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The purpose of this study was: 1) apply different Windkessel models to the 

human cerebral circulation, and 2) compare the experimental data. We tested 24 

healthy adults between the ages of 22 and 80 years old. The arterial blood pressure 

and cerebral blood flow velocity were used as the input and output signals during the 

hemodynamic parameter estimation. The arterial pressure waveform was measured 

from the common carotid artery while simultaneously recording the cerebral blood 

flow velocity from the middle cerebral artery using a transcranial Doppler probe with 

a sampling frequency of 1KHz. Different linear models were studied in the parameter 

estimation. Results showed that a Box-Jenkins linear model provides good confidence 

values, and Windkessel model with four elements is closest to expressing cerebral 

hemodynamic circulation.     
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1. Introduction 

In this paper we study lumped models of cerebral hemodynamic circulation 

and compare them against experimental measurements in adult subjects of different 

ages. For this study the measurements were collected from 24 subjects. If 

sufficiently accurate, models may be able to offer clinical indicators of impaired 

blood flow regulation in the brain under pathophysiological conditions such as 

aging, neurodegenerative disease, and stroke. Quantitative studies of the 

cerebrovascular system are not new, and several categories of models have been 

proposed in past studies. The first category contains a distributed model, frequently 

used to describe detailed vascular geometry and assuming that the circulatory 

system is linear. The distributed model is based on circular cylindrical shapes and 

longitudinal impedance [1]. The second category includes transmission line models 

or lumped Windkessel (WD) models, where the arterial system considers the mean 
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values of the wave shapes of the pressure and flow and assumes the system to be 

linear [1].  One of these models is the Broemser model which corresponds to the 

WD model with three elements [2]. The Toska model is another mathematical 

expression used for the circulatory system modeling that consists of a heart, an 

elastic arterial reservoir and two resistive vascular beds disposed in parallel [3]. 

This model captures cardiovascular changes in humans, beat-to-beat variations and 

neglects the pulsatile pattern of the flow [2].   

Arterial WD model that is applied for a high-frequency pressure-flow 

relation has not been established for the cerebral circulation in human subjects 

because of challenges in recording cerebral arterial pressure [4].  Past research 

assumes the magnitude and the phase of blood pressure versus cerebral blood 

velocity to be a linear transfer function [4]. Olufsen et al. described the blood flow 

as being an unsteady effect governed by principles of fluid mechanics [5]. To 

characterize the blood flow and find a comprehensive model, they used the Navier-

Stokes equations related to fluid dynamics, as well as the suitable non-Newtonian 

relations relevant for the blood [5]. The first and second order lumped models are 

obtained by applying Laplace transform to one dimensional axisymmetric Navier-

Stockes equations ([6]), as well as the residue theory and the solutions applied to 

Bessel equation.  

The research contributions of this paper show that a 4-element WD model 

is the best fit to correlate the pressure and flow measurements of the cerebral 

circulation.  To our knowledge this is the first time such a model was validated for 

the cerebral circulation and the key lumped parameters can be identified from the 

experimental data.  We compared data fitting results of several WD models using 

the state-space linear parameter identification algorithms. Since we did not have 

prior information with respect to characteristics of the signal noise, we also 

established that a Box-Jenkins model fit provides the highest confidence.     

The article is organized as follows: in section 2 are presented the material 

and methods, in section 3 are provided the notation and a briefly summary about 

the 2, 3, and 4-th WD models, as well as the state–space linear models used in the 

parameter’s estimation. The identification method will be described in section 4, 

where the procedure of parameter estimation, criterion of optimization and transfer 

functions describing WD models will be given, followed by experimental results 

presented in section 5. Finally, we present the conclusion of this work. 

 

2. Materials and methods 

A. Study Participants 

This study used data collected from 24 healthy subjects (12 women and 12 

men) between ages of 22 and 80 years old. The subjects were recruited from the 

Dallas/Fort Worth metropolitan area. Each participant was carefully screened for 
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cardiovascular and cerebrovascular disease. Hypertension, diabetes mellitus, 

obesity with a BMI greater than 35 Kg/m², smoking, pregnancy, and presence of 

cerebrovascular, metabolic, neurologic, and psychiatric history were excluded from 

this study. In addition, patients with inflammatory disease, brain damage or trauma, 

hypothyroidism, active alcoholism, or drug consumers were excluded [7]. All 

subjects gave their written informed consent approved by the Institutional Review 

Boards of the UT Southwestern Medical Center and Texas Health Presbyterian 

Hospital of Dallas.  

