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SEPARATION AND FUSION GRAPH NETWORKS FOR 

SESSION-BASED RECOMMENDATION 

Jingyuan HE12, Bailong YANG3*, A. RUHAN4, Jinjin ZHANG5 

Previous models of session-based recommendation simply concatenate 

incoming graph and outgoing graph as a joint graph, and they model item 

representation with the relationship of item graphs but ignore the item-self 

information. Additionally, the incoming graph and outgoing graph indicate different 

relational patterns, they should be modeled separately, and how to balance their 

importance in a flexible and end-to-end manner could be crucial for performance 

enhancement. This paper presents Separation and Fusion graph networks (SEFU) for 

session-based recommendation. For each session, SEFU first represents the incoming 

and outgoing graphs with two separate graph neural encoders and item-self 

information to generate item representation, then leverages an attention-based gating 

mechanism to selectively fuse representations of incoming graph and outgoing graph. 

Extensive experiments present SEFU greatly outperforms other models, verifying 

efficacy of our proposed method on session modeling. 

Keywords: graph neural network; incoming graph; item-self information; 

outgoing graph; session-based recommendation 

1. Introduction 

Recommender systems (RS) have evolved in modern society for helping 

users to make choice from the large number of products and services. The main 

core of current recommender systems, such as collaborative filtering RS, is 

modeling the long-term static user preference. However, in these systems, the user’s 

intent after a certain period of time may be easily submerged by his/her historical 

behaviors, making the recommendations inopportune and/or inappropriate. To 

address this, Session-based Recommendation (SR) models a transaction with 

multiple purchased items in one shopping event as a session, and then recommends 

next clicked item based on interaction of items, without using user identification 

information [1]. As a result, SR can better model user’s preference dynamically and 

is applied to e-commerce and online-searching systems. 
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Current SR approaches can be classified into three categories in terms of 

how they model the session. One classical approach is the Markov Decision Process 

(MDP) modeling. The MDP-based models introduce the Markov assumption 

simplifies the recommendation model. To better model user interaction histories, 

the second line of approaches model the session as sequences [1], [2]. Sequence 

modeling methods always treat the step-backed items as new items without 

characterizing the vacillation behaviors of users. To address this drawback, recent 

methods consider sessions as graphs, and recommend items with the help of 

prevailing Graph Neural Networks (GNN) [3], [4]. 

When we look more closely at the connections between items in each 

session (see for example in Fig. 1), there are two kinds of connections: the incoming 

connections from other items to each target item and the outgoing connections from 

each target item to others. Although existing GNN-based methods have achieved 

excellent performance, these methods simply combine the incoming connections 

and the outgoing connections into a joint graph, neglecting their distinct effects in 

item representation learning. In addition, previous methods ignore the information 

of the item self when constructing the item representation. It indicates that item 

vector which is built by GNN from previous methods lacks item-self information 

and is incomplete. 
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Fig. 1. A sketch of a session and its corresponding session graph 

In this paper, we propose a Separation and Fusion graph networks (SEFU) 

for SR. For each session, we consider the incoming connections and outgoing 

connections as two separate graphs which are independently processed via two 
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gated GNN-based encoders, and we integrate them with item-self information to 

deliver two representations of the session. Then, a gating mechanism is developed 

to fuse the two individual session representations by flexibly weighting their 

influences on the prediction of different items. 

2. Related work 

Traditional SR methods. The traditional methods for SR are mainly based 

on the idea of item-to-item or co-occurrences of the items. Rendle [5] combine 

Matrix Factorization and MC to model sequential behaviors for the next basket 

recommendation. However, these methods neglect the previous clicks and discard 

the useful information in the sequence. 

RNN-based SR methods. Recurrent neural network (RNN) has attracted 

great concern since its capabilities in modeling sequential behavior. Li et al. [2] 

designed NARM to build user’s main purpose by item-level attention mechanism 

(AM). Pan et al. [6] consider importance of items to improve recommendation 

performance. 

GNN-based SR methods. GNN is increasingly used in SR recently. Li et 

al. [7] proposed Disen-GNN for SR. [4] employ both GNN and the self-attention 

mechanism to learn latent vectors for all nodes and long-range dependencies 

between the distant items for recommendation. Some researchers incorporate 

graph-structured data and target-aware attention module for SR. Xia et al. [8] 

proposed SHT to enhance user representations and robustness of recommender 

systems by exploring the global collaborative relationships in an explicit way. 

