U.P.B. Sci. Bull., Series B, Vol. 74, Iss. 2, 2012. ISSN 1454-2331

BIOCHEMICAL REACTIONS MODELS USING THE PETRI
NETWORK APPROACH

Stefan A. POPA'

In aceast articol sunt propuse modele computationale pentru reactii chimice
ireversibile, reversibile, bimoleculare si cinetica enzimelor cu un singur substrat,
bazate pe formalismul retea Petri diferentiald. Cdile metabolice de semnalizare
contin reactii biochimice in care substraturile sunt catalizate enzimatic §i sunt
transformate in produse biochimice active. Reactiile enzimatice sunt descrise
cantitativ prin ecuatii diferentiale ordinare, in modelul propus de retea Petri.
Specificitatea reactiilor biochimice sunt captate in modelul propus de refea Petri.
Studiul simularii aratd validarea calitativa a acuratetii modelului propus de refea
Petri, cu rezultate bazate pe un studiu de caz pentru cinetica enzimelor.

In this paper we propose computational models for irreversible, reversible,
bimolecular and single substrate enzyme kinetics based on the differential Petri
network formalism. Metabolic signalling pathways contain biochemical reactions in
which substrates are enzymatically catalyzed and turn them into active biochemical
products. The enzyme reactions are described quantitatively through ordinary
differential equations (ODEs) in the proposed Petri network model. The specificity
of the biochemical reactions are captured in the proposed Petri network model. The
simulation study shows qualitative validation of the dependability of the proposed
Petri network model with case study results for enzyme kinetics.

Keywords: Enzyme kinetics, computational model, Petri network, ordinary
differential equations, penicillin

1. Introduction

Metabolic network modelling and simulation is an important step in
complex biological system development and allows for the comprehension of the
molecular mechanisms that take place in the cell. The metabolic network
modelling breaks down metabolism pathways into their respective reactions and
enzymes, and analyzes them within the perspective of the entire network.
Quantitative models of biochemical networks are a central component of modern
systems biology. Building and managing these complex models is a major
challenge that can benefit from the application of formal methods adopted from
theoretical computing science [1].
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Many approaches exist for modelling metabolic network. Some of the
approaches have constructs that are specifically tailored for modelling only the
biological aspects. Few of these approaches have tools which facilities the study
and analysis of the dynamic behaviour of the system together with the discrete
elements and presents dependable characteristics. Biochemical reaction systems
have by their very nature three distinctive characteristics [2]: 1) they are
inherently bipartite, i.e. they consist of two types of players, the species and their
interactions; 2) they are inherently concurrent, i.e. several interactions can usually
happen independently and in parallel and 3) they are inherently stochastic, i.e. the
timing behaviour of the interactions is governed by stochastic laws. So it seems to
be a natural choice to model and analyse them with a formal method, which
shares exactly these distinctive characteristics: the Petri networks.

There are three major ways of modelling biochemical networks
(qualitative, stochastic and continuous) in the context of Petri nets [3]. The
qualitative time-free description is the most basic, with discrete values
representing levels of concentrations [4]. In the stochastic description, discrete
values for the amounts of species are retained, but a stochastic rate is associated
with each reaction [5]. A continuous model describes amounts of species using
continuous values and associates a deterministic rate with each reaction [6]. Many
other authors have studied and described particular biologic Petri models ([7], [8],
[9]). Two important surveys on applying Petri nets for biochemical networks are
[10] and [11], offering a rich choice of further reading pointers, among them
numerous case studies. Finally, is important to mention the most used framework
for representation of biochemical network models [12].

The main advantages of using Petri networks are: intuitive modelling
style, mathematically founded analysis techniques, coverage of structural and
behavioural properties as well as their relations, integration of qualitative and
quantitative analysis techniques and reliable tool support.