   

B. Available Data and Acquisition 

All data were acquired in an environmentally controlled laboratory. All 

subjects fasted for >12 hours and abstained from caffeine, alcohol, and intense 

exercise for >24 hours prior to data collection. Subjects rested in the supine position 

for >10 minutes before hemodynamic measurements. Brachial cuff blood pressure 

was taken intermittently using electroshygmomanometer (Suntech, Morrisville, 

NC, USA). Non-invasive beat-by-beat arterial pressure waveform was recorded 

from either the common carotid artery (CCA) or the internal carotid artery (ICA) 

using applanation tonometry (SphygmoCor 8.0, AtCor Medical, Australia). The 

pencil-type pressure sensor was placed directly on the skin where arterial pulse was 

felt strongest (see in Fig. 1. the ICA and CCA localizations). Our preliminary 

observations suggest that pressure waveforms measured in the CCA were like those 

in the ICA (data not shown). Cerebral blood flow velocity (CBFV) was 

simultaneously recorded from the middle cerebral artery using transcranial Doppler 

(TCD) (Multi-Dop X2, Compumedics/DWL, Singen, Germany). A 2-MHz TCD 

probe was placed over the temporal window using a headgrear (Spencer 

Technologies, Seattle, WA) and fixated at a constant angle and depth where the 

optimal CBFV signal was obtained. The data was collected with a sampling 

frequency of 1KHz.  

 

 
Fig. 1. Human carotid artery.  

 

 Carotid pressure waveforms recorded by applanation tonometry was 

calibrated to brachial blood pressure using a standard procedure described in detail 

elsewhere [7]. Briefly, beat-by-beat recording of brachial arterial pressure 

Left and Right Common 

Carotid Arteries



112                                Ioana-Corina Bogdan, Takashi Tarumi, Dan O. Popa 

waveforms was first calibrated to systolic and diastolic brachial blood pressures 

measured by electroshygmomanometer. Brachial mean arterial pressure was 

calculated from area under curve of the brachial arterial pressure waveform. Carotid 

pressure waveform was then calibrated to brachial mean and diastolic blood 

pressures. More details about this procedure can be found in [7]. 

3. Windkessel Model Description 

A. Windkessel circulatory models 

 The WD model is a lumped-parameter model applied for the hemodynamic 

relationship between blood pressure and flow measured through the human vascular 

system [5], [9], [11]. In the cardiovascular system, it can be used to calculate stroke 

volume based on the aortic pressure and flow relationship.  The WD model was 

introduced by S. Hales [12-14], formalized mathematically by O. Franck [15-16] 

considering models consisting of two elements, resistors, and capacitors. [17] 

extended the WD model to three and four elements respectively, based on the 

assumption that with the addition of more elements, the model capacities will better 

represent the pressure-flow relationship, a relation that can be interpreted as an 

input impedance when the system is linear [12] and the high-frequency behavior is 

considerably improved [9]. The input impedance provides an accurate description 

of the arterial tree and is related to the arterial wall properties and blood properties 

but also to the wave propagation [17].        

 The WD model has traditionally been used to estimate the hemodynamic 

load on the heart. The model can be applied to any circulatory system in the human 

body, including the brain [15]. It is a simple model derived from the Poinseuille's 

Law developed for the hydraulic system, but in the Windkessel case describes the 

blood flow through the arteries compared with the fluid flow through pipes [15]. 

However, this model raises questions on how the arterial tree is properly reflected 

during the modeling stage and how to manage the estimated arterial properties [9].  

Different Windkessel model will be presented below, and its parameters will be 

estimated using linear models, results shown in section IV. 

  

B. Two-element Windkessel Model  
 

 The first WD model has a simple form consisting of two elements (i.e., 

resister and capacitor) in parallel as shown in the electric analog circuit from Fig. 

2(a), [15].  The total resistance R depends on the radius of the vessel, and the 

compliance of an arterial network C refers to the elasticity of the vessels [17]. R 

increases with a smaller radius of the vessels while C increases with the elasticity 

of the vessels.  
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  (c) 
Fig. 2.  WD model with two elements (a), three elements (b) and four elements (c)  

  

 The model of the arterial bed is described by a differential equation: 

𝑖(𝑡) =
𝑢(𝑡)

𝑅
+ 𝐶

𝑑𝑢(𝑡)

𝑑𝑡
                     (1) 

where i(t) and u(t) are the cerebral blood flow velocity, analogue to the current 

flowing in the circuit and the carotid blood pressure respectively, which is a time-

varying potential [15]. A more detailed description of Fig. 2. is provided elsewhere 

[15]. Applying Laplace transform to equation (1), we get a first order transfer 

function of the analogue electric circuit (see equation (2)). This expression will be 

used in the parameter estimation, R and C respectively.  

                       𝐻(𝑠) =
𝑈(𝑠)

𝐼(𝑠)
=

𝑅

𝑅𝐶𝑠+1
                 (2) 

Based on Fig. (2)(a) the input impedance can be calculated as follows: 

                      𝑍(𝑠) =
𝑅

𝑅𝐶𝑠+1
                  (3) 

There are different types of vascular impedances, but the input impedance 

quantifies the total sum of resistance and capacitance based on the hemodynamic 

relation between the blood pressure and flow [10].  

