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CONSTITUTIVE MATERIAL LAWS IN THE 
MULTIFRACTAL THEORY OF MOTION (PART I) 

Ana ROTUNDU1, Stefana AGOP2, Maria-Alexandra PAUN3,*, Costica 
BEJINARIU2, Tudor-Cristian PETRESCU4, Cristina Marcela RUSU5, Alin Marian 
CAZAC2, Vladimir-Alexandru PAUN6, Maricel AGOP5,7, Viorel-Puiu PAUN7,8 

Using the Fractal Theory of Motion in the form of Madelung Scenario, the 
presence of a permanent interaction between structural units of any complex system 
and a multifractal medium is highlighted. In such a context, the characterization of 
the multifractal medium through a multifractal tensor allows the obtainment of 
material constitutive laws. Moreover, particular types of material constitutive laws 
are presented: deformations exist even when no tensions are applied to the material, 
deformations which can be interpreted as intrinsic or pure material properties (in 
particular, Bell’s constitutive laws). Furthermore, it is shown that not only radiation 
cosmic background, but the electromagnetic field in general, in its Maxwellian form, 
is in truth the expression of the existence of the multifractal medium. 

Keywords: multifractal Theory of Motion, Schrödinger scenario, Madelung 
scenario, multifractal tensor, multifractal constitutive material laws 

 

 
1 Faculty of Physics, “Al. I. Cuza” University of Iași, 700506 Iași, Romania, e-mail: 
anabotezatu82@gmail.com 
2 Faculty of Material Engineering and Science, “Gh. Asachi” Technical University of Iași, 700050 
Iași, Romania, e-mail: stefanaagop@yahoo.com, costica.bejinariu@academic.tuiasi.ro, 
alin.cazac@yahoo.com 
3 Division Radio Monitoring and Equipment, Section Market Access and Conformity, Federal 
Office of Communications OFCOM, Avenue de l'Avenir 44, CH-2501, Biel/Bienne, Switzerland 
4 Department of Concrete, Materials, Technology and Management, Faculty of Civil Engineering 
and Building Services, “Gheorghe Asachi” Technical University of Iași, 700050 Iași, Romania, e-
mail: tudor.petrescu@tuiasi.ro 
5 Department of Physics, “Gheorghe Asachi” Technical University of Iași, 700050 Iași, Romania; 
cristina-marcela.rusu@academic.tuiasi.ro; m.agop@yahoo.com 
6 Five Rescue Research Laboratory, 35 Quai d’Anjou, 75004, Paris, France, e-mail: 
vladimir.alexandru.paun@ieee.org   
7 Physics Department, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, 
Romania, e-mail: viorel.paun@physics.pub.ro 
8 Romanian Scientists Academy, 54 Splaiul Independentei, 050094 Bucharest, Romania  
*Corresponding author, email:  maria_paun2003@yahoo.com 

mailto:m.agop@yahoo.com
mailto:maria_paun2003@yahoo.com


214                                                    Maria-Alexandra Paun et al. 

1. Introduction 

Recent papers referring to the description of complex system dynamics 
through the multifractal Theory of Motion (either in the fractal dimension 𝐷𝐷𝐹𝐹 = 2 
as in the Scale Relativity Theory [1] or in a constant, but arbitrary fractal dimension 
[2-7]) specify the fact that the description of dynamics, regardless of the scale 
resolution, are self-similar and are induced by the property of the motion curves 
(fractal/multifractal curves). As such, the holographic mode of description for 
complex system dynamics is implemented, both in the form of the Schrödinger 
multifractal scenario and in the Madelung multifractal scenario. The two 
description scenarios are not mutually exclusive, rather they are complementary: in 
any complex system dynamics, local non-linear behaviors (of digital type) and 
global non-linear behaviors are reciprocally conditioned, regardless of the scale 
resolution.  

In the present paper, the identification of the previously mentioned 
conjecture is proven to be reducible to material constitutive laws.  

