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COMPRESSION SCHEME FOR WIRELESS SENSOR
NETWORKS USING A DISTRIBUTED SOURCE CODING
ALGORITHM BASED ON RAPTOR CODE

Dragos Mihai OFRIM', Dragos Ioan SACALEANU?, Vasile LAZARESCU®

Aceasta lucrare adreseaza problematica compresiei datelor in rellelele de In
this paper, the problem of distributed source coding for data compression in
wireless sensor networks (WSN) is addressed. To achieve high levels of
compression, a complete solution for network architecture, data correlation model
and distributed source coding (DSC) algorithm is proposed. DSC is implemented
using Raptor codes, the newest class of fountain codes. Rigorous tests proved better
performance, in terms of compression rate, of the proposed solution compared to
DSC schemes using LDPC or Turbo Codes. As tests also revealed, the differences in
architecture between the proposed systematic version and the non-systematic
version of Raptor code enable the implementation of DSC in a wide range of WSN
applications.
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1. Introduction

Wireless sensor networks (WSN) have generated a lot of research during
the past decade. Their main challenge is designing robust, low power devices that
operate in industrial environments for a long period of time. Because they are
battery powered and their processing capability is reduced, optimizations in data
processing and data transmissions are needed to enhance the lifetime and
throughput of the network.

Data compression is essential in reducing the amount of information sent
over the wireless channel, thus reducing many cost functions of interest, like
energy spent by sensor nodes, processing capabilities, data routing delay and
efficiency. WSN compression schemes implementing algorithms based on source
codes like Huffman [1] and Shannon-Fano-Elias [1] codes exploit internally the
redundancy of data for each sensor node. More efficient approaches explore the
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inter-correlation of data between the sensors. These are based on the
groundbreaking theory developed by Slepian and Wolf [2], which allows
distributed source coding (DSC) of correlated sources. The sensor nodes are
modeled as correlated sources of information using mathematical models that
exploit the dependency in the measured data at each sensor, thus enabling data
compression. Successful DSC schemes have been implemented using block codes
(including LDPC — Low Density Parity Check) [3] and Turbo Codes [4].

This paper proposes a new compression scheme for WSN implemented
using Raptor codes, the newest class of rateless codes. The advantage of using
Raptor codes in real DSC applications is that they offer a low complexity of the
encoder and a flexible code rate that can always be adjusted to match the changes
is the data correlation parameters. Moreover, as the tests will reveal further in the
paper, Raptor code, with both its systematic and non-systematic version, enables a
great range of WSN applications, from simple environment monitoring, to video
Sensors.

2. Fundamentals of distributed source coding

During this paper, random variables are noted using capital letters, e.g., X,
Y. Vectors are denoted by lower-case letters, e.g., X, ¥ and matrices by bold upper-
case letters, e.g. Gk xn.
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Fig.1 Distributed compression of two correlated, i.i.d., discrete random sequences, X and Y

In WSN, sensor nodes are modeled as independent, identically distributed
(i.i.d) sources of information. Let (X, Y) be a pair of two correlated i.i.d sources.
One way to model the correlation between these two sources is via a “correlation
channel”, where X =Y + N and N is a random variable characterizing the noise of
the correlation channel. Thus, one of the two sources is modeled as a noisy
version of the other.

Slepian-Wolf theorem [2] states that two correlated sources, X and Y, can
be coded separately and decoded jointly (Fig. 1). Each source encodes the
information at a certain rate and sends in further to the decoder. The rate bounds
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which ensure a lossless recovery of both sources at the decoder are [2]: Ry >
H(X]Y), Ry > H(Y|X), and Ry +Ry > H(X)Y). In practice, the asymmetric rate
bounds are used for simplicity of implementation: Ry > H(X]Y) and Ry > H(Y).
This way, one source, Y, is perfectly known at the decoder, whiles the other one,
X, needs to be perfectly recovered at the decoder side. Compression is achieved
for source X, as the information rate Ry is lower than the source entropy H(X).

The key in implementing distributed source coding in WSN is using
channel codes. Although classic compression schemes use other types of codes
which eliminate the source’s redundancy, channel codes add redundancy to the
source information. This redundancy is used to recover the possible errors which
occur during the transmission over a communication channel. In the DSC case,
the communication channel is represented by the correlation channel and source X
represents a noisy version of the source Y.