 

C. Three-element Windkessel Model  
 

 The second form of the WD model consists of a new element that is the 

characteristic impedance, r (Fig. 2(b)) [19-22], [33], which provides a liaison 

between the left ventricle and its after load [12]. The 3-element WD model can 

generate the same pressure wave profiles as in the arterial tree [11] and capture the 

dynamics of the cerebral circulation [22]. The model can be described by two 

equations resulted from the analog electric circuit (see eq. (4) and eq. (5)), and 

applying Laplace transform to these equations will obtain a transfer function of first 

order for the equivalent WD model with three elements (see eq. (6)).  

𝑖(𝑡) =
𝑢𝑐(𝑡)

𝑅
+ 𝐶

𝑑𝑢𝑐(𝑡)

𝑑𝑡
                                         (4) 

𝑢(𝑡) = 𝑖(𝑡)𝑟 + 𝑢𝑐(𝑡)                                         (5) 

 Equation (4) is like equation (1), and the characteristic impedance is 

included in equation (5).   
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𝐻(𝑠) =
𝑅𝐶𝑟𝑠+(𝑟+𝑅)

𝑅𝐶𝑠+1
                                        (6) 

 The transfer function gives the number of poles and zeros used in the 

parameter estimation. The input impedance is given by: 

𝑍(𝑠) = 𝑟 +
𝑅

1+𝑅𝐶𝑠
               (7) 

 

D. Four-element Windkessel Model  

 

 To reduce the errors caused by low frequencies, a WD model was developed 

with another element, the blood inertia. The 4-element WD model (Fig.2.(c)) was 

further extended by [1], and the lumped-model has the characteristic resistance r 

displayed in parallel with the added blood pressure inertia L. Also, the compliance 

of vessels C remains in parallel with the peripheral resistance R as in the two and 

three elements Windkessel models.  The reasons of developing and extending the 

WD model were not only to represent a much better pressure flow relationship, but 

also to better understand the clinical meanings of the estimated parameters [17].  

 There are three electrical equations resulting from the analog electric circuit, 

including two differential equations (eq. (9) and eq. (10)) and one equation related 

to the current that is crossing over the circuit (eq. (8)). After [23], this model 

provides a relatively good approximation of the real systems and is a better 

predictor than the other two models [24]. 
 

 

𝑢(𝑡) = 𝑢𝐿(𝑡) + 𝑟[𝑖(𝑡) − 𝑖𝐿(𝑡)]                                 (8) 

𝑖(𝑡) = 𝑖𝐿(𝑡) +
𝑑𝑖𝐿(𝑡)

𝑑𝑡
                                          (9) 

𝑑𝑢𝑐(𝑡)

𝑑𝑡
= −

1

𝑅𝐶
𝑢𝑐(𝑡) +

1

𝐶
𝑖(𝑡)                                   (10) 

 

 The transfer function of the WD model is given in equation (11), in which 

one can be observed that the order is increased becoming a second order transfer 

function described by two poles at the denominator and two zeros to the numerator. 

This information will be helpful in the parameter identification and in the selection 

of the method and tools of parameter estimation. 

𝐻(𝑠) =
𝑅𝐶𝐿𝑟𝑠2+𝐿(𝑟+𝑅)𝑠+𝑅𝑟

𝑅𝐶𝐿𝑠2+(𝐿+𝑅𝐶𝑟)𝑠+𝑟
                                      (11) 

 The input impedance of the electric analog circuit is given by the 

following mathematical expression: 

𝑍(𝑠) =
𝐿𝑠

1+(𝐿/𝑟)𝑠
+

𝑟

1+𝑅𝐶𝑠
                                        (12) 

It should be observed that at low frequencies closer to zero Hz, the input impedance 

will be near the value of the peripheral resistance, the value corresponding to the 



A study of Windkessel models for cerebral hemodynamic circulation in humans         115 

measured mean input flow and pressure rapport. At high frequencies, the input 

impedance is equal to the characteristic impedance [17]. 

4. System Identification and Linear Models  

 The goal of the System Identification is to model the physical system and 

its dynamics by mathematical expressions based on experimental data that are 

related to the inputs and outputs of the system. This discipline is extensively used 

in various applications, including hydrology and medicine [26]. In most cases the 

system behavior is less known, or the important parameters have limited 

information, so that the system identification leaves from different types of 

identification: white box, grey box, or black box. In the present work, the parameter 

estimation of the WD model uses the black box identification based on linear 

models: the autoregressive model, the autoregressive moving average model, the 

output error, and the Box Jenkins method. 

 The transfer function for each WD model, described by equations (2), (6) 

and (11) respectively will be associated with a corresponding linear model, having 

the same degree (equations of first or second order). Knowing the order of the 

transfer function, based on the input and output measurements we obtain a time 

domain transfer function with corresponding poles and zeros, which will be 

converted in frequency domain (s-domain), a transfer function identified with the 

WD transfer functions. This step will be described in section 5.  

 

A. Autoregressive Model (ARX) 
 

The structure of the ARX Model is given by equation (13). This model is used 

for a system with an input excitation [27]. In our study, it is represented by blood 

pressure (BP) measured at the carotid level and is used for its simple estimation 

algorithm [27], [28].   