Our work is related to SR with GNN (SR-GNN) [3]. Indeed, our work shares 

the same backbone with SR-GNN. The major difference between SR-GNN and our 

work is that we emphasize the different roles of the incoming and outgoing graphs 

in session representation learning via two independent GNN encoders and flexibly 

adjust their importance weights by using the attention mechanism. SR-GNN also 

separates the incoming graph from the outgoing graph, but it simply concatenates 

the corresponding adjacency matrices into a joint matrix column-wisely, where the 

computation will degenerate to a naive GNN encoding with a directed adjacency 

matrix. Additionally, we consider the role of item-self information in modeling item 

representation, which further strengthens the accuracy of session representation. 

3. Methods 

In SR,  1 2 |V|V v ,v , ,v=  denotes the set of unique items. We use 1 2[ , , , ]nv v v  to 

denote an interaction session, in which iv  is the i-th interaction item during session.  
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3.1. Framework 

As shown in Fig. 2, SEFU consists of an incoming session encoder (ISE), 

an outgoing session encoder (OSE), and a recommendation decoder. In ISE, item 

embeddings and incoming adjacent matrix are converted into two high dimensional 

representations with the help of the GNN and soft-attention mechanism: one is an 

incoming local embedding and the other is an incoming global embedding. In OSE, 

it converts item embeddings and outgoing adjacent matrix into two high 

dimensional representations with help of another GNN and soft-attention 

mechanism: one is an outgoing local embedding and the other is an outgoing global 

embedding. Finally, outputs of ISE and OSE are fed into recommendation decoder. 

The output of the framework is a recommendation score. 
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Fig. 2. The framework of SEFU 

3.2. Graph construction 

Given an input session 1[ , , , , ]i nv v v , we firstly model this session as a direct 

graph where iv  is denoted as a node and each edge +1( , )i iv v  represents the item +1iv  is 

clicked after item iv  in this session. We can build individual incoming adjacent 

matrix in
A  and outgoing adjacent matrix out

A  according to the connection edges. For 

example, the corresponding graph and the adjacent matrices for the session 

1 2 3 2 4[ , , , , ]v v v v v  are shown in Fig. 1. Additionally, we embed each item iv  into a space 

Rd

i v . Then, incoming node vector i

in
v  can be learnt by using a GNN with the help 

of the incoming graph which contains all the item embeddings 
1 2[ , , , ]nv v v  and i

inA  
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that is the i-th row of in
A  corresponding to item iv . Similarly, the outgoing node 

vector i

outv  of item iv  can be learnt by using another GNN with the help of the 

outgoing graph which contains all the item embeddings 
1 2[ , , , ]nv v v  and i

outA  that is i-

th row of out
A  corresponding to item iv . 

3.3. Incoming session encoder 

For a session, we learn the latent vectors of nodes via gated GNN. [9] 

proposed a gated GNN based on the vanilla GNN. Many researchers propose utilize 

the gated GNN as encoders to learn node vectors in a session graph. The gated GNN 

structure in ISE is shown like below: 
T[ , , ] bt in t-1 t-1

i i 1 n= +A Ha v v                                            (1) 

( )z z

t t t -1

i i i=  +z W Ua v                                                (2) 

( )r r

t t t -1

i i i=  +W Ur a v                                                (3) 

tanh( ( ))t t t t -1

i o i o i i= +W Uv a r ve                                         (4) 

( )1t t t -1 t t

i i i i i= − +z z vv ve e                                            (5) 

Where t

iz  is update gate, t

ir  is reset gate. t

iv  is a candidate state. 

z z r r o, , , ,W U W U W , and oU  are learnable parameters. e  denotes element-wise 

multiplication. ( )   is the sigmoid function. Additionally, t 1

1[ , , ]t -1

n

−
v v  is the list of the 

node embedding. Equation (1) is used for information propagation between 

different nodes with respect to i

inA . 

For a session graph, the gated GNN handles the nodes at the same time. 

