17 is an enzyme that catalyzes 
the third chemical reaction from Error! Reference source not found.. This 
enzyme contains pyridoxal phosphate. Epimerization at C-5 of the 5-amino-5-
carboxypentanoyl group to form penicillin N is required to make a substrate for 
EC 1.14.20.1, deactoxycephalosporin-C synthase, to produce cephalosporins. 
Forms part of the penicillin biosynthesis pathway. Hence, this enzyme has one 
substrate, isopenicillin N, and one product, penicillin N ( ). This 
equation is used for the simulation with the proposed Petri network model for 
single substrate enzyme kinetics. This enzyme belongs to the family of 
isomerases, specifically those racemases and epimerases acting on amino acids 
and derivatives. The systematic name of this enzyme class is penicillin-N 5-
amino-5-carboxypentanoyl-epimerase. This enzyme participates in penicillin and 
cephalosporin biosynthesis. 

An isopenicillin-N N-acyltransferase or EC 2.3.1.164 is an enzyme that 
catalyzes the fourth chemical reaction from Error! Reference source not found.. 
The 3 substrates of this enzyme are phenylacetyl-CoA ( ), 
isopenicillin N, and water ( ), whereas its 3 products are CoA (

), penicillin G ( ), and L-2-aminohexanedioate (
). This enzyme belongs to the family of transferases, specifically those 

acyltransferases transferring groups other than aminoacyl groups. The systematic 
name of this enzyme class is acyl-CoA:isopenicillin N N-acyltransferase. Other 
names in common use include acyl-coenzyme A:isopenicillin N acyltransferase, 
and isopenicillin N:acyl-CoA: acyltransferase. This enzyme participates in 
penicillin and cephalosporin biosynthesis. 

 
8. Case studies and simulations 
 
The third chemical reaction from Error! Reference source not found. is 

modelled with the Petri network model proposed in Section 6. The enzyme E is 
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the isopenicillin-N epimerase, the single substrate catalyzed enzymatic S is the 
isopenicillin N and the obtained product P is penicillin N (ܥଵସܪଶଵ ଷܱܰ଺ܵ).  

The differential equations from the Petri network model for enzyme 
kinetics are solved by utilizing MATLAB library functions, for example solver 
ode113. The solver uses a variable order Adams-Bashforth-Moulton PECE solver 
(Predictor-Evaluation-Corrector-Evaluation). It is more efficient than the one-step 
solver based on explicit Runge-Kutta formula, which uses the Dormand-Prince 
pair, at stringent tolerances and when the function is particularly expensive to 
evaluate. The used Adams-Bashforth-Moulton PECE solver is a multistep solver, 
which means that it needs the solutions from several preceding time points to 
compute the current solution.  

The absolute tolerance used is 1.0E-6 and the relative tolerance used is 
0.0010 for a time horizon of 10 seconds. 

The simulation uses the proposed Petri net model from Section 3.2 with 
the initial marking MESSEM )0,8,4(),,(0 ==  and the threshold values are 

1
1
=treshold , 4

2
=treshold , 3

3
=treshold . All these concentration values are 

expressed in Molarity, M. The values used for the constants involved in the 
reactions are 21 =k  ( ) 1−⋅ sM , 11 =rk  1−s  and 5.12 =k  1−s . These values depend 
on the reaction specifics. 

In the Fig. 5 below it is represented the concentration-time variation of the 
enzyme E, substrate S, enzyme-substrate complex ES and product P. It can be 
seen that the initial degradation of the enzyme and substrate generates the 
enzyme-substrate complex, modelled in the Petri network from Fig. 3 as place 1p  
with ODEs 1f . The maximal concentration value of the enzyme-substrate 
complex corresponds to the minimal concentration value of the enzyme, which 
corresponds to the enabling function 1e .  

This is the moment when the transition 1t  is fired in conformance with the 
junction function 1j . After this point the concentration value of the enzyme 
increases before setting to its steady state and the concentration value of the 
enzyme-product complex decreases exponentially to zero, modelled in the Petri 
network from Fig. 3 as place 2p  and ODE 2f . The occurrence of the enzyme-
substrate complex ES boosts the increase of the concentration value for the 
product P. 

The partitioning of the plot from Fig. 5 captures the Petri net modelling of 
the Michaelian enzyme kinetics in the 1p  place and in the 2p  place, presented in 
Fig. 3. 

The concentration-time variation for first order irreversible reaction with 
݇ଵ ൌ 1, ܵሺ0ሻ ൌ 100, ܲሺ0ሻ ൌ 0 is represented in Fig. 6 below. The threshold 
values are ݈݀݋݄ݏ݁ݎ݄ݐଵ ൌ 60, ଶ݈݀݋݄ݏ݁ݎ݄ݐ ൌ 40. 
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Fig. 5 Concentration-time variance of single substrate enzyme kinetics 

 
Fig. 6 Concentration-time variance of the first order irreversible reaction  

 
The concentration-time variation for first order reversible reaction with 

࢑૚ ൌ ૜, ࢑૛ ൌ ૚, ሺ૙ሻࡿ ൌ ૚૙૙, ሺ૙ሻࡼ ൌ ૙ is represented in Fig. 7 below. The 
threshold values are ݈݀݋݄ݏ݁ݎ݄ݐଵ ൌ 40, ଶ݈݀݋݄ݏ݁ݎ݄ݐ ൌ 60. 

The concentration-time variation for the bimolecular reaction with 
݇ଵ ൌ 0.001, ଵܵሺ0ሻ ൌ 100, ܵଶሺ0ሻ ൌ 200, ܲሺ0ሻ ൌ 0  is represented in Fig. 8 
below. The threshold values are: 
ଵ݈݀݋݄ݏ݁ݎ݄ݐ  ൌ 155, ଶ݈݀݋݄ݏ݁ݎ݄ݐ ൌ 55, ଷ݈݀݋݄ݏ݁ݎ݄ݐ ൌ 45. 

Also, the partitioning of the plots from the above figures captures the Petri 
net modelling of the reactions kinetics in the 1p  place and in the 2p  place. The 
time moment for the models from Fig. 6 to Fig. 8 is taken in the vicinity of the 
intersection point of the product and substrate concentration values (P=S).
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Fig. 7 Concentration-time variance    Fig. 8 Concentration-time variance of the  
of the first order reversible reaction    bimolecular reaction 
 

The biological meaning of the vicinity of the intersection point stresses 
that the amount of the product concentration P is starting to be more than the 
amount of the substrate concentration, so the product is beginning to play a 
biological meaning in the biological system. Until that moment, the product P 
does not play any important biological role, for the models from Fig. 5 to Fig. 9. 

 
9. Conclusions and further work 
 
The novelty of this Petri network model for enzyme kinetics is the 

approach of partitioning the ODEs to places, which holds actually the dynamic 
information of the biochemical reaction and the dependability assessment of the 
model. 

The proposed Petri network model for enzyme kinetics may be used in 
metabolic signalling pathway modelling. The model may be extended in order to 
incorporate exceptions of the single substrate enzyme reactions, like cooperative 
binding of substrate to the active site in allosteric regulation, and also to 
incorporate multi-strata enzyme reactions like ternary complex or ping–pong. 

The dependability of the proposed Petri network model for single substrate 
enzyme kinetics may be increased by incorporating fault tolerance mechanisms 
and ensuring more experimental results compliance. Also fractal approaches may 
be employed for modelling enzyme kinetics [18]. 
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