𝑦(𝑡) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑡 − 𝑛𝑘) +

1

𝐴(𝑞)
𝑒(𝑡)                              (13) 

where 𝐴(𝑞) = 1 + 𝑎1𝑞−1+. . . +𝑎𝑛𝑎𝑞−𝑛𝑎 and 𝐵(𝑞) = 𝑏0 + 𝑏1𝑞−1+. . . +𝑏𝑛𝑏𝑞−𝑛𝑏 

are the polynomials of the ARX model, with 𝑎𝑖 and 𝑏𝑖 constant coefficients that are 

estimated, and 𝑛𝑎 and 𝑛𝑏 the degrees of the two polynomials, representing the 

number of poles and zeros respectively, for the transfer function 𝐵(𝑞)/𝐴(𝑞). The 

input (arterial blood pressure), the output (cerebral blood flow velocity (CBFV)), 

and the white noise of the system are represented by 𝑢(𝑡), 𝑦(𝑡) and 𝑒(𝑡), and 𝑛𝑘 is 

the backward shift operator usually named delay. Equation (13) translates a sum of 

transfer functions, the first one generated by the input of the system, and the second 

one generated by the noise model. 
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B. Autoregressive Moving Average Models (ARMAX) 
 

 The ARMAX model brings the polynomial C(q) as an addition to the 

previous model. By this polynomial, the transfer function generated by the white 

noise provides a better flexibility to control the disturbance of the system [27]. 

𝑦(𝑡) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑡 − 𝑛𝑘) +

𝐶(𝑞)

𝐴(𝑞)
𝑒(𝑡)                                (14) 

where 𝐶(𝑞) = 1 + 𝑐1𝑞−1+. . . +𝑐𝑛𝑐𝑞−𝑛𝑐is the noise polynomial term, and 𝑐𝑖 are 

constant coefficients and 𝑛𝑐 represents the degree of the polynomial.  

 

C. Output Error Model (OE) 

 A third linear model used in parameter estimation is the OE model (see eq. 

(14)), where the only uncertainty is the additive white noise e(t) [27], a noise 

generated by the data acquisition procedure.  

𝑦(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡)                                 (15) 

where  𝐵(𝑞) keeps the same expression as the ARX model, and 𝐹(𝑞) = 1 +
𝑓1𝑞−1+. . . +𝑓𝑛𝑓𝑞−𝑛𝑓has a polynomial degree equal to  𝑛𝑓, and 𝑓𝑖 are constant 

coefficients providing the number of zeros of the transfer function  𝐵(𝑞)/𝐹(𝑞). 

 

D. Box-Jenkins Model (BJ) 
 

 The BJ model includes in its structure the autoregressive, the moving 

average and the seasonal moving average terms, [29]. The model provides a good 

flexibility for the transfer function generated by the noise signal, with free 

polynomials for the numerator and denominator [27]. 

𝑦(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑡 − 𝑛𝑘) +

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑡)                             (16) 

where B(q), F(q), C(q) are the same polynomials described previously. The noise 

denominator transfer function is expressed as: 𝐷(𝑞) = 1 + 𝑑1𝑞−1+. . . +𝑑𝑛𝑑𝑞−𝑛𝑑, 

with 𝑑𝑖 constant coefficients and 𝑛𝑑 as the degree of the polynomial.  

5. Parameter Estimation  

There are different techniques applied in the parameter identification using 

methods and procedures based on the available data. For input/output data 

processing, in time or at every moment of time, either a non-recursive or recursive 

technique of identification can be selected [28]. In this work the parameter 

identification is obtained using measured data with a sampling period of 1kHz and 

using a non-recursive technique based on transfer functions. 

 Previous works in WD model estimation used an automatic procedure for 

the parameter identification and adopted the Powell algorithm for the optimization 
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problem. [20] estimates the nonlinear WD model with 3 elements by adding a 

pressure-dependent compliance; the idea is to separate the linear from the nonlinear 

part and formulate equations dependent only on resistances even in nonlinear case. 

In [31] and [11], the lumped model is studied using Matlab computing tools and 

Simulink environment, which uses the state-space matrices in order to obtain the 

numerical values of the unknown parameters.     

 

A. Tools and Procedures in Parameter Identification 

 

 The strategy of choosing a method follows the theory of WD model if the 

circulatory system has a linear form. In this case, our model for the pressure-flow 

relationship will take the form of an ARX, ARMAX, OE or BJ linear model 

respectively. One example of corresponding profiles to the blood pressure and the 

blood flow velocity are shown in Fig. 3. The measurements correspond to subject 

905, (a female of 32 years old). Using the transfer functions provided by the analog 

electric circuit for each WD model, we begin the parameter estimation. Looking at 

eq. (2), which corresponds to the first form of the WD model, the transfer function 

has a single pole and no zeros.  In this case, its transfer function will have only one 

pole 𝑛𝑎 = 1 and 𝑛𝑏 = 1 is not zero because 𝑛𝑏 has the orders𝐵(𝑞) + 1. Resuming 

for the other WD models, where there are second order transfer functions, for the 

model three elements 𝑛𝑎 = 2, and 𝑛𝑏 = 2 respectively, and for the model with four 

elements 𝑛𝑏 = 2, and 𝑛𝑏 = 3 respectively.      

