U.P.B. Sci. Bull,, Series C, Vol. 87, Iss. 3, 2025 ISSN 2286 — 3540

EVALUATING STUDENTS’ PERFORMANCE IN
CYBERSECURITY SCENARIOS USING BINARY TREES

Alexandru-Andrei GHITA!, Mihai-Daniel CHIROIU?, Dinu TURCANU?

Cyber education has become a critical focus in universities worldwide, largely
due to the growing shortage of experts that the cybersecurity domain is currently
facing. To address this need, it is essential to provide efficient and practical training,
with an emphasis on hands-on laboratories and real-world scenarios. This paper
explores the process of designing and evaluating a cybersecurity scenario, in the
context of Cybersecurity Basics course at UNST POLITEHNICA Bucharest,
conducted over two student generations. The final aim of the evaluation is to gather
and analyze live scenario statistics and integrate them in form of binary trees, as a
term of novelty, consequently understanding the thought process and decisions of
each student during the final assessment exam, ultimately maximizing the learning
outcome for the next generations.

Keywords: cybersecurity, education, cyber range, cybersecurity exercise,
evaluation

1. Introduction

There is a global shortage of approximately four million cybersecurity
professionals across the industry. This gap has grown more significantly, especially
considering the workforce only increased by 12.6% between 2022 and 2023 [1]. On
the other hand, the global cost of cybercrime is expected to rise from $9.22 trillion
in 2024 to $13.82 trillion by 2028 [2]. When compared to the gross domestic
product of the world, projected to be around $109 trillion in 2024 [3], this number
becomes particularly striking. To address this, more and more investments are made
into the field of cybersecurity education. For example, the European Union has
committed to investing €55 million in education programs in 2024 [4]. In the same
vein, in 2024, the U.S. allocated investments totaling hundreds of millions of dollars
under the National Cyber Workforce and Education Strategy (NCWES), in
collaboration with the private sector. This initiative aimed to bridge the gap between

! Faculty of Automatic Control and Computer Science, The National University of Science and
Technology POLITEHNICA Bucharest, Romania, e-mail: alexandru.ghita2611@upb.ro

2 Faculty of Automatic Control and Computer Science, The National University of Science and
Technology POLITEHNICA Bucharest, Romania, e-mail: mihai.chiroiu@upb.ro

3 Technical University of Moldova, Faculty of Electronics and Telecommunications and National
Institute of Innovations in Cybersecurity “CYBERCOR”, Chisinau, Republica Moldova, e-mail:
dinu.turcanu@adm.utm.md

76 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

the demand for cybersecurity professionals and the available workforce, with the
goal of transitioning to skills-based hiring and fostering the development of robust
cyber education ecosystems [5].

The process of teaching cybersecurity differs from other subjects because it
cannot rely on a fixed curriculum. It must adapt to the ever-growing diversity of
threats and evolve along with the emerging technologies in the market.
Additionally, it demands extensive hands-on practice with real-world scenarios, and
according to NIST [6] 59% of technologists consider this the most effective method
for acquiring new skills. However, simulating cyber threats on physical or
production systems poses risks such as irreversible damage and difficulty in
recreating the environment. To overcome these issues, cyber range platforms are
used—yvirtualized environments on dedicated hardware designed to safely deploy
and replicate cybersecurity scenarios for educational use.

Cybersecurity scenarios have two main goals: to assess the relevance of the
content for improving future versions and to evaluate participant performance by
checking if the difficulty and objectives were appropriate. Achieving these goals
requires collecting and analyzing live data during and after the exercise. However,
this is often challenging due to the large volume of data from many participants.
Despite its value, thorough analysis and application of findings in future scenarios
are uncommon, and there is limited research addressing this process.

This paper analyzes the design and evaluation of a cybersecurity scenario
conducted as a final exam for two student cohorts at University POLITEHNICA of
Bucharest, using the OpenStack platform as a cyber range. Designed in alignment
with the COFELET framework, the scenario features an innovative approach by
using custom trackers to collect live statistics, structured as binary trees in JSON
format. A post-exercise analysis of students' challenge-solving strategies helps
assess difficulty and refine both the course content and future scenario iterations.
The paper also presents a visual method for representing the collected data.

The rest of the paper is structured as follows: section 2 reviews the existing
research done on the topics of the paper. Section 3 outlines the structure of the
scenario in alignment with the COFELET framework. Section 4 explores each of
the component challenges within the scenario and details the methods used for
extracting exam statistics. In section 5 we describe the data pre-processing method
and delve into the binary tree-creation algorithm, illustrating how the data can be
visualised on a time axis. Section 6 is dedicated to the evaluation of the
implementation and tracing the remaining features left to be accomplished. Section
7 is reserved for final conclusions.