2. A short reminder on the multifractal hydrodynamic model 

Let it be considered the multifractal Schrödinger equation [3]:  

2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝛹𝛹 + 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑡𝑡𝛹𝛹 = 0 

where 

𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙 =
𝜕𝜕2

𝜕𝜕𝜕𝜕𝑙𝑙
2  ,𝜕𝜕𝑡𝑡 =

𝜕𝜕
𝜕𝜕𝜕𝜕

 , 𝑙𝑙 = 1,2,3 

(1) 

In the previous relation, 𝑥𝑥𝑙𝑙 are the multifractal space coordinates, 𝑡𝑡 is a non-
multifractal time coordinate, 𝛹𝛹 is the state function,  𝜆𝜆 is a constant associated to 
the multifractal-non-multifractal scale transition,  𝑑𝑑𝑑𝑑 is the scale resolution, 𝑓𝑓(𝛼𝛼) is 
the singularity spectrum of order 𝛼𝛼 and 𝛼𝛼 = 𝛼𝛼(𝐷𝐷𝐹𝐹) is the fractal dimension of the 
motion curves. For other details referring to the meanings of the previously 
mentioned variables and parameters, please see [2-3]. 

In such a context, if 𝛹𝛹 is chosen in the form (the Madelung substitution): 
𝛹𝛹 = �𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖, (2) 

where �𝜌𝜌 is the amplitude and 𝑠𝑠 is the phase, then the complex velocity field [3] 

𝑉𝑉� 𝑖𝑖 = −2𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 𝑙𝑙𝑙𝑙𝛹𝛹 (3) 

take the explicit form: 
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𝑉𝑉� 𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖𝑠𝑠 − 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 ln 𝜌𝜌 (4) 

which implies the real velocity fields: 

𝑉𝑉𝐷𝐷𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖𝑠𝑠 (5) 

 

𝑉𝑉𝐹𝐹𝑖𝑖 = 𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 ln𝜌𝜌. (6) 

In (5), 𝑉𝑉𝐷𝐷𝑖𝑖  is the differentiable velocity field, while 𝑉𝑉𝐹𝐹𝑖𝑖 is the non-differentiable 
velocity field. 

Now, by (2), 5) and (6) and using the mathematical procedures from [2-3], 
the equation (1) is reduced to the multifractal hydrodynamic equations: 

𝜕𝜕𝑡𝑡𝑉𝑉𝐷𝐷𝑖𝑖 + 𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐷𝐷𝑖𝑖 = −𝜕𝜕𝑖𝑖𝑄𝑄 (7) 

 
𝜕𝜕𝑡𝑡𝜌𝜌 + 𝜕𝜕𝑙𝑙�𝜌𝜌𝑉𝑉𝐷𝐷𝑙𝑙 � = 0 (8) 

with 𝑄𝑄 the specific multifractal potential: 

𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌

�𝜌𝜌
= −𝑉𝑉𝐹𝐹𝑖𝑖𝑉𝑉𝐹𝐹𝑖𝑖 −

1
2
𝜆𝜆(𝑑𝑑𝑑𝑑)�

2
𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑙𝑙 .  (9) 

Equation (7) corresponds to the specific multifractal momentum 
conservation law, while equation (8) corresponds to the multifractal states density 
conservation law. The specific multifractal potential (9) implies the specific 
multifractal force: 

𝐹𝐹𝑖𝑖 = −𝜕𝜕𝑖𝑖𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑖𝑖
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌

�𝜌𝜌
 (10) 

which is a measure of the multifractality of the motion curves. 
Therefore, for the complex velocity fields (4), the dynamics of any complex 

system are described through hydrodynamic equations at various scale resolutions. 
The following consequences result: 

i) Any complex system’s structural units are in a permanent interaction with a 
multifractal medium through the specific multifractal force (10); 

ii) Any complex system can be identified with a multifractal fluid, the dynamics 
of which is described by the multifractal hydrodynamic model (see Eqs. (7) – 
(9)); 
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iii) The velocity field 𝑉𝑉𝐹𝐹𝑖𝑖 does not represent the contemporary dynamics, but 
contributes to the transfer of the specific multifractal momentum and to the 
multifractal energy focus. This can be clearly seen from the absence of 𝑉𝑉𝐹𝐹𝑖𝑖 from 
the multifractal-type states density conservation law and also from its role in the 
multifractal variational principles (for details see [8]); 

iv) If a multifractal tensor is chosen: 

