U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 3, 2015 ISSN 2286-3540

MULTIPLE CLASS SYNCHRONIZATION OF FRACTIONAL-
ORDER UNCERTAIN CHAOTIC SYSTEMS

Naeimadeen NOGHREDANI', Saced BALOCHIAN?

In this paper, a sliding mode controller is proposed for synchronization of
fractional-order chaotic systems in the presence of uncertainty. First, a class of
three-dimensional fractional-order chaotic systems has been studied and then
sliding mode controller is designed to guarantee asymptotically stable presence of
uncertainty. In addition, control of fractional-order Lu & Chen system is
implemented by this method. Simulation results confirm numerical results.
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1. Introduction

Chaos phenomenon can be considered as one of the hot issues in many
applications such as medical [1-3], pharmaceutical [4], laser [5, 6], and economic
systems [7, 8]. So chaos can be part of a group of the most fascinating subjects
which has attracted wide attention in recent years. Fractional calculus was
introduced almost 300 years ago. But, in recent decades, the study of fractional
calculus has attracted the wide attention of researchers as a branch of mathematics
[9-13]. Fractional-order chaotic systems occur as nonlinear phenomena in many
scientific fields, such as chaotic behavior in financial systems [14, 15] and many
articles were published in the field of fractional-order chaotic systems [16-18].
Today, control and synchronization of fractional-order chaotic systems is one of
the most interesting topics that attracted the attention of researchers in the past
decade. For example, in [19], a fractional order sliding mode controller is
implemented for unknown chaotic fractional order systems. Synchronization
strategies of a three-dimensional chaotic finance system are investigated in [20].
In [21] a non-fragile state feedback controller is applied for the fractional order
synchronization of a new chaotic system. Synchronization of chaos has been
studied for fractional-order Liu system [22]. Also, in [23] the chaotic
synchronization of Genesio-Tesi system is studied utilizing two strategies; active
control and sliding mode. Projective synchronization of fractional order chaotic
systems with non-identical orders is investigated in [24]. In [25] a robust observer
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was used for synchronization of integer order and fractional order Chua’s systems.
Concept of synchronization of different fractional order chaotic systems using
active control technique is demonstrated in [26]. In [28] a fractional-order scalar
controller which involves only one state variable is proposed. Also, some circuits
are designed to realize proposed control schemes.

In this paper, a set of fractional order chaotic systems with uncertainty is
considered, which can include a variety of fractional order chaotic systems such as
Chen, Lorenz, Lu, Liu and financial. To control and synchronize fractional order
uncertain chaotic systems, a fractional order sliding mode controller is proposed.
The fractional-order sliding mode controller investigated is asymptotically stable
in the presence of uncertainty. Simulation results clearly show that the proposed
sliding mode controller has the ability to eliminate chaos and mitigate Chattering
phenomenon.

2. Fractional-order calculus

Derivative operator - integrator is characterized by ,D,', a combination of

differential-integral operator used in the calculations. The operator is a symbol to
represent the fractional integral and fractional derivative expressed in a phrase and
is defined as follows:

d
— >0
dte q

1 g=0
t
[@* a<o

Dq

where ( is the fractional order. There are various definitions for fractional

derivative and integral. The most common definitions are Grunwald—Letnikov
definition, Riemann—Liouville definition and Caputo definition. In the rest of this
paper, Riemann-Liouville (RL) definition of derivative is used. RL derivative in
the order of q is explained below ([27]):

df (t 1 d" f
Df =D )= [
dt* C(m-q)dt™ 7t —17)
where m is the first integer which is not less than ¢, i.e. M —=1<0g <M and
I'(.) is the well-known Euler’s gamma function
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L(P)=|"t"le”dt ; T(P+)=PI(P)

3. System description

A class of three-dimensional fractional-order chaotic systems is given by:

d*x =yf(X,y,z)+z.4(X,y,2)—ax
dtq] M b b . b b b
dQZy

=g(x,y,z)-py, 1
o =9(.Y.2)-py (1)
d%z
dtq3 :y'h(XayaZ)_X'¢(X7yaZ)_}/Za

where q; (i =1,2,3)are fractional orders satisfying 0<q, <1; X,y and Z are

state variables. Each of the four functions f (.),g(.),h(.) and ¢(.) is considered as

continuation nonlinear vector functions belonging to R — R space, and «, 3,7
are known constants, for any negative or positive values.
Remark 3.1. If g, =0, =0, =0, fractional-order system (1), is called a

commensurate fractional-order system. Otherwise, it is called incommensurate
fractional-order system.