Evaluating students’ performance in cybersecurity scenarios using binary trees 77

2. Background and Related Work
2.1. Educational Frameworks

An educational framework represents a set of guidelines and rules intended
to aid in the process of delivering information to a targeted group of individuals
regarding a given subject.

Existing research found in this direction falls into two broad categories:
papers that expand an already existing conceptual framework and papers that
propose their own framework. The first category is comprised of papers [7], [8] that
structure their framework on top of COFELET (Conceptual Framework for
Developing Cyber Security Serious Games) and [9] that presents a framework
based on PBL (Problem-based Learning). On the other hand [10], proposes a
framework that extracts a list of evaluation criteria based on other papers that asses
cyber exercises, and further expands the list with three additional key points,
namely Learning Impact, Learning QOutcome and Learning Experience and
Teaming, finally composing the TARGET framework that is used to evaluate the
Iceberg cyber scenario.

In [11] the proposed framework is designed upon adversial thinking, in
which the participants act from the position of defenders, but think as if they were
attackers in the attempt to solve a series of vulnerabilities implemented by the
planning team.

We chose to expand the COFELET framework implementation for our
scenario approach, as showcased in [12] over the PBL implementation found in
[13], as it is precisely designed for developing cyber scenarios in a straightforward
and structured manner, with specific index terms such as Learning Objectives,
Scenario Complexity and so forth.

2.2. Cybersecurity Scenarios

Cybersecurity exercises or scenarios are practical approaches that provide
specialists with valuable skills and insights on various topics and vulnerabilities
encountered in real-world environments. Their broad classification involves two
categories, namely hands-on and tabletop [14]. The latter refers to purely theoretical
exercises, which were not addressed in this research. While hands-on exercises
come in various forms, the classification made by M. Yamin et al. [15] is
noteworthy in the educational context, dividing them into: Jeopardy Style CTF,
Attack and Defense and Red & Blue. Among this three categories, we found CTF
(Capture the Flag) exercises to be the most suitable technique for evaluating
students' skill sets, considering the introductory nature of the course.

CTF scenarios, as the name suggests, consist of small sub-scenarios across
different categories such as cryptography, steganography and web exploitation.

78 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

Upon completion, a string know as flag is yielded, which the participants can later
use for scoring.

2.3. Statistics and evaluation

While the design and the format of the cyber scenario are key elements of
its definition, the collected statistics and the post-execution evaluation of the
participants are equally important and hence, central aspects of this paper.

In [16], the term Learner Analytics Stack is defined as mechanism of
processing events generated by students throughout their interaction with the
learning environment. Moreover, they provide an example of an event definition
captured by Syslog and integrated in the ELK? stack. ELK monitoring is also
approached in [17].

The idea of representing data captured from student activity in the form of
binary trees has its roots in [18]. Here, the actions are modeled using oriented graphs
from the beginning up until the end of the assessed activity. The paper also
showcases the idea of a reference graph, intended to serve as a potential solution to
the scenario the students are working on. The start vertex of this graph represents
the initial state and the end vertex represents goal of the exercise. This idea was also
taken into account in our implementation.

3. Outlining the Scenario

This section is dedicated to describing the proposed scenario in accordance
with the COFELET framework.

3.1. Course Background

As previously stated, the scenario was delivered in the form of a CTF
contest, with the purpose of assessing the knowledge students gained from
Cybersecurity Basics subject at National University of Science and Technology
POLITEHNICA Bucharest. The subject was designed to be taught over a semester,
covering introductory aspects of cybersecurity such as: forensics, application
security, web security, access control and related topics. Two cohorts of students
were involved in this research during the 2023-2024 academic year: one cohort
from the third year and another from the fourth year, both having studied the same
subject.

After each lecture, students completed hands-on lab sessions using pre-
configured virtual machines on the university’s OpenStack platform. They were
graded on their progress and also completed two homework projects during the
semester that expanded on the lab exercises.

4 Elasticsearch, Logstash and Kibana

Evaluating students’ performance in cybersecurity scenarios using binary trees 79

3.2. Scenario Environment

The overall design of the scenario was made regarding the COFELET
framework as mentioned in 2.1. We will proceed presenting the environment with
an eye to the framework elements.

