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EVALUATION OF EFFECTIVE MECHANICAL PROPERTIES 

OF COMPLEX MULTIPHASE MATERIALS WITH FINITE 

ELEMENT METHOD 

 Mohamed said BOUTAANI1, Salah MADANI2, Kamel FEDAOUI3,                        

Toufik KANIT4 

Prediction of effective properties for multiphase composite is very important 

not only to analysis and optimization of material performance, but also to new 

material designs. In this paper, the effective elastic property of some complex 

particulate composites is analyzed and compared with numerical results, 

demonstrating the validity of the proposed approach. We propose the equivalent 

morphology concept for the numerical homogenization of random composites. In this 

study, this concept is extended for complex material. A home script based on Python 

codes is made to automate the generating of Representative volume element with 

various volume fraction.  

Keywords: Representative volume element, Computational homogenization, 

Finite element modeling.  

1. Introduction 

Heterogeneous materials are made of a mixing between inclusions phase 

and matrix. As a result of a non-uniform mixing, during the dispersion of 

inclusions in the matrix, we are getting microstructures with complex shape. For 

example, this is the case of microstructures of Concrete, Voronoi mosaics and the 

case of microstructures of composite materials with aggregates. Several numerical 

homogenization techniques, based on the notion of the Representative Volume 

Element (RVE), are used to estimate the effective linear elastic properties, of three 

dimensional (3D) microstructures. 

In the literature, for describing the elastic behavior of composites many 

models exist [1, 2]. The prediction of the effective elastic properties of 

heterogeneous materials is based on the knowledge of relations between the 

microstructure and the macroscopic response.  
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This has been achieved by using micromechanical models, which 

considered only the matrix and reinforcement properties and their volume 

fractions. The majority of analytical models and bounds do not take into account 

the influence of the particle shape on the effective properties. This can only be 

achieved by solving numerically the boundary value problem for a Representative 

Volume Element (RVE) of material [3, 4].  

Several researchers have used the finite element method (FEM) to 

understand the effect of particles volume fractions on the mechanical behavior of 

composites [3, 4, 5, 6].  

In this paper, the effect of phase shape on the effective linear elastic 

properties and on the RVE size, is investigated using FEM. A numerical 

homogenization technique, based on finite element simulations was used by 

applying periodic boundary conditions (PBC). Two different materials are 

considered, one with complex shapes for the second phase and the second material 

with spherical particle embedded into matrix. The equivalent morphology concept 

is proposed here to replace the complex shape two-phase material with a simple 

two-phase composite composed of spherical inclusions embedded into the matrix. 

2. Computational homogenization 

In this section, all elements and notations of numerical homogenization 

necessary to determine the effective elastic properties, using the methodology 

explained by [2] based on the FEM, are described.  

2.1 Microstructures generating and elastic properties of phases 

This work concerns the prediction of mechanical properties of two-phase 

composite materials by 3D numerical simulation. Simulations are performed using 

the finite element method coupled with a homogenization method. The generation 

algorithm of complex material is developed with a Python code [7], see figure 1. 

To simplify the calculations, simulations were performed for a RVE. The 

algorithm generates 3D complex material for a specified volume fraction, in a 

cubic region. The automated generation process will not stop until the volume 

fraction is satisfied. The morphology and technique of 3D microstructures 

generation is presented in this section. For each studied microstructure, many 

configurations with different form of the second phase are investigated. Each 

microstructure contains one population of second phase, randomly distributed in a 

continuous matrix. Different elastic properties are attributed to the two phases, in 

order to predict the effective elastic properties of composites. Table 1 represents 

the mechanical properties of each phase used for numerical computations. φ1 is 

the volume fraction of the second phase and φ is the volume fraction of the matrix.  
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Fig 1: Process of numerical computation. 

Table1 

Cases of composites used for numerical computations. 

Material  Case  Volume fraction for matrix and inclusions  

Complex Two -Phase 

material 

Case 1  φ=95%, φ1 = 5%   

Case 2  φ=90%, φ1 =10% 

Case 3  φ=80%, φ1 =20% 

 Case 4 φ=70%, φ1 =30% 

Table2 

Elastic properties of each phase used for numerical computations. 

Phase  Matrix  Inclusion   

Young modulus [MPa ] 100 10 

Poisson ratio  0.3 0.3 

 

FE computations on volumes of different sizes extracted from the entire 

volume V were performed. The main advantage of this strategy is that it allows us 

to work on a sufficiently large volume for a low computational cost. Figure 2 

presents an example of RVE of complex microstructure and a subdivision of this 

whole microstructure into images.  

In all simulation, many realizations for the same volume fraction of 

material were generated to estimate the elastic properties. We note that the 

number of realizations from the small volume size V1 to large one V6 decrease. 

The different configurations with increasing sizes are summarized in Table 3.  