 

Fig. 3. Comparison of WD model with 2-3-4th elements (Young Subject, female of 32 years old). 

 

 The identification of the transfer functions resulted from the available input-

output data is obtained using the Ident toolbox provided by MATLAB, [32]. 

 Few steps are needed in the process of obtaining the proper form of the 

transfer function. Ident Toolbox, after declaring the type of linear model, number 

of poles and zeros, and the transport delay, will provide a discrete transfer function.  
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Knowing that the input-output data are continuous signals, the discrete transfer 

function will be converted using the d2c Matlab function into a continuous transfer 

function. By testing different transport delays, was observed that the number of 

zeros of the transfer function will be increased. However, because these zeros are 

at the origin of the stability plane and do not provide pertinent information, they 

will be neglected. The optimization criterion used in the Ident toolbox will be 

described in the next part, followed by the fitting data related to each WD model. 
 

B. Optimization Criterion 
 

 Matlab's Ident displays the simulated or predicted model output for different 

domains of input-output validation data (frequency domain, time domain or 

frequency-response data) [23]. In this case, we are interested in visualizing the time-

domain validation data, which is related to the BestFit and find the percentage of 

fitting between the real measurement and the estimation. The BestFit represents the 

optimization criterion for the pressure-flow relation and is calculated using the 

following mathematical expression: 

𝐵𝑒𝑠𝑡𝐹𝑖𝑡 = (1 −
|𝑦−𝑦̂|

|𝑦−𝑦̄|
) × 100                                     (17) 

where 𝑦 represents the measured output, 𝑦̂ the simulated or predicted output, and 

finally𝑦̄is the mean of 𝑦. The BestFit interpretation consider 0% as having no fit 

(𝑦̂ = 𝑦̄), and 100% as being a perfect fit between the measurement and the 

estimation. Its value corresponds to a Confidence interval of the output range 

between 0-100 % probability value that is the output of the system [32].     

 

C. Windkessel Models and Data Fitting 
 

 Once all steps mentioned in part B of this section are followed, the 

continuous transfer functions for the three different WD models will have 

expressions that can be associated with equations (18)-(20). By simple 

mathematical computing the peripheral resistance, the resistance to blood flow, the 

compliance of vessels and the blood inertia can be deducted from the estimated 

coefficients of the denominator and numerator of the transfer functions.  

𝐻(𝑠) =
𝑅

𝑠𝑅𝐶+1
=

𝑏0

𝑠𝑓1+𝑓0
                                        (18) 

with 𝐶 = 1/𝑏0and 𝑅 = 𝑏0/𝑓0, where 𝑏0, 𝑓0and 𝑓1are the coefficients of the 

denominator and numerator of 𝐻(𝑠), the transfer function corresponding to the WD 

model with two elements. 

𝐻(𝑠) =
𝑠𝑅𝐶𝑟+(𝑟+𝑅)

𝑠𝑅𝐶+1
=

𝑠𝑏1+𝑏0

𝑠𝑓1+𝑓0
                                       (19) 
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with 𝑟 = 𝑏1, 𝐶 = 1/𝑓0𝑅 and 𝑅 = (𝑏0/𝑓0) − 𝑏1 where 𝑏0, 𝑏1, 𝑓0and 𝑓1are the 

coefficients of the denominator and numerator of 𝐻(𝑠), the transfer function 

corresponding to the WD model with three elements. 
 

𝐻(𝑠) =
𝑠2𝑅𝐶𝐿𝑟+𝑠𝐿(𝑅+𝑟)+𝑅𝑟

𝑠2𝑅𝐶𝐿+𝑠(𝐿+𝑅𝐶𝑟)+𝑟
=

𝑠2𝑏2+𝑠𝑏1+𝑏0

𝑠2𝑓2+𝑠𝑓1+𝑓0
                             (20) 

with 𝑟 = 𝑏2/𝑓2, 𝐿1,2 = (𝑓1 ± √𝑓1
2 − 4𝑟)/2, 𝐶1.2 = 1/𝑅1𝐿1,2 and 𝑅1,2 = (𝑏1/

𝐿1,2) − 𝑟, where 𝑏0, 𝑏1, 𝑏2, 𝑓0, 𝑓1and 𝑓2are the coefficients of the denominator and 

numerator of 𝐻(𝑠), the transfer function corresponding to the WD model with four 

elements. As it can be observed, there are two different values for the resistance to 

the blood flow, compliance of blood vessels and blood flow inertia. This is due to 

a second order equation we have for the numerator of the transfer function. 