This paper presents preliminary results in modelling and simulation of
biochemical metabolic pathways with the Petri network formalism which
translates biological and chemical processes to Petri network formalisms and uses
Petri network based tools to study the behaviour of these processes. The example
models the Penicillin N production.

2. Petri network formalism for studying system dynamics

The Petri networks are used extensively for the representation and the
simulation of concurrent discrete-event dynamic systems. A Petri network is a
directed bipartite graph, in which nodes represent transitions, which are events
that may occur, and places, which are seen as conditions, and directed arcs that
describe which places are pre- and/or post- conditions for which transitions. [13]
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Tokens that are placed in places signify that the condition that represents
the place holds. The placement of tokens in the network, called marking, defines
the network’s state. The Petri network can be simulated by moving tokens
according to a firing rule; when all the places with arcs leading to a transition
have a token, the transition is enabled, and may fire, by removing a token from
each input place and adding a token to each output place. The results of the
simulation can be plotted as graphs, or otherwise analyzed.

The Petri networks can also be structurally examined to verify desired
system properties, such as boundedness and liveness. Boundedness guarantees
that in every place of the network, the number of tokens is always less than some
finite number, for example there is no toxic accumulation of metabolites. Liveness
guarantees that all transitions can be enabled. Another type of analysis involves
determining whether we can move from one state of the system to another state,
for example there are met the conditions for taking place the enzyme-substrate
reaction from the specific metabolic pathway.

3. Particular models for enzyme kinetics

Almost all processes in a biological cell need enzymes to occur at
significant rates. Since enzymes are selective for their substrates and speed up
only a few reactions from among many possibilities, the set of enzymes in a cell
determines which metabolic pathways occur in that cell. This study is limited to
the Michaelian enzymes.

In biochemistry, a metabolic pathway is the series of chemical reactions
that occurs in a cell. In each pathway, a principal species is modified by chemical
reactions. Enzymes catalyze these reactions, and often require additional minerals,
vitamins and other factors in order the reactions to take place. Pathways may be
very elaborate because of the many chemicals that are involved. The entire
collection of pathways that exists in the cell is called the metabolic network. The
importance of the pathways is that they maintain the homeostasis of the organism.

The metabolism modifies the initial molecule and shapes it into an end
product. The end product can be stored by the cell, used as a metabolic product or
used to initiate another metabolic pathway. A molecule called a substrate enters a
metabolic pathway depending on the needs of the cell and the availability of the
substrate. An increase in concentration of anabolic and catabolic end products
would slow the metabolic rate for that particular pathway.

4. Enzyme Kinetics modelling with ordinary differential equations

Most of the biological cells’ dynamic behaviour may be reduced to the
biochemical reactions which take place within, may be reduced to the way in



168 Stefan Popa

which molecules like genes, proteins and RNA interact, catalyze the reactions and
contribute to the good functioning of the cells.

The simplest chemical reaction is the first order irreversible reaction,
presented in Equation 1, in which &, represents the rate at which substance S is

converted in substance P.
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Equation 1 First order irreversible reaction
The first order reversible reaction is presented in Equation 2.
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Equation 2 First order reversible reaction
Both reactions presented in Equation 1 and in Equation 2 are linear. The
simplest non-linear chemical reaction is the bimolecular reaction presented in
Equation 3.
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Equation 3 Bimolecular reaction

The kinetics presented in Equation 1, in Equation 2 and in Equation 3 is
mass-action kinetic law type. The equations may be more complicated like the
case of the enzyme-substrate chemical reactions presented in Equation 4 and in
Equation 5

Enzyme kinetics is the investigation of how enzymes E bind substrates S
and turn them into products P. Equation 4 shows most of the enzyme kinetics
characterized by single-substrate reactions based on Michaelis—Menten—Henri
kinetics [14].