CTFd Platform

>@_c”, . TFd>

X » Exercises
@ description

« Scoreboard
» Flag validation

OpenStack VM

-I - E
L]

Student

Internet 3 Exercise
access / fies

Fig. 1. Gaming context

3.2.1. Goal. The goal of the scenario is to simply extract and validate as much flags
as one possible can before the allocated time expires.

The goal of an exercise is to solve it and extract the flag. The flag consists
of a string with a format presented before the scenario starts. In our case, the flag
had the following format: ISC {fl@g ex@mpl3}.

3.2.2. Task. The tasks within the scenario are represented by exercises that must be
completed to extract the flag. Each exercise includes its own set of tasks necessary
to achieve the final goal.

3.2.3. Gaming Context. The gaming context consists of the conditions and
properties of the scenario. The exam was conducted in the format of a CTF exercise
as mentioned in 2.2. Each student had access to a dedicated VM hosted on the
university's OpenStack platform, which included all the exercise files and tools
required for solving the tasks. Moreover, the VM had Internet access. We
configured the VM and replicated it in advance.

After successfully extracting a flag from an exercise, the student would then
submit it in a dedicated platform, hosted using the CTFd solution. On this platform,

80 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

students could view all the challenges and their associated difficulty, grouped by
category. When a flag was submitted, the platform would validate or invalidate it.
The gaming context schema is depicted in Fig. 1.

The scenario had a time frame of four hours. After this period, the platform
would reject all flag submissions. To prevent any form of fraud, the flag found in
each exercise was randomized using the ID of each student and the files required
regenerated before the start of the scenario.

3.2.4. Scenario Execution Flows. SEFs represent the order in which tasks have to
be completed in order to reach the end goal. For the overall scenario, there is no
SEF, as the student can tackle any exercise. On the exercise level, SEF is
represented by a set of sub-tasks that need to be executed in a certain order in order
to reveal the flag. For example, if the exercise flag is hidden in base64 format inside
the metadata of an image, one possible SEF would be:

Identify image type—» Use exiftool to extract metadata— Observe the base64 flag
in a metadata field—Decode base64 flag.

3.2.5. Scenario complexity. The scenario was designed to be mid-level. As
mentioned in section 3.2.3, each exercise had an associated difficulty set in the
CTFd platform, as determined by the assistant who designed it.

4. Monitoring student activity

This section discusses the exercises provided to each student cohort and the
methods used to extract statistics from their real-time performance.

4.1. The exercises

Each generation of students were presented with a set of exercises, grouped
by different categories and complexities. The approach used to design the
challenges was not based on a specific point of reference but was instead subjective
to the tutor's experience and creativity. The first generation of students, for which
the subject was taught in the third year of university, was presented with the
following group of challenges:

e 3pass: binary exploitation challenge in which the students had to inspect the
code of a provided executable using a debugger such as gdb in order to
extract the required input. After the input was provided to the executable in
the required order, the challenge would yield the flag;

e chrono_crypto: cryptography challenge that required the students to reverse
an encryption algorithm that had an UNILX timestamp as key. When the
required timestamp was used for decryption, the flag was revealed;

Evaluating students’ performance in cybersecurity scenarios using binary trees 81

hiddenports: there were a number of 3 hidden open ports located on the
machine. The flag was a string comprised of the port numbers concatenated.
The challenge category was miscellaneous;

packetbeat: traffic analysis/forensics challenge based on DNS exfiltration;
privesc: web exploitation challenge that required the students to gain
administrative privileges on a Docker container running on the VM;
cuphead: steganography/forensics challenge that had the flag hidden in the
image metadata;

binbufff: binary exploitation challenge that required the students to overflow
a buffer in order to obtain the flag, using a provided executable;

dirb: web exploitation challenge that required the students to use gobuster
or dirb on a web application hosted in a Docker container running on the
VM in order to locate the flag;

let me_in: web exploitation challenge consisting of a web application
vulnerable to SQLInjection;

osint. Open-source intelligence (OSINT) challenge that involved searching
on a given domain for relevant information;

buried treasures: miscellaneous challenge that required students to extract
a big number of nested archives using scripting. The initial archive was
embedded in an image.

The second cohort of students, who studied the subject in the fourth year of
university, was presented with a similar set of challenges:

cuphead was renamed to stegano_exif;

buried treasures was renamed to s3rp3nt _plrdt3s;

peanut_butter jelly: additional cryptography challenge involving GPG’
decryption.