More concretely, t

ia  firstly extracts the latent vectors of the nodes which interact 

with the i-th node and then they are fed as the network’s input. Then, update gate 

and reset gate use sigmoid function to determine what information to be retained or 

discarded, respectively. Thirdly, candidate state is constructed by current state, reset 

gate, and previous state. Finally, previous state and candidate state are combined 

with consideration of the update gate to construct the final state. We can obtain all 

the node vectors i

1 2[ , , , ]n_gnn in_gnn in_gnn

nv v v  after all the nodes in the session are processed 

into the gated GNN with respect to the incoming graph. However, the node-self 

information loss occur in gated GNN operations. Thus we add the node-self 

information on the node vectors which are produced by gated GNN, which makes 

the item vectors much more accurate. Then, the final node vectors with respect to 

the incoming graph and item-self information are denoted as i

1 2[ , , , ]n in in

nv v v , which is 

computed as: 
in in_gnn

i in i i i= W v Wvv                                                 (6) 

Since a session is directly composed by nodes which are ordered by 

timestamp, we plan to generate local embedding and global embedding with 



252                                  Jingyuan He, Bailong Yang, A. Ruhan, Jinjin Zhang 

consideration of node vectors. Then, we take local embedding and global 

embedding to build session representation. 

For modeling incoming local embedding, since there is a very strong 

causality relationship between user’s last action and next interacted item, we use 

node vector in

nv  of the last clicked item as incoming local embedding, namely 
in in

l n=s v . 

For modeling the outgoing global embedding, we consider the whole 

sequential behavior in the session. Since not all the items reflect equally for 

modeling the global embedding, we use soft AM to extract global preference 

specific items that are significant to the global embedding. Finally, the incoming 

global embedding in

gs  is aggregated by the vectors of those informative items, which 

is computed as: 

1

=
n

in in in

g i i

i=

s v                                                     (7) 

Where in

nv  is node vector of the i-th item, weighting factor in

i  models 

relationship between in

nv  and previous clicked items in

iv  by computing their 

similarity, which can be defined as: 
T in in i

1 2= ( )in in in n

i n i  + +q W Wv v c                                            (8) 

Where in

1W  and in

2W  transform in

nv  and in

iv  into a latent space, respectively. 

( )   is the sigmoid function. q  is a weight vector and T
q  denotes its transpose. 

Then, we concatenate in

ls  and in

gs  as the hybrid incoming session 

representation in
s : 

i i=[ : ]in n n

l gs s s                                                      (9) 

3.4. Outgoing session encoder 

Similar to the incoming session encoder, we use another gated GNN to 

compute the node vectors in a session with the help of item embedding 1 2[ , , , ]nv v v  

and outgoing adjacent matrix out
A . After adding the item-self information on the 

corresponding node vectors which with respect to outgoing graph, the final node 

vectors are denoted as 
1 2[ , , , ]out out out

nv v v . 

For modeling the outgoing local embedding, we also use the node vector 
out

nv  of the last clicked item as outgoing local embedding, namely out out

l n=s v  

For modeling the outgoing global embedding, since every node contributes 

different information to global embedding, the soft AM is also introduced to 

generate outgoing global embedding out

gs . The process is similar to the process of 

building the incoming global embedding. It is defined as: 
T

1 2= ( )out out out out out out

i n i  + +q W Wv v c                                      (10) 

1

=
n

out out out

g i i

i=

s v                                                (11) 



Separation and Fusion graph networks for session-based recommendation             253 

Finally, the hybrid outgoing session representation out
s  is designed as: 

=[ : ]out out out

l gs s s                                                 (12) 

3.5. Recommendation decoder 

Recommendation decoder is to fuse hybrid incoming and outgoing 

representations of the session with an adaptive importance proportion, and compute 

the probability of the next clicked item. Since incoming graph and outgoing graph 

represent different information and have different roles for building session 

representation, we build the final session representation final
s  through an attention-

based fusion gating mechanism which controls the information flow from outputs 

of ISE and OSE according to their importance: 

(1 )final in out

t tf f= + −s s s                                       (13) 

where the fusion gate tf  is determined by: 

( )in in out out

tf σ= +W s W s                                         (14) 

When the incoming graph plays a more important role in the session, tf  is 

adjusted to be larger adaptively, whereas ( )1 tf−  decreases. Conversely, tf  decreases 

and ( )1 tf−  increases when outgoing graph plays key role in modeling final session 

representation. 

Then, we calculate recommendation score ˆ
iy  for candidate item iv : 

ˆ softmax( )final

i iy = v Bs                                         (15) 

Where d 2dR B  transforms session representation into latent space dR . 