E+S<«bb sES— B sE4 P 4)
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Equation 4 Single-substrate mechanism for enzyme kinetics
Enzyme reactions take place in two stages. In the first stage, the substrate
S binds reversibly to the enzyme E, which forms the enzyme-substrate complex
ES. The enzyme-substrate complex ES is sometimes called the Michaelis
complex. The enzyme E then catalyzes the chemical step in the reaction and
releases the product P. k, represents the constant rate at which the enzyme-

substrate complex ES is obtained. k,, represents the constant rate at which the
enzyme-substrate complex ES dissociate back in enzyme E and substrate S. %,
represents the rate constant at which the enzyme-substrate complex ES dissociates
in enzyme E and product P. k,, also called k_, or the turnover number, is the

maximum number of enzymatic reactions catalyzed per second.
The set of ordinary differential equations used to model the enzyme
kinetics described in the above paragraph are presented below in Equation 5.

_dflgt) =k, - E(1)-S(1) + (k,, +k,) - ES(t)
IO _ BS54k, -ESQ)
dt %)
% =k, - E(1)-S(t)~ (ky, +k,)- ES(1)
()
2 =k, ES(1)

Equation 5 Ordinary differential equations for enzyme kinetics

Michaelis-Menten kinetics relies on the law of mass action, which is
derived from the assumptions of free diffusion and thermodynamically-driven
random collision. However, many biochemical or cellular processes deviate
significantly from these conditions, because of macromolecular crowding, phase-
separation of the enzyme/substrate/product, or one or two-dimensional molecular
movement. This is why the time variation of the enzyme-substrate product
concentration is not assumed in the differential equations presented in Equation 5
to be zero.

Several enzymes can work together in a specific order, creating metabolic
pathways. In a metabolic pathway, one enzyme takes the product of another
enzyme as a substrate. After the catalytic reaction, the product is then passed on to
another enzyme. Sometimes more than one enzyme can catalyze the same reaction
in parallel, this can allow more complex regulation: with for example a low
constant activity being provided by one enzyme but an inducible high activity
from a second enzyme.
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Enzymes determine what steps occur in these pathways. Without enzymes,
metabolism would neither progress through the same steps, nor be fast enough to
serve the needs of the cell.

In the following we will synthesize the philosophy in using Petri models,
which is the possibility to build a complex network with simple circuits which can
be extracted from a dedicated library. Fig. 1 represents three simple reactions
representing as follows: a) simple enzymatic reaction, Michaelis-Menten kinetics;
b) reversible enzymatic reaction, Michaelis-Menten kinetics; b) an enzymatic
reaction, mass action kinetics. Fig. 2 illustrate how we can obtain a more complex
model from simple ones: two enzymatic reactions, mass action kinetics, building a
cycle.

Fig. 2 Building a complex Petri model from basic structures
5. Enzyme kinetics modelling with Petri network

Differential Petri networks are a kind of Petri networks which contains
differential places and differential transitions [15].

If all the markings and all the arc weights were non-negative, the
behaviour of a differential Petri network could be modelled by a hybrid Petri
network with special speeds for continuous transitions [16].

Differential predicate transition Petri networks are a special type of
Differential Petri networks that can monitor sets of differential equations
associated with specific places. In particular, when a token is produced in a place
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p, the corresponding set of differential equations is activated and continuous
variables associated with the produced token can evolve.

Enabling functions are associated with transitions and depend on the
continuous values associated to the tokens located in the input places of the
corresponding transition.

Junction functions, associated with transitions too, allow modifying and
communicating the values of the continuous variables to the tokens produced in
the output places of the fired transitions.

A differential predicate transition Petri network is composed of the
following elements:

- N =<P, T, Pre, Pos> is a Petri network, where P is the set of places, T the set of
transitions, Pre and Pos are the matrix that defines arcs connecting places to
transitions and transitions to places.

-X= {X ’ , X », P, GRS } is the set of continuous variables.

- X, is a vector of variables (which belong to X) associated with each place p, .
Each marking in the place p, is actually an instance of X , .

- ¢, 1s an enabling function associated with each transitions,. This function
enables or not the firing of 7, according to the values of X, which are in the
input places of#,.