Based on the Slepian-Wolf theorem [2], Wyner [5] developed a practical
approach to implement DSC. Each possible sequence of source X is indexed using
parity-check bits from a systematic channel code. To encode a source word X of k
bits, a systematic codeword (k + s, k) is needed, generated using the generator
matriX Gpxe+s) = [Ix|Pixs]. The s-tuple p = XP, which are the parity bits,
represents the compressed information that is sent to the decoder. Here, the (k +
s)-bits codeword g = [y;«x|p] is created by attaching the side information y; y,
from source Y, to the received parity information p from source X. By decoding
g, the original codeword of source X is estimated. To ensure a lossless recovery,

Ry =5/}, = HXIY).
3. Distributed source coding using Raptor code

Raptor codes [6] are the newest family of fountain codes, also called
rateless, which are erasure protection codes. Raptor codes are based on the
previous version of rateless codes, the Luby Transform — LT [7]. An LT code with
parameters (k, C, Q(x)) generates an infinite number of encoded symbols from the
source symbols using a distribution Q(x) [7]. To generate an encoded symbol, the
encoder samples a degree d from the distribution and then randomly chooses d
source symbols which are then XORed to form an encoded symbol. This process
can be represented using a Tanner graph [8], in which the source nodes are called
variable nodes and the encoded symbols are named check nodes. An edge
connecting a variable node to a check nodes means that the corresponding source
symbol is among the symbols XORed to form the corresponding encoded symbol.
To ensure a succsessful decoding, the associated Tanner graph of the LT code
must have at least cklog(k) edges.

One of the disadvantages of the LT code is that the encoding and decoding
costs are not constant. To relax the condition of having at least cklog(k) edges,
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Amin Shokrollahi developed the Raptor code [6]. Raptor code is the
concatenation of an LT code with a precode, a high-rate systematic linear code,
like LDPC code. The precode ensures that the encoding and decoding complexity
of the LT code varies only lineary with the number k& of source symbols. Thus, the
LT code is required to recover only a constant ratio of the source symbols, while
the precode recovers the remaining symbols.

The ability to continuously sample from the distribution Q(x) assures the
rateless characteristic of the Raptor code. In the DSC case, this is a great
advantage, as the same code architecture can match any desired rate Ry, even
when it is dynamically changed at runtime. Moreover, the low complexity Raptor
encoder best suites the common applications of WSN, where, due to the low
capabilities of the wireless sensor nodes, low processing necesities are required.

As mentioned before, the DSC arhitecture requires channel codes with
error correcting capabilities, while fountain codes were designed for errasure
protection [6,7]. To fully benefit of the Raptor code advantages in the DSC case,
the decoding algorithm must enable the correction of the ,,correlation errors”. This
paper proposes the implementation of a soft decoding algorithm like belief
propagation [9], which enables error correction capabilities for the Raptor code.

A.Encoding

To fully expose the advantages of DSC with Raptor code in WSN, this
paper proposes a systematic and a non-systematic version of Raptor code. Both
structures use a systematic high-rate LDPC code as precode, defined by the (k+s)
X k generator matrix G;ppc. The LT code is characterised by a N x (k +s)
generator matrix G;r, with N not fixed, depending on the desired rate Ry. Let X =
{x1,%2,x3,...,x;} be arealization for £ source symbols of X.

In the proposed non-systematic version of Raptor code, the source
symbols are first encoded with a systematic LDPC code, resulting a vector of k+s
LDPC symbols X’ = G;ppc XT, X* = {X1,X2,X3,- . X1X k4 15- X kts}. Then, the LDPC
symbols are coded using the LT code, resulting a number of N=p coded symbols
X =Gyppc X' = {x1,..., xp} which are sent to the decoder. According to Slepian-

Wolf theorem [2], Ry = p/ i H(X]Y). In the proposed non-systematic version, the

source symbols are not among the coded symbols, as the LT code randomly
XORes the LDPC symbols to calculate the coded symbols.