𝜏̂𝜏𝑖𝑖𝑖𝑖 = 2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜌𝜌𝜕𝜕𝑖𝑖𝜕𝜕𝑙𝑙 ln 𝜌𝜌 (11) 

the equation defining the multifractal “forces” that derive from a multifractal 
“potential” 𝑄𝑄 can be written in the form of a multifractal equilibrium equation. This 
equation can be written in a tensorial form: 

𝜌𝜌𝜕𝜕𝑖𝑖𝑄𝑄 = 𝜕𝜕𝑙𝑙𝜏𝜏𝑖𝑖𝑖𝑖 . (12) 

The multifractal tensor 𝜏𝜏𝑖𝑖𝑖𝑖 can be written in the form: 
𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜂𝜂�𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 + 𝜕𝜕𝑖𝑖𝑉𝑉𝐹𝐹𝑙𝑙� (13) 

with 

𝜂𝜂 = 𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜌𝜌. (14) 

This is a multifractal constitutive law for a multifractal “viscous fluid”. 
Moreover, an original interpretation of the 𝜂𝜂 coefficient as a multifractal dynamic 
viscosity of a multifractal fluid is given [9-11].   

3. Multifractal tensions and deformations. Multifractal constitutive 
material laws 

Because the multifractal tensor (11) plays a fundamental role in the 
definition of a material constitutive equation, in what follows, let it be presented 
some of its properties and their implications.  

In continuum mechanics, one works with tensors of the second order or, 
more generally, with matrices, to adequately represent stresses and strains, and 
these are representations essentially non-polar, especially if they are not specified 
in terms of displacement fields and forces, as is usually done in engineering 
problems. More than that, when it comes to their reality, this is guaranteed by the 
so-called constitutive law [12-13].    

In general terms, the constitutive law is a relationship between stresses and 
strains. Since regular representations for these concepts are by matrices, a 
constitutive law is a mathematical relationship - algebraic or analytical - between 
two 3×3 matrices. If it is noted with 𝝈𝝈 the stress matrix and 𝜺𝜺 the deformation 
matrix, then a constitutive law is a relation of the form 𝝈𝝈 = ∑𝜺𝜺 where the matrix 
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function is accessible to experimental evaluation or, in any case, evaluation of a 
different nature than that through pure algebraic calculation. 

 Here, is of importance the meaning according to which 𝝈𝝈 is the applied 
stress while 𝜺𝜺 is the strain resultant. The reality referred to above then refers to the 
identity of the material characterized by the constitutive law. In materials science it 
is claimed that stress and strain matrices are universal mathematical tools, while the 
function ∑ is specific to the material to which the stresses 𝝈𝝈 are applied to induce 
deformations 𝜺𝜺. It can be seen in the concept of tension, extended beyond applied 
force, a means of eliminating the force in general from the conceptual arsenal of 
mechanics. Really, only the tension applied from the outside is closely related to 
the idea of force. Otherwise, moving away from the idea of force, tensions can also 
be thought of as energy densities that characterize matter, occasionally even 
independent of any force. The central problem here is to find a function ∑ which 
implicitly contains the physical nature of the continuum to which the stresses and 
strains refer [14-19].   

Now, a specific feature appears, here the problem revolves around 
uncontrollable manifestations. This is the main reason for maintaining the way of 
thinking from classical mechanics that considers force as a vector. It is true that any 
(human) action is executed by force. In other words, it is possible to only control 
forces and, if it can be anything else, only through forces.  