However, in the results only the positive values of these three parameters will be 

presented for real physiological considerations. 

6. Experimental Results  

 Using the input-output measurements from 24 subjects, the four linear 

estimation models (i.e., ARX, ARMAX, BJ) for each form of WD model were 

studied. Three different data set measurements were considered in this study. First, 

we used the first set of measurements to check the behavior of the linear models 

and found that delay of 36 ms between changes in blood pressure and blood flow 

was needed for an accurate estimation of the transfer function coefficients. The 

meaning of this delay can be interpreted as the time it takes for the blood pressure 

to travel from the carotid artery to the middle cerebral artery where blood flow is 

measured. The BJ model provided the best confidence values.  

 The second set of data was obtained from young subjects and strengthen the 

idea that BJ model is well fitted as linear model in parameter identification, more 

than that the linear model shown good confidence values for the 4-WD model. The 

confidence values for the three different forms of WD model are given in the 

Appendix, in Table 7. The highest confidence value is obtained in the BJ model 

applied for 4-WD model being equal to 82.52% (subject 905, woman of 33 years 

old), and a 𝑛𝑘 delay of 24 ms. In the 3 WD model, BJ model provides a confidence 

value of 78.36% (subject 877, man of 38 years old), and a 𝑛𝑘 delay of 16 ms. The 

confidence value of 3-WD is with almost 5% smaller than the 4-WD model. Based 

on the results from the two set of data, we proposed to study in the same conditions 

also old subjects and check if there is any difference between confidences values.  

 The third set of data was obtained from the same young subjects and from 

old sub There is a small difference between BJ and OE linear models. In the 

Appendix are shown the confidence values for all forms of WD model and different 

linear models for old and young subjects (Tab. 8, Tab. 9). jects this time. Some of 

the curves fitting of the WD model with two, three and four elements respectively 
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for young and old subjects (the young subject 857, a woman of 23 years old and an 

old subject 1057, a man of 72 years old), based on the BJ model can be seen in Fig. 

4 and Fig. 5 respectively. It is readily apparent that 2-WD model is not the best 

choice following the red curve from both figures. The corresponding confidence 

values for each subject and in function of the WD model forms are given in Tab. 1 

and Tab. 2 respectively.   

 
                                                                                                              Table 1, Table 2 

CONFIDENCE FOR BJ LINEAR MODEL 

RESULTS FOR WD MODEL, 3RD SET OF 

MEASUREMENTS, YOUNG SUBJECTS. 
 

Subjects/ 
Gender/Age 

 

4-WD 
[%] 

3-WD 
[%] 

 

2-WD 
[%]  

 

824/M/24 82.3 78.34 57.69 

839/F/22 77.85 74.13 47.68 

849/F/23 79.03 73.42 54.33 

873/M/22 78.84 75.63 64.91 

877/M/38 74.42 71.49 58.6 

857/F/23 83.84 77.06 48.85 

869/F/34 79.42 77.15 44.99 

882/M/26 68.15 61.76 37.52 

901/M/38 76.85 74.69 64.25 

905/F/32 79.18 78.36 63.29 

909/F/32 77.74 76.86 53.86 

913/M/24 62.8 60.3 50.98 
 

CONFIDENCE FOR BJ LINEAR MODEL 

       Results obtained for WD model, 3rd set 

                 OF MEASUREMENTS, OLD SUBJECTS. 
 

Subjects/ 
Gender/Age 

 

4-WD 
[%] 

3-WD 
[%] 

 

2-WD 
[%]  

 

546/M/70 79.62 79.04 41.00 

577/M/69 81.69 78.50 58.37 

585/M/70 82.07 79.60 62.78 

1001/M/70 81.44 78.58 51.91 

1003/F/69 77.30 72.94 47.29 

1008/F/69 74.59 72.85 42.05 

1021/M/71 73.84 73.08 34.77 

1022/F/65 78.94 76.42 48.70 

1033/F/73 72.84 72.67 64.74 

1057/M/72 83.07 78.68 40.05 

1059/F/80 82.83 74.39 51.19 

1065/F/69 79.10 79.10 55.95 
 

  

Fig. 4. Comparison of WD with 2-3-4th 

elements. Data from a representative young 

subject. 

Fig. 5. Comparison of WD with 2-3-4th 

elements. Data from a representative old 

subject. 

 

Because 4-WD model provided the highest confidence values than 2-WD and 3-

WD model respectively, we proceed to the next step of the study, to the parameter 

identification. In this case, based on the results obtained in the first and second set 
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of data, and knowing that BJ linear model describes a complete model with noise 

properties modeled independent from the system dynamics [35], we decided to 

estimate the numerical values of the WD model following the BJ results.  

 In this work the noise model was not considered in the BJ model. Thus, in 

Tab. 3 and Tab. 4 are given the numerical values for all four parameters based on 

the BJ linear model. The identified parameters keep the same range of values, (the 

resistance to the blood and the compliance of vessels have values multiple of 

103and 10−3respectively). 