In our model, loss is defined as: 

=1

ˆ ˆlog( ) (1 ) log(1 )
|v|

i i i i

i

Loss = y y y y+ − −
                                  (16) 

4. Experiments 

4.1. Datasets and experiment settings 

We conduct experiments on Yoochoose and Diginetica datasets from 

RecSys Challenge2015 and CIKM Cup 2016, respectively. The statistics of them 

are shown in Table 1. 
Table 1 

Statistics of datasets 

Statistics Yoochoose 1/64 Yoochoose 1/4 Diginetica 

# of training sessions 430,328 6,145,883 719,470 

# of test sessions 55,464 55,861 60,858 

# of items 37,484 37,484 43,098 
 

We implement SEFU with Tensorflow and carry out experiments on a 

Nvidia T4. Processing of dataset is followed by [3]. We firstly filter out the session 
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whose length is 1 and where item occurrence is less than 5 in two datasets. 

Following previous works [2], [3], the item embedding on each dataset is 100. We 

use Adam to update parameters when training and initial learning rate is 0.001 and 

will decay by 0.1 after every 3 epochs. Additionally, batch size is 100, and L2 

penalty is 10−5 in our model. We use Recall@20 and MRR@20 to measure 

prediction accuracy and order of recommendation ranking. 

4.2. Model comparisons 

Since our framework only uses information from current session, we 

compare SEFU with some mainstream SR models which are based on the current 

session. The performances of baseline methods and our proposed SEFU are shown 

in Table 2.  
Table 2 

Results with different methods 

Methods 
Yoochoose 1/64 Yoochoose 1/4 Diginetica 

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20 

FPMC 45.62 15.01 51.52 21.21 26.53 8.95 

Item-KNN 51.60 21.44 52.34 21.69 28.75 9.36 

GRU4Rec 66.70 22.89 65.66 28.24 44.56 14.32 

NARM 68.32 28.34 69.10 29.13 48.32 16.29 

GC-SAN 69.61 30.18 70.39 30.07 49.05 16.62 

SR-GNN 69.17 30.12 69.37 29.47 51.03 17.07 

Disen-GNN 71.46 31.36 - - 53.79 18.99 

SEFU-IO 71.28 31.31 70.68 30.28 51.38 17.19 

SEFU 71.64 31.64 70.95 30.42 53.85 19.07 

From Table 2, we can observe that:  

In traditional methods, the result of FPMC [10] indicates consecutive items 

have dependency relationships. Besides, the performance of Item-KNN [11] is 

better than FPMC. It denotes the last clicked item very significant in 

recommendation. 

Since neural network methods have the ability to model the complex 

contextual information, the RNN-based methods of GRU4Rec and NARM 

excessively outperform the traditional methods. It indicates that modeling the 

session representation considers the transitions between the consecutive items are 

helpful for SR. Compared to the methods based on RNNs (GRU4Rec [12] and 

NARM [2]), the models based on GNNs (SR-GNN [3], GC-SAN [4] and Disen-

GNN [7]) perform better. This may be because the graph-structured data is able to 

capture more complex item transition patterns, and it verifies that GNN is friendly 

to capture the information in a given session. 

Data scale does not affect the performance. Compared with Disen-GNN, 

SEFU gets improvement of 0.18 and 0.28, respectively for a small dataset like 

Yoochoose 1/64, and gets improvement of 0.06 and 0.08, respectively for a dataset 

like Diginetica. Especially, compared with SR-GNN which has a similar 
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construction to us, SEFU-IO obviously gets large improvement on all datasets. We 

suppose the reason is that the previous methods cannot distinguish roles of the 

incoming graph and the outgoing graph to model the session representation. 

Additionally, SEFU achieves the best performance. The results confirm our 

proposed methodology of introducing item-self information in modeling item 

representation, separating incoming graph and outgoing graph, and balancing their 

importance in a flexible and end-to-end manner are reasonable and effective for the 

GNN based methods. 

4.3. Effect of different connections 

To illustrate the effect of every encoder in our model, we compare SEFU 

with two variants IC-SR and OC-SR. IC-SR denotes the final session representation 

is directly generated only from the ISE. OC-SR refers that the final session 

representation is built merely from the OSE. Fig. 3 shows the results of IC-SR, OC-

SR, and SEFU for SR. 