Remark 3.2. Note that many fractional-order chaotic systems belong to
the class characterized by (1). Examples include the fractional-order financial
system, the unified chaotic system of fractional-order version (including the
fractional-order Chen system, fractional-order Lu’s system). Table 1 shows that
these fractional-order chaotic models can be described by the proposed system

(1).
In this paper, we consider the master system in the presence of uncertainty
(h,) as follows:

dQIX

dtqll :X2f (xl,xz,x3)+X3¢(X1,X2,X3)—0{X1

dQZX

dtqz2 =0 (X, X,,X;) = px, +h, 2)
d®x,

dtq3 :X2h(xlaX23X3)_Xl¢(Xl’X2’X3)_7/X3
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where X,,X,,X, are state variables. Also, adding a control input u(t)and h,
uncertainty to the system (1), the slave system would be as follows:

d(‘h

dtZl = yzf (Y1, Y2, Y3)t Y30y, Y0, Y5)—ay,

dQ2y2

dt—qzzg(ypyz,y3)_ﬂY2+h2+U(t) 3)
dq3y3

dt—q32 yZh(yI’y27y3)_y1¢(y17y29y3)_7y3

where Y,,y,,y, are state variables.

Remark 3.3. We assume that f (.),g(.),h(.) and ¢(.) are required to
ensure that the fractional-order system (3) with control input U(t) has a unique
solution in the time interval [T ,4+o], T >0 for any given initial condition.

Table 1.
List of published fractional-order chaotic systems, which can be described by the proposed
general model.

f6Y,2)  g(6Y.2)  h(xY.2)  4(xY.2)
Chen's D%x = a(y-X) a dx —xz X 0
e D®y=dx—xz+cy
D%z =xy-bz
Lorenz model DX =a(y —X) a x(b—2) X 0
D®y=x(b-2)-y
D%z =xy-cz
Financil DX =7+ (y—a)X X 1-x° 0 1
e D®y=1-by-x’
D%*z=-x-cz
Lus model Dx=a(y—-X) a —Xz X 0
D%y =—xz+cy
D%z =xy—hz
Liu system DX = —ax—ey’ &y —kxz mx 0

D®y =—kxz+by
D%z =mxy—cz
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4. Fractional-order sliding mode controller design

One of the control methods for nonlinear systems is sliding mode control.
This approach is usually utilized to face indefinite and uncertain systems. System
design using sliding mode control method consists of two steps: first, the vector of
sliding surface is defined, second, the control signal to reach sliding surface is
determined. Sliding surface chosen is as follows:

5(t)=D%"e,(t)+D 'y(t) =D""e, )+ [ w(r) < )
D q2‘1e2 (t)and w(t)functions are described:
D%, (t)=D%y,(t)-D*"'x,(t) (5)
yO=0y,f (5, ¥)+y:h (2, ¥3)+ Y, ] ©
X F (X, X5, X))+ X0 (X, X5, X5) + X, ]
In the sliding mode, the sliding surface and its derivative must satisfy:
s(t)=0, st)=0 (7)

So we conclude from (7):
$(t) =j—ts(t) =j—t[D“2‘le2<t>+ D y(®)]=D%, M) +yt)=0 ()

From Equation (8), we have:

D®y,(t)-D®x,t)=—p(t)=

I F 362, Y) + Y (Y2, y3) + BY ]

+[X1f (X13X23X3)+X3h(X1’X2’X3)+ﬂX2] (9)
Thus, Ug, will be as follows:

Uy ) == (Y1, Y2, Y )+ XXX ) =Y F (VLYY= Ysh(Y LY, Ys)

+X,F (XX, X))+ X;h(X,,X,,X;)—Ah (10)
where Ah =h, —h,.

The next step to satisfy the sliding condition, the discontinuous reaching
law is chosen as follows:

u, (t)=-k,sign(s) (11)

where
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1 s>0
sign(s)=< 0 s=0
-1 s <0

and kr is the gain of the controller. Finally, the switching control is calculated
from (10) and (11) and we get

U(t) =Ug (1) +u, (1)

==0(Y,Y, Y+ 9 XXX ) =Y F (Y,Y,.Y3)=Y;h(Y. YL, Y3)
+X,F (X, X,,X5)+X;h(X,%,,X;)—Ah —k sign(s) (12)

Theoreml. Exploiting control law (12) and selecting gain properly
k, >0, proposed sliding surface is asymptotically stable in presence of
uncertainty.

Proof. Selecting a Lyapunov candidateV = %S ’(t). We have

V' =ss =s[D%e,(t)+w(t)]

=s[O(Y Y2 Y)=BY> =9V 1Yo Y)+ (XX, %) =Y, f (Y,Y5,Y5)
=y,h(Y LY, Y3 +X,F (X, X,,X5)+X;h(X,,X,,X;)—Ah =Kk sign(s)
—0(X;, X0, X )+ BX, + A+ y, F (v, y,. ¥) + ¥ (YL Y2, y3) + BY,

=X F (X1, X5, X)) =X h (XX, X)) = B, 1=K, [s| <0 (13)

As it was observed, to obtain SS < 0, choose the gain asK, > 0.