The proposed systematic Raptor encoder assures that the source symbols are
among the coded symbols. For that, a vector of k+s intermediate symbols is
generated at first

x*=A"1xdl
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where A is a full rank (k+s) x (k+s) matrix and d is a (s+k)-tuple formed by s zeros
and the k& source simbols :

These intermediate symbols are then encoded using a (k+p) x (k+s) G
generator matrix, resulting an output vector X = {X1, X, e, Xi) Xjs 1. - -» Xi+p}
containing, in the first & positions, the source symbols. In this case N =k + p, and
the rate is Ry = p/ k2 H(X|Y), because in the systematic version only the

{Xk+15--+» Xk 4p} Output symbols are sent to the decoder.

B. Decoding

The joint decoder of the DSC scheme receives Ry and Ry bits from the two
correlated sources X and Y. Source symbols Y = {y;,y2,v3,...,yx} of Y are perfectly
known at the decoder and are considered side information for decoding the
original source symbols X, along with the Ry parity bits. To properly decode the
original source symbols of X, the proposed belief propagation [9] algorithm is
used. The side information Y is interpreted as a noisy version of X.

The belief propagation is a message passing algorithm based on sending
belief messages between the nodes of the graph. As stated before, the Raptor
scheme is represented using a Tanner graph [8]. For every source symbol x; the
aposteriori probability Pr(x; = 1]y) that the bit has value 1, knowing the side
information Y, is calculated. In reality, as a measure of trust, the log-likelihood
ratio (LLR) L(x;) is used

Pr(x; = 0ly)

L(x;) & In—i = 77
) & g =1y

(2)

There are two types of nodes in a Tanner graph: variable nodes and check

nodes. Using general notation, a message ¢;(x) from a variable node x; to a check
node u; represents the propability that the variable node x; has a certain value,
knowing all the extrinsic information received by the variable node x; from all the
check nodes it is connected to, except u;. The message r;(x) from a check node u;
to a variable node x; represents the probability that the ; parity is checked,
knowing x; and the distributions of the other variable nodes connected to u; (other
than x;), depicted by their corresponding messages sent to u;. The following
formulas apply to these messages:

tanh (T];i) = [Ii/»; tanh (%)
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Fig. 2 Tanner graph associated to the non-systematic Raptor code and belief propagation algorithm
for decoding the source symbols

For the proposed non-systematic version, the associated graph is depicted
in Fig. 2. Variable nodes are marked as circles, while the check nodes are
represented by squares. The LLRs for the source symbols are
calculated using (2), while the LLRs for the LDPC parity symbols are initilized
with zero, as there is no apriori information about them.

The messages respect the rules in (3) and the following notations are used:

. and — messages sent from the intermediate nodes to the output

nodes and, respective, from the output nodes to the intermediate nodes, inside
the LT graph, at iteration /.
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o mfl_zc and mgl_))i - messages sent from intermediate nodes to LDPC

check nodes and, respective, from LDPC check nodes to intermediate
nodes, inside the LDPC graph, at iteration /.

The decoding algorithm is performed in two steps: first, messages are
passed through the associated graph of the LT code until no more errors can be
corrected or the maximum number of iterations for this phase is reached; second,
messages are passed through the LDPC decoder, using the updated LLRs from the
LT decoding step. The algorithm stops when either all the source symbols are
recovered, or the maximum number of iterations is reached. At each iteration, the
new values of the LLRs are evaluated and the source symbol is estimated, using
the following decision scheme:

. (0 if L(x)=0
"_{1 if L(x;) <0 )

For the systematic Raptor case, the associated Tanner graph is depicted in
Fig. 3. Different from the non-systematic case, in this configuration the LLRs are
associated to the first k£ output symbols, as the source symbols are found within
the Raptor codeword. The middle nodes represent now the intermediate symbols,
as resulted from (1). Besides the messages defined for the non-systematic version,

two more intermediate messages are used in this systematic case:

. mEIT)'i - messages generated by the intermediate node i from the LT

graph
. mggﬁc — messages generated by the intermediate node i from the
LDPC graph

The same cascading scheme is used for the decoding algorithm of the
proposed systematic version: first, messages through the LT graph are passed and
the new LLRs are calculated at the output symbols. At the end of the LT decoding
step, occuring when the maximum number of iterations is reached or when no
more errors can be corrected, the LDPC decoding starts, passing messages from
the output nodes to the LDPC check nodes. At each iteration, the source symbols
are estimated using (4). The algorithm ends when either all the source symbols are
recovered, or the maximum number of iterations is reached.
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Output symbols Intermediate nodes LDPC check nodes

Fig. 3 Tanner graph associated to the systematic Raptor code and belief propagation algorithm for
decoding the source symbols

4, Data correlation model

To effectively implement the proposed DSC in a real wireless sensor
network application, several tasks need to be established: first, the architecture of
the WSN has to be designed for the proper implementation of the DSC scheme;
second, the mathematical model for the data correlation must be feasible and
reflect the actual correlation of the measured data.