4.2. The trackers

Before exploring possible methods of monitoring student activity during the
exam, we first needed to determine which indicators we were targeting. This
becomes fairly straightforward when considering how the scenario was designed in
section 3. Solving each challenge, or reaching the end goal, becomes a matter of
two factors: the gaming context, in this case the exercise files, and the SEFss, or the
paths a student has attempted in the solving phase. To reference this indicators, we
concluded to extract the following pieces of information, labeled as P;, where i is
the number of the item:

P;: When the student began working on a challenge;

5 GNU Privacy Guard

82 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

P,: Which challenge is the student addressing at a given time;

P;: When the student stopped working on a challenge and started focusing on
another;

P,: When the student finished a challenge;

Ps: The live list of commands executed by a student;

Ps: What files were created that assisted in solving the challenge;

We concluded to use scripts, or trackers to facilitate the monitoring process.
One such tracker consists of a Python script, that is, at its core, a customized
keylogger, with the following workflow:

(1) Create the tracker log file and write the starting timestamp;

(2) Loop over the bash history file to check for recently added commands;

(3) Whenever a command is added perform the following:

(a) Check if the command is a cd (change directory). If so, check if the
destination directory is corresponding to the currently tracked
challenge (e.g. if the challenge name is peanut butter jelly, look for
cd peanut_butter jelly). If that is the case, begin recording all the
commands from now on (tracker is set to record). If the cd is made
to another directory, and the tracker already records commands,
assume that the student began working on another challenge and
stop tracking until he cd's back into the exercise folder (set record
flag to false);

(b) Else, if the tracker is set to record and the command is not a cd,
compare it to a predefined set of commands relative to the challenge
objective. Should the command be in the given set, log the
timestamp, the command and its arguments.

(4) Retain the last bash history line number for the next iteration;

(5) Check if there is a flag.txt file inside the challenge directory and whether or
not it contains a valid flag. Stop the tracking, mark challenge as finished and
copy all the files that might have assisted in the solving of the challenge, if
true.

The flow diagram of the tracker is illustrated in Fig. 2.
The tracker log file contains a list of commands formatted as follows:

[Timestamp] [Command description] [Command arguments] [Command tag],

where:
(1) timestamp represents the time of the issued command;

Evaluating students’ performance in cybersecurity scenarios using binary trees 83

(2) command description consists of a short description of the issued command.
For example, if the command was nano file.txt, the description would be
"Created/modified flag.txt";

(3) command arguments are represented by the arguments passed to the issued
command. For example. if the command was binwalk -e image.png, the
arguments would be "-e" and "image.png";

(4) command tag is represented by a short indicative of the issued command.
Examples include: FILE CREATION, SCRIPT EXECUTION and the like.

@ ckersiarted

Create tracker file

\[m‘g found & validated— Flag not fvundT/

End tracker. Save Check current
challenge files command

Trackerended ()

aca nota

d challenge_directory/— l/ [—Tracker not recording— —Tracker set to oont—
Tacker not recording. —Tracker secording- J

y

!»m:m 2110 record— ——Tracker not recording— ommand Is not —Command s usetu

\%

Increment history
line

|

Log timestamp,
Set tracker 10 Unset tracker command,
record recording flag | arguments

—

Fig. 2 Tracker flow diagram

First generation of students had the following challenges tracked:
e chrono crypto;
e Dburied treasures;
e let me in.

The second generation of students had the following challenges tracked:
chrono_crypto;

s3rp3nt_plrdt3s;

let me in;

3pass;

binbufff;

84 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

e stegano_exif;
e peanut butter jelly.

4.3. Requirements

For the trackers to function as intended, the following requirements had to
be met:

(1) The Bash history file needed to be updated in real time, immediately after
each command was issued by the user, since the default behavior is to
append to the history file only after the session ends. For this to occur, the
following lines were added to bashrc file, according to [19]:

shopt -s histappend
PROMPT COMMAND="history -a; $PROMPT COMMAND"

(2) All progress for a challenge, including the scripts used, had to be made
within the challenge directory;

(3) To stop the tracker, students were required to place the flag into a "flag.txt"
file in the challenge directory after completing the challenge. This action
would mark the challenge as completed and trigger the extraction of the
associated files.

()

5. Decision Binary Trees

The main purpose of this section is to address the process of constructing
decision binary trees, starting with an examination of how the raw student data was
preprocessed in subsection S.1. Subsection 5.2 provides a detailed description of
the tree creation algorithm. Finally, subsection 5.3 explains how the final product
can be visualised on a time axis.