 The highest confidence value for young subjects was about 84%, and 83% 

for old subjects which are good fits because the noise of the measurements was not 

considered, modeled, or filtered. Even in some subjects’ case the 3-WD model 

shows close confidence values to that one with four elements; however, the 

extended last model provided overall better results. The numerical values obtained 

for 2-WD and 3-WD are comparable with results found in [5]. 

 
 Table 3, Table 4 

PARAMETERS FOR BJ MODEL, 4-WD 

Results: 4-WD, 3rd set of measurements, 

young subjects. 
 

Subjects/ 

Gender/ 
Age 

 

r 
[𝑚𝑚
⋅ 𝐻𝑔
⋅ 𝑙−1

⋅ 𝑠] 

 

L 
[𝑚𝑚
⋅ 𝐻𝑔 ⋅ 𝑙−1

⋅ 𝑠2] 

R 
[𝑚𝑚
⋅ 𝐻𝑔
⋅ 𝑙−1

⋅ 𝑠]
⋅ 103 

 

C 
[𝑙/𝑚𝑚
⋅ 𝐻𝑔]
⋅ 103 

824/M/24 1.61 0.04 0.87 27.4 

839/F/22 2.86 0.14 0.28 24.8 

849/F/23 2.78 0.03 2.03 14.3 

873/M/22 2.65 0.05 0.96 18.8 

877/M/38 3.19 0.09 0.72 15.5 

857/F/23 3.83 0.06 1.43 12 

869/F/34 2.46 0.06 0.95 18.7 

882/M/26 3.55 0.07 0.8 17.6 

901/M/38 1.88 0.03 1.66 18.2 

905/F/32 1.53 0.07 0.3 43.8 

909/F/32 1.75 0.04 1.18 19.8 

913/M/24 1.49 0.03 1.04 28.8 
 

PARAMETERS FOR BJ MODEL, 4-WD 

Results: 4-WD, 3rd set of measurements, 

old subjects. 
 

 

Subjects/ 
Gender/Age 

 

r 
[𝑚𝑚
⋅ 𝐻𝑔
⋅ 𝑙−1

⋅ 𝑠] 

               L 

   [𝑚𝑚 ⋅
𝐻𝑔 ⋅ 𝑙−1 ⋅
𝑠2] 

 

R 
[𝑚𝑚
⋅ 𝐻𝑔
⋅ 𝑙−1

⋅ 𝑠]
⋅ 103 

 

C 
[𝑙/𝑚𝑚
⋅ 𝐻𝑔]
⋅ 103 

546/M/70 1.84 0.02 3.10 13.2 

577/M/69 1.54 0.03 1.02 28.1 

585/M/70 1.70 0.03 1.53 20.2 

1001/M/70 1.62 0.03 0.95 30.3 

1003/F/69 1.62 0.03 0.95 30.3 

1022/F/65 1.83 0.04 1.08 24.3 

1033/F/73 1.58 0.01 5.90 13.1 

1057/M/72 2.05 0.08 0.41 32.1 

1059/F/80 2.87 0.07 0.70 21.2 

1065/F/69 2.11 0.02 5.90 8 

 

 

 

7. Conclusion and Future Works 
 

 We studied WD models of human cerebral circulation with the increasing 

number of elements. Based on an assumption of the linear systems, we estimated 

the Windkessel parameters using the ARX model, ARMAX model, the OE model 

and BJ model respectively. The hemodynamic data were collected from a group of 

young adults, and into a next step from old subjects. The third data set allowed us 
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to conclude that the circulatory hemodynamic can be modeled and estimated using 

a 4-element model for both young and old subjects.  The identified parameters of 

the model may provide physiological interpretation of effects of aging of the 

cerebral circulation.  
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APPENDIX 
Table 7 

CONFIDENCE FOR LINEAR MODELS: WD MODEL USING THE 2ND SET OF MEASUREMENTS. 
 

Subjects/ 

Gender/ 

Age 

 

4WD [%] 3WD [%] 2WD [%] 

ARX ARMAX OE BJ 

 

ARX ARMAX OE BJ ARX 

 