The most general idea of uncontrollability comes in very handy by means 
of a constitutive law that could be called natural. Indeed, a constitutive law that 
relates the stresses to the strains must be of the form 

𝝈𝝈 = 𝑝𝑝0𝒆𝒆 + 𝑝𝑝1𝜺𝜺 + 𝑝𝑝2𝜺𝜺2 (15) 

where 𝒆𝒆 is the 3×3 unit matrix. This equation can be called a natural constitutive 
law, because it naturally derives from the representations for stresses and strains. 
Indeed, the models for stresses and strains are 3×3 matrices, and if the constitutive 
law is analytic, equation (15) must automatically be true, because then the 
relationship between two matrices can be represented in the form of a whole series 
in the deformation matrix, always reducible to one polynomial of the second degree 
by the Hamilton-Cayley theorem. For the same reason, the relationship can be 
written with the interchanged locations of stresses and strains, so that deformations 
are still quadratic functions in stresses, only with other coefficients. Therefore, for 
a material there are not only three characteristic numbers, but six: three for the 
expression of stresses in relation to the deformations and three for the expression 
of the deformations in relation to the stresses. 

In this scheme, the material therefore has, at least apparently, a precise 
identity, for that it is possible to identify it by the coefficients 𝑝𝑝0,𝑝𝑝1,𝑝𝑝2 which are 
accessible to the experiment [20-21]. This one is, in fact, what is usually meant by 
"characterizing the material". Too often, however, in experimental practice, these 
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coefficients are considered properties of material pure, of the order of density, but 
this restriction can lead to confusion in concepts, especially in engineering 
problems. Let such a situation be better explained. Regardless of what these 
material properties are, equation (15) shows that each of them can be extracted from 
experiments of loading a piece of material, either in extension, or in compression. 
Furthermore, regardless of the nature of this loading, the main directions of the 
stresses coincide with the main directions of the deformations. On the other hand, 
if 𝜎𝜎1,2,3 are the main values of the stress matrix and 𝜀𝜀1,2,3 those of the deformation 
matrix, then the constitutive law (15) is equivalent to the system 

𝜎𝜎1 = 𝑝𝑝0 + 𝑝𝑝1𝜀𝜀1 + 𝑝𝑝2𝜀𝜀12,
𝜎𝜎2 = 𝑝𝑝0 + 𝑝𝑝1𝜀𝜀2 + 𝑝𝑝2𝜀𝜀22,
𝜎𝜎3 = 𝑝𝑝0 + 𝑝𝑝1𝜀𝜀3 + 𝑝𝑝2𝜀𝜀32

 (16) 

Suppose that it is possible to perform experiments that allow the 
simultaneous measurement of all three main values of deformations and stresses. 
Such an experiment cannot be practically carried out, but the theoretical argument 
implies it always. The result of these experiments will allow the calculation of the 
properties of material embodied in the coefficients 𝑝𝑝0,1,2 from the system (16). As 
the material is unique, a unique solution of the system must be sought, which is 
obtained only if its determinant 

�
1 𝜀𝜀1 𝜀𝜀12

1 𝜀𝜀2 𝜀𝜀22

1 𝜀𝜀3 𝜀𝜀32
� = (𝜀𝜀2 − 𝜀𝜀3)(𝜀𝜀3 − 𝜀𝜀1)(𝜀𝜀1 − 𝜀𝜀2) (17) 

is non-zero. Thus, the parameters 𝑝𝑝0,𝑝𝑝1,𝑝𝑝2 are indeed uniquely determined, 
regardless of the nature of the stresses imposed on the material if, and only if, the 
main deformations induced are different from each other. Regardless of the fact that 
they are unique, and therefore very suitable for the characterization of material, the 
coefficients thus obtained are not pure material properties, because they depend on 
the stress state impressed on the material. Therefore, the meaning of pure material 
properties must be further specified. 