- J; 1s a junction function associated with each transition¢,. When considering the
firing of transitionz,, this function defines the values of vectors X, which belong
to the output places of?,.

- f, is a differential equation system associated with each place p, . This system
defines the variables evolution associated with tokens in the place p, .

- M, is the initial marking, specifying the number of tokens in each place and the

variables values associated to each token for the initial time (t =0 s).

The proposed Petri network model which uses the differential Petri
networks is presented below.

Variables’ vector for the places p, and p, for the enzyme kinetics model

is defined as following:

- For the place p,, the variables’ vector X, = (E|,S,, ES,) contains the enzyme
E,, substrate S, and enzyme-substrate complex ES, concentrations.

System’s equations are defined by f, and f,, based on the ordinary differential
equations presented in Equation 2 and are partitioned as follows:

e
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% =—k,-E,(1)-S,(t) + (k, +k,)- ES, (1)
% =k, - E,(t)- S,(t) +k,, - ES, (t) (6)
% =k, E,(t) ,()— (k,, + k) ES,(0)
.
0)

e ES(0) (7

The enabling function e, associated with the fire’s enabling of the
transition ¢, is defined as upper or lower bounds for the enzyme, substrate and

enzyme-substrate complex concentration values as follows:
E\(?) < treshold

S$,(¢) < treshold | ()
ES, (1) = treshold

The threshold values, freshold , treshold, and treshold,, depend on the

metabolic pathway characteristics.

The junction function j, associated with the firing of the transition ¢, is
defined as the same value concentration for enzyme-substrate complex in each
place p, and p,:

ES, (1) = ES, (1) ©)

Petri network modelling of the enzyme kinetics is presented in Fig. 3
below. In this model, the place p, models the first dynamic step of the single-
substrate mechanism for enzyme kinetics from Equation 4, which is the forming
of the enzyme-substrate complex ES in the presence of enzyme and substrate
levels of concentration. The place p, models the second dynamic step of the
single-substrate mechanism for enzyme kinetics from Equation 4, which is the
forming the product P in the presence of the enzyme-substrate complex level of
concentration obtained from the previous place, place p, .
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(E,S,ES) (E,S,ES)
=(4,8,0) =(14,3)
pl pl pl pl
ESR ESR ESR ESR
e lie RICKRO
(P.ES)= (P.ES)= (P.ES) (P,ES)
(0,0) (0,9). =(3,3) =(8,0)
Initial marking Before firing 7, After firing ¢, After firing ¢,
t=0s t=0.5s-¢ t=05s+¢ t=10s

Fig. 3 Petri network model of single substrate enzyme kinetics (ESR)

The novelty of this Petri network for enzyme kinetics is the approach of
partitioning the ODEs to places, which holds actually the dynamic information of
the biochemical process.

6. Enzyme kinetics modelling with the computational objects

The proposed computational framework for modelling enzyme kinetics
contains object for modelling irreversible reactions, reversible reactions,
bimolecular reactions and single substrate enzyme reactions.

The numerical inputs for the enzyme-substrate reaction (ESR) of the
computational model are the initial marking which contains the initial species
concentration values, the constant rates (k values) and the thresholds values (thres
values): M, O,l’cl,k]r,kz,tresholdI ,treshola’2 ,treshold; . The computational model is

presented in Fig. 4 (d).

Using the same approach as for modelling single substrate enzyme
kinetics, the Petri network model of irreversible reaction (/R) have as numerical
inputs of the computational model the initial marking which contains the initial
species concentration values, the constant rate (k value) and the threshold values
(thres values): M, k,,treshold ,treshold . The computational model in presented
in Fig. 4 (a).