5.1. Scrapping the data

After the examination session was concluded, all the directories corresponding
to each of the challenges were extracted from all of the deployed VMs. This resulted
in 175 sets of directories for the first generation of students and 194 for the second
generation. This numbers also included the VMs that were created but not used
(primarly because some students chose not to participate in the practical
examination), resulting in empty challenge directories. The data was automatically
extracted by establishing SSH sessions to the virtual machines.

5.2. Building the trees

Evaluating students’ performance in cybersecurity scenarios using binary trees 85

In this paper, we model student actions using binary trees, where each leaf has
two children representing the sets of good or bad decisions at a possible step in the
challenge-solving progress. The criteria for classifying a decision as either good or
bad are based upon a set of commands predefined by the tutors, which represents
one possible solution to the challenge objective. This idea has its roots in [18] as
mentioned in 2.3.

Each possible solution used as reference for evaluating a student's progress in
solving a challenge follows a standard layout, written in JSON format as a series of
ordered steps.

{
"stepl_name": {
"description": "Step description",
"optional": true/false,
"possible_commands": {
"commandl_identifier": {
"description”: "Command description”,
"command_arguments”: ["name", "argl","arg2", "etc"],
"requires_repetition": true/false
¥
"command2_identifier": {
"description": "Command description”,
"command_arguments”: ["name", "argl","arg2", "etc"],
"requires_repetition": true/false
¥
"so_on_and_so_forth": {
}
}
}J
"step2_name": {
"description": "So on and so forth"
}
}

A step is the current logical approach in the challenge solving procedure
and is defined by a series of commands that can lead the path to the next step.
A step can be optional, meaning that its occurrence in the solving process at
any point would not be considered a bad decision. Therefore, the order in
which the non-optional steps are defined matters. The commands comprised in
the definition of a step have the same effect and are often variations of the

86 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

same command. Thus, progressing to the next step requires executing only
one command from the list. A command might also require repetition (for
example when extracting a group of archives).

ead_end— good end
Root leaf - TO

™ ——dead_end— —good_end
T4

T2-lr\ : T5ﬂ'\\ c ead_end— —good_end:
e e
l NULL i

~ w2 [Teecdeng
S S T

NULL

End leaf - T8

Fig. 3 Decision tree concept

The decision tree is also a JSON dictionary, build by iterating the tracker log of
a given challenge, with a format constructed using the following rules:

(1) Each leaf is represented by an issued command. The attributes of a leaf are
the following: description, arguments, timestamp, good_end, dead_end,

(2) Root leaf is represented by the "Start of task" tag, with no arguments set,
the timestamp corresponding to the time a student began working on the
challenge;

(3) dead _end (JSON array) consists of the set of commands that were not found
in the solution used as reference; A leaf found in the dead end has its
good end and bad _end lists set to null;

(4) Only leaves found in the good _end (JSON array) list can have both decision
lists set;

(5) When a command that corresponds to the next step in the possible solution
1s found, backtracking is performed to the last leaf classified as "good end".
The command is then added as a new leaf in the good end array of that
node;

(6) If the task was completed, the last leaf is represented by the "Student
completed the task" tag, with an associated timestamp.

The concept of a decision tree can be seen in Fig. 3.

Evaluating students’ performance in cybersecurity scenarios using binary trees 87

5.3. Visual representation

Constructing the binary trees as JSON arrays facilitates their visual
representation. Each leaf has an associated timestamp, as mentioned in 5.2. This
approach allows the decision trees to be plotted as timelines of commands issued
during the challenge-solving process, thereby enhancing the post-analysis of
student activity.

The plotting was done by extending the idea found in [20] }, where each
command is represented as a point on a horizontal time axis, along with its
associated timestamp. An example of one such tree plot made for an successful
attempt on chrono_crypto challenge can be found in Fig. 4.

Fig. 4 Decision tree plot example

6. Comments

This section of the paper is dedicated to discussing the evaluation of the
showcased implementation, including its shortcomings, potential improvements,
and the desired features that remain to be accomplished.

6.1. Evaluation

The overall purpose of modelling student activity as decision binary trees
was to facilitate the understating of the various approaches taken by the participants
in the Cybersecurity Basics exam at University POLITEHNICA of Bucharest.
Moreover, it also assisted in assessing the level of difficulty each challenge imposed
from students' perspective. After all the data had been scrapped and the decision
trees modelled, we began sorting the statistics and retained only the relevant
material. The statistics were considered relevant based on the following criteria:

e The challenge tracker was initialized (the VM was used in the exam by one
of the students);
e The challenge was attempted by the student (the tracker log file was not

empty);

88 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

e The challenge was not completed in a different environment other than the
provided VM (in that case, the log would contain only the "Student
completed the task" tag, with no other commands).