ARMAX OE BJ 

24/M/24 72.80 72.80 82.30 82.30 72.85 77.06 77.06 77.06 16.11 48.85 48.85 48.85 

839/F/22 74.32 76.17 76.17 78.84 73.59 73.59 75.63 75.63 43.72 43.72 64.91 64.91 

849/F/23 72.10 72.1 78.62 79.42 72.21 72.21 77.47 77.47 17.33 44.99 44.99 44.99 

857/F/23 50.51 50.51 68.15 68.15 50.44 51.66 61.76 61.76 21.42 37.52 37.52 37.52 

73/M/22 69.1 76.89 76.89 76.89 68.96 74.73 74.73 74.73 59.53 59.53 64.31 64.31 

77/M/38 72.64 79.18 79.18 79.18 72.61 78.36 78.36 78.36 51.12 51.12 63.29 63.29 

82/M/26 -40 -40 61.57 61.57 33.96 33.96 21.35 66.65 1.08 19.77 19.77 19.77 

01/M/38 64.33 77.74 77.74 77.47 64.39 64.39 76.86 76.86 38.54 38.86 53.86 53.86 

905/F/32 58.42 62.80 61.01 62.8 57.72 57.72 60.30 60.30 44.33 44.33 50.98 50.98 

906/F/33 72.91 72.91 82.52 82.52 72.68 72.68 78.34 78.34 40.30 57.11 57.69 57.69 

909/F/32 67.13 67.13 80.99 80.98 67.36 67.36 74.13 74.13 26.74 26.75 47.68 47.68 

913/M/24 65.15 65.15 77.74 79.12 65.18 73.42 73.42 73.42 34.11 54.11 54.11 54.11 

 

Table 8 

CONFIDENCE FOR LINEAR MODELS: WD MODEL USING THE 3RD SET OF MEASUREMENTS, 

YOUNG SUBJECTS.  
 

Subjects/ 

Gender/ 

Age 

 

4WD [%] 
3WD [%] 2WD [%] 

ARX ARMAX OE BJ 

 

ARX ARMAX OE BJ ARX 

 

ARMAX OE BJ 

819/F/35 69.31 69.31 81.27 81.27 69.31 69.31 79.91 79.91 17.59 17.59 47.83 47.83 

824/M/24 72.91 72.91 82.3 82.3 72.68 72.68 78.34 78.34 40.03 40.04 57.69 57.69 

839/F/22 67.13 67.13 77.85 77.85 67.36 67.36 74.13 74.13 26.74 26.74 47.68 47.68 

849/F/23 65.15 65.15 79.03 79.03 65.18 65.38 73.42 73.42 34.11 34.11 54.33 54.33 

873/M/22 72.80 72.8 83.84 83.84 72.85 72.85 77.06 77.06 16.11 16.12 48.85 48.85 

877/M/38 67.96 67.96 74.42 74.42 67.73 67.73 71.49 71.49 46.80 46.8 58.6 58.6 

857/F/23 74.22 74.22 78.84 78.84 73.59 73.59 75.63 75.63 43.72 43.72 64.91 64.91 

869/F/34 72.10 72.1 79.42 79.42 72.21 72.21 77.15 77.15 17.33 17.33 44.99 44.99 

882/M/26 50.51 50.51 68.15 68.15 50.44 50.44 61.76 61.76 21.42 21.42 37.52 37.52 

901/M/38 69.05 69.05 76.85 76.85 68.91 68.91 74.69 74.69 54.67 54.67 64.25 64.25 

905/F/32 72.64 72.64 79.18 79.18 72.61 72.61 79.18 78.36 51.12 51.12 63.29 63.29 

906/F/33 33.95 33.95 68.9 68.9 33.90 33.9 66.65 66.65 1.08 1.08 19.77 19.77 

909/F/32 64.33 64.33 77.74 77.74 64.39 64.39 76.86 76.86 38.54 38.55 53.86 53.86 

913/M/24 58.39 58.39 62.8 62.8 57.72 57.72 60.3 60.3 44.33 44.33 50.98 50.98 

 

Table 9 

Confidence for Linear Models: WD model using the 3rd set of measurements, Old Subjects. 
 

Subjects/ 

Gender/ Age 

 

4WD [%] 3WD [%] 2WD [%] 

ARX ARMAX OE BJ 

 

ARX ARMAX OE BJ ARX 

 

ARMAX OE BJ 

546/M/70 58.35 58.28 79.62 79.62 58.28 58.28  79.04 79.04 21.43 21.43  40.99 41 

577/M/69 71.89 81.55 81.69 81.69 76.3 71.92 61.08 78.5 36.67 58.34 53.37 58.37 

585/M/70 72.45 79.41 82.07 82.07 72.66 72.66  79.6 79.6 45.57 45.57  62.78 62.78 

1001/M/70 71.34 71.34 81.44 78.92  71.69  71.69  78.58 78.58 23.47 23.47  51.91 51.91 

1003/F/69 62.92 62.92  77.3 77.3 63.06  65.06  72.94 72.94 25.83 25.83  47.29 47.29 

1022/F/65 53.3 53.3  74.59 74.59 53.56  53.56  72.85 72.85 24.97 21.71  42.05 42.05 

1033/F/73 56.96 56.96  73.84 73.84 56.98 56.98  73.08 73.08 12.55 12.55  34.77 34.77 

1057/M/72 62.8 62.8  78.94 78.94 62.92 62.92  76.42 76.42 26.13 26.13  48.7 48.7 

1059/F/80 66.45 66.46  72.84 72.84 66.26  72.67  72.67 72.67 60.68 60.68 64.74 64.74 

1065/F/69 70.81 70.81  83.07 83.07 70.87 70.81  78.68 78.68 13.56 13.56  40.04 40.05 

 

 