Generating Microstructure of particles 

(Code Python)  

 

Superposition of finite element grid on 

the volume 
FE Mesh 

 

 FE computation:  K, µ 

& E properties 

 

Boundary condition 
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Table3 

Cases of volume size used for numerical computations. 

 V1 V2 V3 V4 V5 V6 

Volume 

size [px3] 

50*50*50 80*80*80 100*100*100 150*150*150 200*200*200 250*250*250 

Number of 

realizations 

30 30 10 8 5 5 

  

(a) (b) 

  (c) 

Fig. 2. Example of material used in this investigation, (a) material with 30%, (b) 3D mesh, c) shear 

strain. 

2.2 Mesh generation and mesh density 

A regular 3D finite element mesh is superimposed on the image of the 

microstructure using the so-called multi-phase element technique. This technique 

was developed in [2] and used for the homogenization of virtual or real images by 

several authors as [4, 8, 9, 10]. As a result of convergence, a good mesh density of 

quadratic 20 nodes elements and 27 integration points per one FE was adopted in 

all this investigation for all simulations, see Figure 3.  
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Fig. 3. Evolution of Bulk modulus as a function of the number of elements. 

2.3 Boundary conditions 

The homogenization theory is used for the numerical determination of 

effective linear elasticity properties. A volume element of a heterogeneous 

material is considered. Conditions are prescribed at its boundary in order to 

estimate its overall properties. The periodic boundary conditions are to be 

prescribed on individual volume element. These boundary conditions were used 

with prescribed values of strain tensor  on individual volume element V . These 

conditions are defined by a displacement field over the outside contour V  as:  

vxu .=       Vx                                                  (1) 

The fluctuation v  is periodic. It takes the same values at two homologous 

points on opposite faces of V .   represents the macroscopic deformation and x  

the position vector. 

For the PBC, to compute macroscopic bulk and shear moduli we take: 
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where 
k

 and   are the macroscopic strain tensors used for computing kapp and 

µapp respectively.  

We define the following ''apparent bulk and shear modulus'' (kapp and µapp): 
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where < x > is the average value x . 11  , 22 , 33 , represent the principal stresses 

and 12 the shear stress. 
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2.4 Hashin-Shtrikman bounds 

The Hashin-Shtrikman bounds [11] are the tightest bounds possible from 

range of composite moduli for a two-phase material. Specifying the volume 

fraction of the constituent moduli allows the calculation of rigorous upper and 

lower bounds for the elastic moduli of any composite material. The so-called 

Hashin-Shtrikman bounds for the bulk, K, and shear moduli μ is given by:  
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where P is the volume fraction of the inclusions, K1 and K2 are the bulk modulus 

of the inclusions and matrix respectively, 1 and 2 are the shear modulus of the 

inclusions and matrix respectively.        

The upper bound is computed when (K2 > K1 and 2 > 1). The lower 

bound is computed by interchanging the indices in the equations.  

3. Results and discussion 

In this part, for the determination of the bulk and shear modulus of 

heterogeneous materials, a numerical technique with RVE notion developed in [2] 

is used. It consists in considering different realizations of random and complex 

microstructures in order to obtain the effective properties. The RVE is the volume 

that allows the estimation of the effective property with one realization.  

The size of the RVE and the effective property are obtained by variation of 

the volume size, see Table 3. From the obtained results, it appears that the size of 

RVE depend on the size of material investigated.  

Figure 4, reported the variations of effective bulk and shear modulus in 

term of volume fraction for case 1. The results are compared to the HS bounds. 

The variation of effective elastic properties in term of volume fraction for all the 

cases of complex material are reported in Figure 5. For the low volume fraction 

5% and 10% the RVE is located for small volume size compared with the other 

volume fraction 20 and 30%. 
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                                              (a)                                                                                   (b)  

Fig 4. Variation of the bulk (a) and the shear modulus (b) with HS bounds in terms of volume size 

for case 1 of complex material. 

   
                                              (a)                                                                                   (b)  

Fig 5. Variation of the bulk (a) and the shear modulus (b) in terms of volume size for four-volume 

fraction of complex material.  

Table4 

RVE size from numerical computations. 

Material   Case  RVE Size [pixel3] 

Complex material 

Case 1  V3 

Case 2  V3 

Case 3  V4 

Case 4 V5 

In Table 4, the size of RVE for all the cases study in this paper are reported. 

4. Effect of volume fraction on effective elastic properties 

Many authors have studied the effect of volume fraction on the effective 

elastic properties of composite materials. In order to investigate the effect of 
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volume fraction of second phase on the effective bulk and shear modulus, 

different volumes fractions of material were investigated, the effective bulk and 

shear modulus decrease with the increase of the volume fraction of inclusions and 

converge to the effective value for the RVE volume size, see Figure 5.  