 

 

Fig. 3. Effect of the different connections for modeling the final session representation for SR 
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From Fig. 3, we can observe that: 

IC-SR and OC-SR both perform better than GRU4Rec and NARM. Their 

differences are: IC-SR and OC-SR convert the session into a graph structure, and 

the others directly use sequential information to build the session representation. 

The results indicate that modeling session into a graph structure is friendly to 

recommendation. Moreover, the incoming graph with item-self information or the 

outgoing graph with item-self information can capture more information related to 

the session. 

For the same data source of Yoochoose, results of IC-SR are lightly higher 

than those of OC-SR. It indicates the incoming graph very important in modeling 

session representation for Yoochoose dataset, whereas the outgoing graph is more 

effective than the incoming graph to improve the recommendation accuracy for 

Diginetica. The results demonstrate that the incoming graph and the outgoing graph 

play different role in modeling the session representation, and their performances 

associate with the recommendation scenario. 

Compared with the IC-SR and OC-SR, our model shows the best results for 

recommendation. The results confirm the usefulness of adaptively selecting the 

information from the different sources and the effectiveness of item-self 

information for better recommendation. 

4.4. Effect of different session embeddings 

In this part, we construct two frameworks, SEFU-L and SEFU-G, to explore 

the roles of local embedding and global embedding for modeling session 

representation. SEFU-L models the session representation only with the incoming 

and outgoing local embeddings in each encoder. SEFU-G models the session 

representation only with the incoming and outgoing global embeddings in each 

encoder. Their recommendation performances are shown in Fig. 4. 

  
Fig. 4. Effect of different session embeddings for SR 
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From the Figs., the results of SEFU-L are higher than SEFU-G on 

Yoochoose dataset, which means that the last clicked item has strong relation with 

the next interactive item, and the local embedding is consistent with the user’s 

preference. Conversely, SEFU-G shows better than SEFU-L on Diginetica dataset, 

which shows that inherent dependency among previous clicked items. Therefore, 

we suppose that when the last item is an unintentional or improvised click, only 

using local embedding may obviously cause deviation, and introducing the global 

embedding can correct the deviation. If one session consists of dispersed item 

catalogs, only using global embedding may introduce noise to mislead the 

prediction into a mistaken preference, and introducing the local embedding can 

enhance the current preference. 

SEFU improves the accuracy over SEFU-L and SEFU-G on all the datasets, 

and the performances accord with the approaches which are not involved in item-

self information and separated incoming and outgoing graph with fusion gating 

mechanism. The results indicate that SEFU improves the session representation 

from the nature of the problem. 

4.5. Effect of aggregation operations 

We use different aggregation operations to build the final session 

representation from the incoming session representation and the outgoing session 

representation. The details are as follows. 

Max pooling and average pooling respectively use maximum value and 

average value of each dimension of the two session representations as the final 

session representation, namely: 

( , )final in outmax=s s s                                          (17) 

1
( )

2

final in out+=s s s                                             (18) 

For the concatenation, the final session representation is designed as: 

=[ : ]out out out

l gs s s                                               (19) 

From Table 3, we can see that fusion gating mechanism outperforms the 

others. This demonstrates that fusion gating mechanism works better in modeling 

session representation from ISE and OSE. Additionally, the results support the 

thought of our work and indicate the incoming graph and outgoing graph play 

different role in determining the representation of the session. In most cases, the 

aggregation operation with max-pooling achieves better performance than the 

aggregation operation with average-pooling or concatenation. This indicates that 

max-pooling has an advantage over average-pooling and concatenation in modeling 

the final session representation. We think the reason may be the average-pooling 

and concatenation are not capable of selecting meaningful information from ISE 
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and OSE, namely the effective information cannot be distinguished. And 

introducing the noise information to meaningful information reduces the 

effectiveness of meaningful information. 
 

Table 3 

Effect of different aggregation operations for incoming and outgoing session representation 

Models 
Yoochoose 1/64 Yoochoose 1/4 Diginetica 

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20 

Max-pooling 70.49 30.63 70.71 30.22 51.42 17.29 

Average-pooling 70.05 30.24 70.49 30.17 51.29 17.13 

Concatenation 70.03 30.30 70.35 30.14 51.21 17.11 

Fusion gating 71.44 31.64 70.95 30.42 51.56 17.37 

4.6. Effect of session length 

To explore the scalability of the recommendation performance with 

different session lengths, there are Short and Long groups. For Short group and 

Long group, the separation point of Yoochoose 1/64 and Diginetica are 5 and 4. 