There was also a second sort made, which targeted the data for the challenges
that were completed.

6.1.1. First generation - 3rd year students. This generation studied the subject
in the 3rd year of university, and thus had limited knowledge in using scripting
languages such as Python or Bash, as well as limited familiarity with networking
and databases concepts. Although these shortcomings were addressed over the
course of the semester, through laboratories and associated homework, students still
required assistance with more difficult concepts, such as exploiting a SQLInjection
vulnerability without guidance. The amount of solves per challenge can be observed
in Fig. 5.

After analyzing all the decision trees, we have reached the following
conclusions regarding the challenges:

e buried treasures: This challenge had the most solves. Although it required

the largest amount of scripting among all the challenges, as it comprised a
considerable number of archive extraction operations, it could also be
approached in a straightforward manner by extracting the archives
manually. Most students opted for the latter approach, solving the challenge
in a significantly larger time frame. According to the analysis conducted
using binary trees, most of the time was spent gathering information about
the archive and performing the extraction process, which are common time-
consuming steps. This suggests that students were not stuck and had a clear
approach to solving such challenges. The challenge lived up to its "medium"
difficulty tag;

e chrono _crypto: The small number of solves to this challenge can be
attributed to the fact that it could not be solved without scripting, as it
required the reversing of an encryption algorithm. Binary tree analysis of
the solving process showed that students who failed to complete the task
either remained stuck inspecting challenge scripts and files or did not
attempt the challenge at all, indicating a lack of familiarity with a scripting-
based approach. This led us to consider introducing a scripting-based
introductory laboratory at the start of each semester. Labeled as "hard," the
challenge retained its difficulty;

e et me_in: Solving this challenge was an easy task either by approaching it
manually or by using sglmap. The small number of solves was surprising,
given that sqlmap was included in one of the homework exercises assigned
during the semester. The decision trees for both solves had a very large

Evaluating students’ performance in cybersecurity scenarios using binary trees 89

number of leaves, indicating that sqlmap was used in each of the cases,
generating a large number of commands. Despite being classified as
medium by the organizers, this challenge turned out to be in the hard
category.

Challenge name

let_me_in

chrono_crypte

buried_treasures

0 10 20 30 40 50 60
Solves

Fig. 5 Solves per challenge - 3" year students

This edition of the exam has led us to the following improvements:

e Students should be presented with a Python introductory course before
undertaking Cybersecurity basics;

e The lab contents should be more detailed with more hints and guidance
along the way;

e The homework solves should be more strictly checked.

6.1.2. Second generation - 4th year students. This generation studied the subject in
their 4th year of university and had significantly more experience regarding
cybersecurity and scripting concepts, with a vast majority of the participants being
part-time employees in the IT sector. There was also a larger number of tracked
challenges, allowing for a more comprehensive view of the solving process. The
amount of solves per challenge can be observed in Fig. 6.

90

Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

s3rp3nt_plrdt3s

peanut_butter_jelly

chrono_crypte

stegano_exif

let_me_in

binbufff

Challenge name

3pass

Solves

Fig. 6 Solves per challenge - 4th year students

After analyzing all the decision trees, we have reached the following

conclusions regarding the challenges:

stegano_exif: This challenge was by far the easiest. The main reason for
which it did not have the most solves is that the students were unaware of
any tool that could extract EXIF data out of an image. Decision tree analysis
showed that students understood how to approach a steganography
challenge, as most commands focused on gathering file information or
searching for a specific flag pattern. The challenge maintained its "easy"
difficulty rating;

s3rp3nt_plrdt3s: Also known as buried treasures, the challenge had less
solves in this edition of the exam. One reason for this is that the challenge
directory contained many hidden hints that indicated towards a scripting
approach. Moreover, the number of nested archives to be extracted was
exponentially larger, meaning a manual approach was not feasible. The
thought process observed in the binary tree plots was specific to solving a
task through scripting: a concise set of commands focused on file
information gathering, followed by a sequence of file access and file run
commands, reflecting the trial-and-error approach applied to script samples.
Medium remained the proper difficulty;

peanut_butter jelly: This challenge had the most solves and was relatively
straightforward. "Easy" was the correct difficulty rating for this challenge.
let_me_in: Far more solves in this generation. Very few manual approaches,
almost all solves being done with sqlmap, observation confirmed by the
decision tree plotting. The difficulty for this exercise remained medium;