The numerical inputs for the reversible reaction (RR) of the computational

model are the initial marking which contains the initial species concentration
values, the constant rate (k value) and the thresholds values (thres values):
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M.k, treshold ,treshold ,treshold;. The computational model in presented in
Fig. 4 (b).
Also, the numerical inputs for the bimolecular reaction (BR) of the

computational model are the initial marking which contains the initial species
concentration values, the constant rates (k values) and the thresholds values (thres

values): M,k ,k
presented in Fig. 4 (¢).

1r>

treshold],tresholdz,treshold3. The computational model in

(S,P)= Sb};)z) (S1,82,P)=(100,200,0)  (E,S,ES)=(4.8,0)
(100,0) bl ol ol
pl
RR BR ESR
5 tl (thres‘[l1 thres2 i
tl hres].thres2 ’ ) (thresl, thres2,
(thres1,thres2) :t (260876,3)res ) thres3)= (155,5%45) thres3)=(1,4,3)
=(60,40)
O O e O
2 (D
=0 (P)=(0) (P)=(0) (P,ES)=(0,0)
(b)
(a) () (d)

Fig. 4 Computational Petri network models for the irreversible reaction (a), reversible reaction (b),
bimolecular reaction (c¢) and enzyme-substrate reaction (d)

The computational models presented in Fig. 4 may be used for modelling
and simulating biochemical pathways. There is an actual interest to
computationally visualize the static and dynamic events that take place in
biochemical reactions. The proposed computational objects express this static and
dynamic information in a way suitable to be used for visual modelling which the
standard approaches, i.e. differential equation solving.

The standard approach only, i.e. differential equation solving, does not
capture the discrete information,, which is the biological meaning. The graphical
display of the curves, solutions of the differential equation system does not self
contain any biological information. Biologists may add to the mathematical model
captured through the differential equation systems, the discrete information which
consists of the particularities of the biological system using the proposed
approach. These particularities of the biological system are captured in the Petri
network model.
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7. Using the Petri network model for penicillin and cephalosporin
biosynthesis

Penicillin is a large group of natural or semi synthetic antibacterial
antibiotics derived directly or indirectly from strains of fungi of the genus
Penicillium and other soil-inhabiting fungi grown on special culture media.[17].

Penicillin is a secondary metabolite of fungus Penicillium that is produced
when growth of the fungus is inhibited by stress. It is not produced during active
growth. Production is also limited by feedback in the synthesis pathway of
penicillin.

Cephalosporins are a large group of broad-spectrum antibiotics obtained
from Acremonium, formerly Cephalosporium, a genus of soil-inhabiting fungi.
Cephalosporins are similar in structure and antimicrobial action to penicillin. The
cephalosporins have been classified according to general features of antimicrobial
activity, with successive generations having increasing activity against gram-
negative organisms and decreasing activity against gram-positive organisms.
(Dorland’s, 2007)

The core set of chemical reactions that generate penicilins and
cephalosporins are presented in equation 10.

3 ATP + L -2 - aminohexanedioate + L - cysteine + L - valine+ H,0 =

3 AMP + 3 diphosphate + N -[L - 5 - amino - 5 - carboxypentanoyl]- L - cysteinyl- D - valine

N -[(5S) - 5-amino - 5 - carboxypentanoyl]- L - cysteinyl- D - valine+ O, =
isopenicillin N+2 H,O

isopenicillin N = penicillin N

phenylacetyl - CoA +isopenicillin N+ H,0 =
CoA +penicillin G + L - 2 - aminohexanedioate
(10)
A N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase or EC
6.3.2.26 is an enzyme that catalyzes the first chemical reaction from Equation 6.