From Table 4, we can observe that: (1) compared with SR-GNN, OC-SR performs 

better on Short group and IC-SR performs better on Long group. This indicates that 

short session representations and long session representations relay on the incoming 

graph and the outgoing graph heavily, respectively. For short sessions, the 

possibility of user repeatedly browsing the same item is relatively smaller and the 

interaction items show a progressive relationship. For long sessions, the user may 

struggle for a fraction of items browsed repeatedly and the interaction items show 

a comparison relationship. Therefore, incoming graph and outgoing graph play 

different role in modeling session representation. (2) It demonstrates that separately 

encoding the incoming graph with item-self information and the outgoing graph 

with item-self information helps to learn a more precise node representation, and 

adaptively selecting the different sources of the session representations promotes 

the precise of the final session representation. (3) SEFU performs consistently 

better than SR-GNN within both short and long sessions, which indicates 

generation of our proposed main thought. 
Table 4 

Comparison of different session lengths 

Models 
Yoochoose 1/64 Diginetica 

Short Long Short Long 

SR-GNN 27934 10927 21991 9102 

IC-SR 28137 10936 22082 9014 

OC-SR 28115 10959 21869 9176 

SEFU 28427 11210 22117 9215 
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5. Conclusions 

We developed a novel framework SEFU to model different connections in 

session graph for SR. We conduct thorough empirical experiments on the public 

datasets to investigate SEFU. Specifically, the experimental results of the model 

performance comparison, different connections for modeling the final session 

representation for SR, different session embeddings for SR, different aggregation 

operations for incoming and outgoing session representation, and the comparison 

of different session lengths fully demonstrate the effectiveness of our model. 

Experimental results show that our model outperforms existing methods on the 

three public datasets. In addition, the ablation study validated the validity of each 

component of our model. In addition, the ablation studies validate the validity of 

each component of our model. 

R E F E R E N C E S 

[1]. J. Song, H. Shen, Z. Ou, J. Zhang, T. Xiao, and S. Liang, “Islf: Interest shift and latent factors 

combination model for session-based recommendation”, in Proceedings of the 28th 

International Joint Conference on Artificial Intelligence, pp. 5765-5771, 2019a.  

[2]. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive session-based 

recommendation,” in Proceedings of the 2017 ACM on Conference on Information and 

Knowledge Management, pp. 1419–1428, 2017. 

[3]. S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation with 

graph neural networks,” in Proceedings of the 33rd AAAI Conference on Artificial Intelli-

gence, pp. 346–353, 2019a. 

[4]. C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou, “Graph 

contextualized self-attention network for session-base recommendation,” in Proceedings of 

the 28th International Joint Conference on Artificial Intelligence, pp. 3940–3946, 2019. 

[5]. S. Rendle, “Factorization machines with libfm,” ACM Transactions on Intelligent Systems and 

Technology, vol. 3, no. 3, pp. 57:1–57:22, 2012. 

[6]. Z. Pan, F. Cai, Y. Ling, and M. de Rijke, “Rethinking item importance in session-based 

recommendation,” in Proceedings of the 43rd International ACM SIGIR conference on 

research and development in Information Retrieval, pp. 1837–1840, 2020. 

[7]. A. Li, Z. Cheng, F. Liu, et al. “Disentangled graph neural networks for session-based 

recommendation,” arXiv preprint arXiv:2201.03482, 2022. 

[8]. L. Xia, C. Huang, C. Zhang. “Self-supervised hypergraph transformer for recommender 

systems,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery 

and Data Mining, 2100-2109,2022. 

[9]. W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang, “Session-based social 

recommendation via dynamic graph attention networks,” in Proceedings of the 12th ACM 

International Conference on Web Search and Data Mining, pp. 555–563, 2019b. 

[10]. S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains 

for next-basket recommendation,” in Proceedings of the 19th International Conference on 

World Wide Web, pp. 811–820, 2010. 

 



260                                  Jingyuan He, Bailong Yang, A. Ruhan, Jinjin Zhang 

[11]. J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, 

B. Livingston, et al., “The youtube video recommendation system,” in Proceedings of the 4th 

ACM conference on Recommender systems, pp. 293–296, 2010. 

[12]. B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k gains for session-based 

recommendations,” in Proceedings of the 27th ACM International Conference on Information 

and Knowledge Management, pp. 843–852, 2018. 

 