5. Simulation result

First, the electrical circuit realizing the multi fractional-order chaotic
system has been designed in reference [28], where the existence of chaos in this
system has been demonstrated in an analytical, simulated form. The circuit is
designed as mentioned blew to realize the fractional-order Chen system (14).

In this section, the effect of sliding mode control for synchronization of
chaotic systems of Chen and Lu is shown.

Example 1. In this example, the fractional-order Chen system (1) is taken,
we have master system in the presence of uncertainty h, =0.4sinX, cosX,and

slave system in h, = 0.35siny, siny, uncertainty as below.
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D%x, =a(x, —Xx,)
D%x, =dx, —x X;+cx,+h, (14)
D%x, =x X, —bx,

Dy, =a(y,-y))

DYy, =dy,—y,y,+cy,+h,+u() (15)

Dy, =y,y,-by;
where (a,b,c,d)=(35,3,28,—7). Simulation was done with initial conditions
[ODt_O'OSXI(O)a D, ""x,(0), 0D;°-°5x3(0)]T =[-9,-5,14] in system (14) and
[th_O'Osyl(O)a Dy ,(0), th‘°'°5y3(O)]T =[10,-14,-8] in system (15) and
fractional-order 4 =[0.95,0.95,0.95] and controller K, =2. Chaotic behavior

of the system (14) without uncertainty is shown in Fig. 1. Given the choice of
sliding surface (4) and the control law (12) for the fractional-order Chen system,
we have:

5(t)=D""y,®)-D""x, )+ [ [ay,(1) +y,()y (1) ~cy ,(7)]
{3, (7) + X, ()X, (£) ~e X, () (7) (16)

Ut)=u,®)+u @)=—dy, +y,y,+dx, =xx;-ay, —y,y,
+ax, +X X, —Ah -k sign(s) =(a+d )(x, —y,)—Ah —k,sign(s) (17)

The simulation results are shown in Figs. 2-4. Fig. 2 gives error states in
synchronization. Fig. 3. shows Sync on the effectiveness of the sliding mode

control system variables X,Y,,X,,Y,,X5,Y;. Fig. 4 shows control input.
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Fig. 1. Phase diagram of Chen system with fractional order g= [0.95, 0.95, 0.95]
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Fig. 2 error states in synchronization
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Fig. 3.State trajectories of master and slave in the synchronization

Fig. 4. Control function in synchronization procedur
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Example2. In this example, the fractional-order Lu system (1) is taken, we
have master system in the presence of uncertainty h, =0.4sinX, cosx, and slave

system in h, = 0.45siny, cosy, uncertainty as below.
Yy 2 Y1 Y, y

D%x, =a(x,—Xx,)
D %X, ==X X, +CX, +h, (18)
D®%x, =x X, —bx,
Dqul :a(yz _yl)
D%y, =-y,y,+cy,+h,+u(t) (19)
Dq2y3 =Y.y, _by3

where (a,b,¢)=(36,3,20). Simulation was done with initial conditions

T
I:ODt_OAOSX1(O)9 ODt_Omxz(O)a th_0-07X3(O)] = [5: -9, 9]T in system (18) and
T
I:ODt_O.OSyl(O)s th_0.07y2(O)s th_0.07y3(0):| = [_7: o, 3]T in system (19) and

fractional-order q =[0.92,0.93,0.93] and controller K, =2. Chaotic behavior

of the system (18) without uncertainty is shown in Fig. 5. Given the choice of
sliding surface (4) and the control law (12) for the fractional-order Lu system, we
have:

S() =Dy, ()-D""X, )+ [ [ay,() +y,(D)y(D) ¢y, (7)]

—ax, (2) + X, (7)X5(7) =X, (7)]d (7) (20)
u®)=u, O +u, t)=yy,—XX;-ay, -y,y; +ax, +X,X, —Ah
-k, sign(s)=a(x,-y,)—Ah -k sign(s) (21)

Fig. 6 gives error states in synchronization. Fig. 7. shows Sync on the
effectiveness of the sliding mode control system variables X, Y ,X,,Y,,X5,Y5.

Fig. 8 shows control input. Simulation results represent the effectiveness of the
sliding mode controller on fractional-order Chen and Lu systems in master-slave
structure.
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Fig. 6 error states in synchronization
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6. Conclusions

In this paper, a fractional order sliding mode controller was proposed for
fractional-order chaotic systems in the presence of uncertainty. The asymptotic
stability of the proposed controller is investigated. Effectiveness of the sliding
mode controller is clearly evident in eliminating errors and reducing chattering
phenomenon. Numerical results confirm the theoretical hypotheses.
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