The 5 substrates of this enzyme are ATP ( ), L-2-
aminohexanedioate ( , obtained through Lysine degradation), L-cysteine
(( CeHyNO:S ) Lovaline ( ), and water ( ), whereas its 3

products are AMP (€10H14Ns0:F ) diphosphate (PaHaQ7 ) and N-/L-5-amino-
5-carboxypentanoyl]-L-cysteinyl-D-valine ~ (€14H28N3Q¢¥ ).  This enzyme
belongs to the family of ligases, specifically those forming carbon-nitrogen bonds
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as acid-D-amino-acid ligases (peptide synthases). The systematic name of this
enzyme class is L-2-aminohexanedioate:L-cysteine:L-valine ligase (AMP-
forming, valine-inverting). Other names in common use include L-delta-(alpha-
aminoadipoyl)-L-cysteinyl-D-valine synthetase, ACV synthetase, and L-alpha-
aminoadipyl-cysteinyl-valine synthetase. This enzyme participates in penicillin
and cephalosporin biosynthesis.

Isopenicillin-N synthase (IPNS) is a non-heme iron-dependent enzyme
belonging to the oxidoreductase family. This enzyme catalyzes the formation of
isopenicillin-N from 8-(L-a-aminoadipoyl)-L-cysteinyl-D-valine as it can be seen
in the second chemical equation from Error! Reference source not found.. This
reaction is a key step in the biosynthesis of penicillin and cephalosporin
antibiotics. The active site of most isopenicillin-N synthases contains an iron ion.

An isopenicillin-N epimerase or EC 5.1.1.17 is an enzyme that catalyzes
the third chemical reaction from Error! Reference source not found.. This
enzyme contains pyridoxal phosphate. Epimerization at C-5 of the 5-amino-5-
carboxypentanoyl group to form penicillin N is required to make a substrate for
EC 1.14.20.1, deactoxycephalosporin-C synthase, to produce cephalosporins.
Forms part of the penicillin biosynthesis pathway. Hence, this enzyme has one
substrate, isopenicillin N, and one product, penicillin N (€14Hz21N3055 ). This
equation is used for the simulation with the proposed Petri network model for
single substrate enzyme kinetics. This enzyme belongs to the family of
isomerases, specifically those racemases and epimerases acting on amino acids
and derivatives. The systematic name of this enzyme class is penicillin-N 5-
amino-5-carboxypentanoyl-epimerase. This enzyme participates in penicillin and
cephalosporin biosynthesis.

An isopenicillin-N N-acyltransferase or EC 2.3.1.164 is an enzyme that
catalyzes the fourth chemical reaction from Error! Reference source not found..
The 3 substrates of this enzyme are phenylacetyl-CoA (CzeHszNyQy;P38 ),
isopenicillin N, and water (H2@ ), whereas its 3 products are Cod (
CasHegNz QP35 ) penicillin G (CasH1gNz 0% ) and L-2-aminohexanedioate (
CgHy3 N4 ). This enzyme belongs to the family of transferases, specifically those
acyltransferases transferring groups other than aminoacyl groups. The systematic
name of this enzyme class is acyl-CoA:isopenicillin N N-acyltransferase. Other
names in common use include acyl-coenzyme A:isopenicillin N acyltransferase,
and isopenicillin N:acyl-CoA: acyltransferase. This enzyme participates in
penicillin and cephalosporin biosynthesis.

8. Case studies and simulations

The third chemical reaction from Error! Reference source not found. is
modelled with the Petri network model proposed in Section 6. The enzyme E is
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the isopenicillin-N epimerase, the single substrate catalyzed enzymatic S is the
isopenicillin N and the obtained product P is penicillin N (C;4H,1N504S).

The differential equations from the Petri network model for enzyme
kinetics are solved by utilizing MATLAB library functions, for example solver
odel13. The solver uses a variable order Adams-Bashforth-Moulton PECE solver
(Predictor-Evaluation-Corrector-Evaluation). It is more efficient than the one-step
solver based on explicit Runge-Kutta formula, which uses the Dormand-Prince
pair, at stringent tolerances and when the function is particularly expensive to
evaluate. The used Adams-Bashforth-Moulton PECE solver is a multistep solver,
which means that it needs the solutions from several preceding time points to
compute the current solution.