Evaluating students’ performance in cybersecurity scenarios using binary trees 91

chrono_crypto: Once again, it was clear that students were more confident
in their use of scripting during the challenge-solving process. Comparing
this with the results from the previous generation, it is evident that students
typically become familiar with scripting in the second semester of their third
year. This highlights the need for a scripting laboratory at the beginning of
the semester to bridge the gap in scripting knowledge. The difficulty could
be adjusted from "hard" to "medium";

binbufff: This challenge had no solves (at least on the deployed VMs). This
is primarily because most students chose to solve it externally, using tools
with graphical interface (for example Ghidra). Initially labeled as
"medium," it was later categorized as "hard."

3pass: Second most solved challenge. It was approachable using any tool
used for machine-code inspection. Labeled as "medium," it turned out to
have an easy difficulty.

This edition of the exam has led us to the following improvements:

Binary exploitation laboratories should have more explanations and hands-
on examples;

Hints provided along with challenge descriptions should be as clear as
possible;

6.2. Shortcomings and improvements

There were a number of shortcomings in the showcased implementation:
(1) If a student manages to solve a task using a different approach other than

the one provided by the organizers, the task would still be considered
completed, but all (or some) the commands would be dead end leaves. To
overcome this, the algorithm should create another solution file for each
solve that is considered a dead end, but for which the task is labeled as
finished. The subsequent solves would be compared to both the teacher's
solution and the student’s newly discovered solution;

(2) If a student is working on a task but changes the working directory to a sub-

folder within the challenge directory, the tracker would interpret this as the
student having stopped working on that specific task. One solution to this
would be to use ptrace to track the current Bash process and the forks it
makes when executes a command, then attach to the process issued by that
exact command and observe its arguments, including the working directory.
Several attempts were made to integrate this into the tracker behaviour, but
it proved to be resource intensive due to the large number of commands and
concurrently running trackers;

92

Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

(1]

(2]

(3]

(4]

(3) If a tracker log contains a large number of commands (especially when the

challenge was approached using an automated tool), the visual
representation of the tasks timeline becomes heavily clustered and hence,
unreadable. To overcome this, image resolution could be enlarged. The
decision tree analysis can be performed regardless of the number of issued
commands, as it is represented in JSON format;

(4) To mark a challenge as finished and stop the tracker, a flag.txt file

containing the flag must be created by the student in the challenge directory.
Oftentimes, due to the exam context, this detail gets overlooked. To address
this issue, a correlation between the scoring platform and the student VM
can be established, allowing the tracker to be stopped when a flag

submission is validated;
7. Conclusions

Our approach for integrating live student activity data using binary trees has
proven to be an efficient approach, improving both data visualization and the
accuracy of post-exercise analysis. The binary trees, constructed by comparing
each student's set of commands during the exam with a pre-defined solution set
created by the tutors, aided in understanding the thought process of solving a
challenge. By analyzing the flow of the solution, we were able to pinpoint which
steps took the most time and determine whether a participant had fully
assimilated the necessary knowledge related to the challenge topic. Moreover,
this analysis allowed us to adjust the difficulty level of each challenge for future
iterations of the scenario (such as the exam held in the following semester) and
refine the laboratory materials accordingly.

REFERENCES

"The cybersecurity industry has an urgent talent shortage. Here’s how to plug the gap," 28
April 2024. [Online]. Available: https://www.weforum.org/stories/2024/04/cybersecurity-
industry-talent-shortage-new-report/. [Accessed 5 May 2024].

"Cybercrime Expected To Skyrocket in Coming Years," 22 February 2024. [Online].
Available: https://www.statista.com/chart/28878/expected-cost-of-cybercrime-until-2027/.
[Accessed 9 May 2024].

"Global gross domestic product (GDP) at current prices from 1985 to 2029," October 2024.
[Online]. Available: https://www.statista.com/statistics/268750/global-gross-domestic-
product-gdp/. [Accessed 9 May 2024].

"Commission to invest over €210 million in cybersecurity, digital capacities and technology
under the Digital Europe Programme," 4 July 2024. [Online]. Available: https://digital-
strategy.ec.europa.eu/en/news/commission-invest-over-eu2 10-million-cybersecurity-digital-
capacities-and-technology-under-digital. [Accessed 9 May 2024].