A. The proposed DSC architecture for wireless sensor networks

The proposed architecture for the WSN is cluster-based, as depicted in
Fig. 4. DSC is applied within each cluster as follows: the source Y, which
constitutes the side information, is represented by the cluster-head (CH).
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Fig. 4 Cluster based architecture of the WSN.

The other nodes of the cluster represent the sources X;, i = 1,...,n. The CH
gathers all the information from the other nodes and sends it further to the base
station, which performs the decoding. Thus, as side information, the CH has rate
Ry > H(Y), while each sensor node has rate Ry; > H(Xj|Y).

B. Correlation model based on a binary symmetric channel

As DSC is implemented using channel codes, one way to model the
correlation is by using a standard channel model, like the binary symmetric
channel (BSC) [10]. For each received bit, p represents the probability that an
error occurred during the transmission, while (1 - p) represents the probability that
the bit was successfully received. Following this model in the DSC schemes, (1 —
pi) represents the probability that a bit x; from the source X; has the same value as
the corresponding bit y; from the side information Y. Therefore, the information
rates for sources X; become [10]:

Rxi > H(X;|Y) = —p; logp; — (1 — p;) log(1 — p;) ®)

At the decoder, the LLRs are calculated using the BSC model and (6):

L(x;)=(1— 2y,-)ln1;—f’i (6)

The belief propagation decoding algorithm is then initialized. In case the
decoder is unsuccessful in recovering the original source symbols X;, that means
rate Ry; was under estimated and the base station informs the sensor node X; to
increase the rate. The power of the Raptor code is that the rate can easily be
adjusted, without changing the architecture of the code, by just sampling more
values from the distribution Q(x) of the LT code, thus increasing the number of
generated code bits.
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5. Experimental results

To justify the proposal of using Raptor code for DSC, over other channel
codes, the performance over BSC correlation model of both systematic and non-
systematic proposed versions has been evaluated. Comparison were made with
state of the art LDPC [3] and Turbo codes [4], which are also used in distributed
source coding of correlated sources.

First, the evolution of bit error rate (BER) over the source rate has been
tested (Fig. 5). The source word length was 5000 bits and the compression rate
was set to 2. The theoretical Slepian-Wolf (SW) limit of the rate is then H(X]Y) =
0.5. The entropy was continuously decreased, keeping the compression rate
constant, until a low BER was reached.
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Fig. 5 BER vs. entropy for different codes

The superior performance of the proposed systematic Raptor code over the
best Turbo and LDPC codes is visible in Fig. 5. The non-systematic version has
the poorest performance. On the other hand, it can be observed that the theoretical
SW limit cannot be reached in real implementations.

Second, the variation of the compression rate for different probabilities of
error p has been studied. The case with BER very close to 0 has been considered.
The source word length was 5000 bits.
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Fig. 7 BER vs. k for systematic and non-systematic Raptor code

The superiority of the proposed systematic Raptor code over the Turbo
code can be observed in Fig. 6. The SW limit is marked as a reference. The next
study was the comparison of the two version of Raptor code at different source
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word lengths k. The compression rate was kept constant at a value of 2. It can be
observed in Fig. 7 that the systematic version of Raptor code has very low BER
for long source words, while the nonsystematic version has great performance for
small source words.

6. Conclusions

This paper presents a novel compression scheme based on DSC,
implemented using Raptor code. In the proposed WSN architecture, the
systematic Raptor code outperforms the best implementations based on state of
the art LDPC and Turbo codes in terms of compression rate. Compared to the
non-systematic version, the systematic Raptor code has a very low BER when
long source words are used, while the non-systematic code reaches BERs close to
zero when small code words are used. This very important discovered feature
enables the use of Raptor code in a large variety of wireless sensor networks
applications, from environmental monitoring, where small code words are used, to
multimedia applications, where long data streams are processed.
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