The absolute tolerance used is 1.0E-6 and the relative tolerance used is
0.0010 for a time horizon of 10 seconds.

The simulation uses the proposed Petri net model from Section 3.2 with
the initial marking M, =(E,S,ES)=(4,8,0)M and the threshold values are
treshold =1, treshold =4, treshold =3. All these concentration values are
expressed in Molarity, M. The values used for the constants involved in the
reactions are k, =2 (M-s)", k, =1 s and k, =1.5 s~'. These values depend
on the reaction specifics.

In the Fig. 5 below it is represented the concentration-time variation of the
enzyme E, substrate S, enzyme-substrate complex ES and product P. It can be
seen that the initial degradation of the enzyme and substrate generates the
enzyme-substrate complex, modelled in the Petri network from Fig. 3 as place p,
with ODEs f,. The maximal concentration value of the enzyme-substrate
complex corresponds to the minimal concentration value of the enzyme, which
corresponds to the enabling function e, .

This is the moment when the transition ¢, is fired in conformance with the
junction function j,. After this point the concentration value of the enzyme
increases before setting to its steady state and the concentration value of the
enzyme-product complex decreases exponentially to zero, modelled in the Petri
network from Fig. 3 as place p, and ODE f,. The occurrence of the enzyme-
substrate complex ES boosts the increase of the concentration value for the
product P.

The partitioning of the plot from Fig. 5 captures the Petri net modelling of
the Michaelian enzyme kinetics in the p, place and in the p, place, presented in
Fig. 3.

The concentration-time variation for first order irreversible reaction with
k, =1, S(0) =100,P(0) = 0 is represented in Fig. 6 below. The threshold
values are threshold, = 60, threshold, = 40.



178 Stefan Popa

Concgnraton versus Time
b % T il

|
—b—Engyme
‘ —0— Substrate

_,_ Engyme-Subsfrate
Complex
—+— Product

DODODD D DD DD DDDDDIIDIDIIID b 4

Concentration (M)

1L

o I
v
1 2 3 4
‘ Time (5)

Fig. 5 Concentration-time variance of single substrate enzyme kinetics
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Fig. 6 Concentration-time variance of the first order irreversible reaction

The concentration-time variation for first order reversible reaction with
k=3, k, =1, S(0) =100,P(0) = 0 is represented in Fig. 7 below. The
threshold values are threshold,; = 40, threshold, = 60.

The concentration-time variation for the bimolecular reaction with
k, = 0.001, S;(0) =100, S,(0) =200,P(0) =0 is represented in Fig. 8
below. The threshold values are:
threshold, = 155, threshold, = 55, threshold; = 45.

Also, the partitioning of the plots from the above figures captures the Petri
net modelling of the reactions kinetics in the p, place and in the p, place. The
time moment for the models from Fig. 6 to Fig. 8 is taken in the vicinity of the
intersection point of the product and substrate concentration values (P=S).
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The biological meaning of the vicinity of the intersection point stresses
that the amount of the product concentration P is starting to be more than the
amount of the substrate concentration, so the product is beginning to play a
biological meaning in the biological system. Until that moment, the product P
does not play any important biological role, for the models from Fig. 5 to Fig. 9.

9. Conclusions and further work

The novelty of this Petri network model for enzyme kinetics is the
approach of partitioning the ODEs to places, which holds actually the dynamic
information of the biochemical reaction and the dependability assessment of the
model.

The proposed Petri network model for enzyme kinetics may be used in
metabolic signalling pathway modelling. The model may be extended in order to
incorporate exceptions of the single substrate enzyme reactions, like cooperative
binding of substrate to the active site in allosteric regulation, and also to
incorporate multi-strata enzyme reactions like ternary complex or ping—pong.

The dependability of the proposed Petri network model for single substrate
enzyme kinetics may be increased by incorporating fault tolerance mechanisms
and ensuring more experimental results compliance. Also fractal approaches may
be employed for modelling enzyme kinetics [18].
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