Evaluating students’ performance in cybersecurity scenarios using binary trees 93

[5] "Initial Stages of Implementation of the National Cyber Workforce and Education Strategy,"
Office of the National Cyber Director, 2024.

[6] "Cybersecurity Workforce Demand," National Institute of Science and Technology, 2023.

[7] M. N. Katsantonis, A. Manikas, I. Mavridis and D. Gritzalis, "Cyber range design
framework for cyber security education and training," International Journal of Information
Security, vol. 22, pp. 1005-1027, 2023.

[8] L. Amro, Gamifying the MITRE ATT&CK for Cyber Security Training using the
COFELET Framework, Norwegian University of Science and Technology, 2022.

[9] Y. Deng, Z. Zeng, K. Jha and D. Huang, "Problem-Based Cybersecurity Lab with
Knowledge Graph as Guidance," Journal of Artificial Intelligence and Technology, vol. 2,
pp. 55-61, 2022.

[10] M. Glas, M. Vielberth and G. Pernul, "Train as you Fight: Evaluating Authentic
Cybersecurity Training in Cyber Ranges," in Conference on Human Factors in Computing
Systems, Hamburg, 2023.

[11] J. Whyte, G. Dagher and S. Hagenah, "BEACON Labs: Designing Hands-on Lab Modules
with Adversarial Thinking for Cybersecurity Education, Journal of The Colloquium for
Information Systems Security Education," Journal of The Colloquium for Information
Systems Security Education, vol. 10, 2023.

[12] N. M. Katsantonis, I. Kotini, P. Fouliras and I. Mavridis, "Conceptual Framework for
Developing Cyber Security Serious Games," IEEE Global Engineering Education
Conference (EDUCON), pp. 872-881, 2019.

[13] M. Shivapurkar, S. Bhatia and I. Ahmed, "Problem-based Learning for Cybersecurity
Education," Journal of The Colloquium for Information Systems Security Education, vol. 7,
2020.

[14] M. Yamin, E. Hashmi, M. Ullah and B. Katt, "Applications of LLMs for Generating Cyber
Security Exercise Scenarios," Internation Journal of Information Security, 2024.

[15] M. Yamin and B. Katt, "Modeling and executing cyber security exercise scenarios in cyber
ranges," Computers & Security, vol. 116, 2022.

[16] J. Vykopal, P. Celeda, P. Seda, V. Svabensky and D. Tovariidk, "Scalable Learning
Environments for Teaching Cybersecurity Hands-on," IEEE Frontiers in Education
Conference, vol. 9, pp. 1-9, 2021.

[17] W. Lazrov, T. Stodulka, T. Schafeitel-Tahtinen, M. Helenius and Z. Martinasek, "Interactive
Environment for Effective Cybersecurity Teaching and Learning," in International
Conference on Availability, Reliability and Security, 2023.

[18] M. Andreolini, V. G. Colacino and M. C. e. al, "A Framework for the Evaluation of Trainee
Performance in Cyber Range Exercises," Mobile Networks and Applications, vol. 25, p.
236-247, 2020.

[19] "Update bash history in real time," [Online]. Available: https://askubuntu.com/a/67306.
[Accessed 1 May 2023].

[20] "Making timelines with Python," 21 August 2021. [Online]. Available:
https://dadoverflow.com/2021/08/17/making-timelines-with-python/. [Accessed 15 February
2023].

[21] A. Alexandrescu, "Optimization and security in information retrieval, extraction, processing,
and presentation on a cloud platform," Information 10.6, vol. 6, 2019.

94 Alexandru-Andrei Ghita, Mihai-Daniel Chiroiu, Dinu Turcanu

[22] A. Alexandrescu and G. Butnaru, "An architecture of identity management and thirdparty
integration for online teaching in a university," ICSTCC, pp. 850-855, 2020.

[23] R. Rughinis, "Badge architectures in engineering education," CSEDU, no. 978-989-8565-53-
2, pp. 548-554, 2013.

[24] A. R. Caciulescu, R. V. Rughinis, D. Tsurcanu and A. Radovici, "Mapping Cyber-Financial
Risk Profiles: Implications for European Cybersecurity and Financial Literacy," Risks, 2024.

[25] D. Rosner, D. Iorga, F. Oprea, C. Patru and R. Rughinis, "A conceptual framework for
profiling engagement strategies used in high school engineering outreach activities,"
European Journal of Engineering Education, pp. 1269-1290, 2023.