5. Equivalent morphology concept 

In this section, we propose to replace a complex two phase material with a 

simple two-phase material. The second material is made of spherical inclusion 

embedded into the matrix. We make the assumption that the volume fraction is the 

same in the two configurations. The distribution of the inclusions is random. The 

Python script used for generating the complex material is adapted to generate the 

material with spherical particles. Two constraints were made to the distribution of 

spheres: 

• The spheres do not overlap with each other 

• The spheres do not collide with the cell walls (cube) 

The three cases of generation spheres with three types of fraction (5%, 

10%, 20% and 30%) are presented in Figure 6. 

  
         (a)                                                    (b)                                                    (c) 

Fig 6. Generation of spherical particles for different volumes fraction, a) 5%, b) 10% and c) 20%. 

 

The technique of generation of this microstructure containing random 

sphere packings is obtained with a Python code with RSA algorithm used in [12, 

13, 14, 15, 16], see Fig. 1. 
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                                              (a)                                                                                   (b)  

Fig 7. Variation of the bulk (a) and the shear modulus (b) in terms of volume size for composite 

for four-volume fraction of with spherical inclusions. 

Figure 7 present the results of effective elastic properties of spherical inclusions in 

term of number of inclusions N for all the volume fractions. 

The relative error between modulus of complex morphology and modulus of 

morphology with spherical inclusions should be calculated as:  

Relative error (k) = (kcomplex-kspherical)/kcomplex                                  (7) 

The relative error between modulus of complex morphology and modulus of 

morphology with spherical inclusions should be calculated as:  

Relative error () = (complex-spherical)/ complex                                (8) 
Table 5 

Numerical results for Bulk modulus for complex and spherical inclusion material and the HS 

bounds 

Table 6. 

Numerical results for Shear modulus for complex and spherical inclusion material and the HS 

bounds 

Volume 

Fraction of 

inclusions (%) 

k   [MPa] 

complex material   

k [MPa] spherical 

inclusion  

HS- HS+ Relative Error 

(%) 

5 74.164 74.228 64.052 75.366 0.086 

10 70.283 67.419 51.672 68.290 4 

20 52.734 55.705 36.702 56.271 5.6 

30 51.541 46.521 27.978 47.233 9.7 

Volume 

Fraction of 

inclusions (%) 

µ [MPa] complex 

material   

µ  [MPa] spherical 

inclusion  

HS- HS+ Relative Error 

(%) 

5 35.138 35.220 30.917 35.539 0.2 

10 31.968 33.244 25.640 32.823 4 

20 26.895 27.306 18.742 27.922 1.5 

30 22.351 30.331 14.432 25.241 35.7 
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According to the Figures 8 and 9, the curves of the effective elastic 

proprieties k and μ for the two morphologies converge and nearly equal. The error 

between the value of k and μ in the two cases are negligible for volumes fraction 

5, 10 and 20%, see Table 5 and 6. For the volume fraction 30%, the origin of the 

difference (9.7% for bulk modulus and 35% for the shear modulus) is the height 

heterogeneity of material in the two morphologies. The error in (%) is calculated 

between effective modulus of complex morphology and morphology with 

spherical inclusions. 

Using these results, we can deduce the concept of equivalent morphology, 

which allows us to replace the original morphology of complex two-phase 

material by another morphology named equivalent morphology just containing 

spheres, provided the volume fraction of the second phase in original morphology 

equals to the volume fraction of spherical particle one in its equivalent 

morphology. These two morphologies give the same effective elastic properties 

but not necessarily the same RVE. 

   
                                              (a)                                                                                   (b)  

Fig 8. Variation of effective material properties for complex material with change in volume 

fraction and comparison with different analytical results: a), Bulk modulus, b) Shear modulus. 

      
                                              (a)                                                                                   (b)  

Fig 9. Variation of effective elastic properties with changing the volume fraction for the 

microstructure with spheres a) for bulk and (b) shear modulus. 
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6. Conclusions 

A 3D cell model is used to predict the effective mechanical properties of 

two-phase complex material using homogenization techniques for different 

volume fractions. The numerical approach is based on the finite element method. 

Bulk and shear effective modulus have been calculated using a finite element 

model and compared with HS bounds.  

The concept of equivalent morphology, which allows us to replace the 

original morphology of complex two-phase material by another morphology 

named equivalent morphology just containing spheres, is proposed to reduce the 

mesh time of complex microstructure and memory. 

The numerical results demonstrate that the developed FE approach is very 

accurate and efficient for the analysis of 3D complex material. The present work 

has laid down a foundation for further applications of micro-mechanical finite 

element analysis for problems, such as an investigation of stress field in order to 

understand the onset and the development of inelastic behavior such as plastic 

deformation and possible damage. Furthermore, the proved reliability of the 

introduced FEM approach opens new possibilities to explore composites with 

arbitrary geometrical types of inclusions, which cannot be covered by most other 

homogenization methods. 
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