As such, the formalism shows that deformations exist even when there are 
no stresses applied to the material. Because their origins are unknown, these 
deformations can justifiably be taken as intrinsic properties, i.e., pure, of the 
material, considering that they could be generated by forces whose presence cannot 
be currently acquiesced [22-25]. These can be then described by the system of 
equations: 
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0 = 𝑝𝑝0 + 𝑝𝑝1𝜀𝜀1 + 𝑝𝑝2𝜀𝜀12,
0 = 𝑝𝑝0 + 𝑝𝑝1𝜀𝜀2 + 𝑝𝑝2𝜀𝜀22,
0 = 𝑝𝑝0 + 𝑝𝑝1𝜀𝜀3 + 𝑝𝑝2𝜀𝜀32.

 (18) 

Consequently, the intrinsic characterization of the material by experiment is 
now delegated to finding solutions of this linear and homogeneous system, if they 
exist. In fact, they always exist, only remaining to decide how many, and this fact 
depends on what can be measured in reality. If three different deformations in three 
orthogonal directions from space are always measured, then the material does not 
respond to the printed stresses. However, because the simultaneous measurement 
of three main values for a matrix is only conceptually possible, that quality of the 
material must be equally a conceptual one. In reality, it is only possible to 
simultaneously measure at most two eigenvalues, a fact which, when taken into 
consideration, reveals that the material could still respond to stresses, in other 
words, its deformation is really accompanied by tensions. Thus, if one and the same 
value of the deformation in any direction in space is measured, there exists a double 
infinity of stress states of the material, depending on two material parameters. If 
two values of the deformation are measured, in one direction and in its 
perpendicular plane for example, then material stress states depending on a single 
material parameter exist. Assuming it is possible to include one of the material 
parameters in a measured value, the most general constitutive law satisfied by the 
material presenting tensions accompanying the deformations will be of the form 

𝝈𝝈 = 𝐾𝐾(𝜺𝜺 − 𝜀𝜀1𝒆𝒆)(𝜺𝜺 − 𝜀𝜀2𝒆𝒆) (19) 

where 𝐾𝐾 is an arbitrary constant. Such a material has three uncontrollable quantities, 
two of which are measurable. 

In conclusion, it is noted that that as long as measurable quantities are of 
interest, a convenient way to express the deformation matrix characteristic of the 
material which presents uncontrollable deformations, is in the form of the tensor 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀2𝛿𝛿𝑖𝑖𝑖𝑖 + (𝜀𝜀1 − 𝜀𝜀2) ⋅ 𝐧𝐧𝑖𝑖𝑏𝑏𝑏𝑏𝑛𝑛𝑗𝑗  𝑖𝑖, 𝑗𝑗 = 1,2,3 (20) 

where 𝑛̂𝑛 is a unit eigenvector corresponding to the principal value 𝜀𝜀1. Such a 
material has distinctive directional properties in relation to the 𝑛̂𝑛 direction, and these 
properties are given by the eigenvalues 𝜀𝜀1 and 𝜀𝜀2. In fact, equation (20) includes all 
the cases in above view of the material, if it is agreed to characterize its intrinsic 
properties as deformations. Note that this convention is independent of the 
constitutive description and must be guaranteed by available measurement 
capability. As such, whenever the material deforms freely, i.e., under no perceptible 
force, its deformation matrix must be of the form (20) with all special cases 
included. The deformations, as well as the accompanying stresses, will then 
manifestly be orthogonal tensors [26-28]. 
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In the same way, it is possible to discuss that category of materials capable 
of sustaining tensions without responding with deformations. To express it, the 
opposite law must be considered, namely 

𝜺𝜺 = 𝑞𝑞0𝒆𝒆 + 𝑞𝑞1𝝈𝝈 + 𝑞𝑞2𝝈𝝈2 (21) 

This time, 𝝈𝝈 could only hardly be called tension; rather, it represents an 
internal energy density of matter. Then, the defining state of this multifractal 
medium will be characterized by the system of equations 

0 = 𝑞𝑞0 + 𝑞𝑞1𝜎𝜎1 + 𝑞𝑞2𝜎𝜎12

0 = 𝑞𝑞0 + 𝑞𝑞1𝜎𝜎2 + 𝑞𝑞2𝜎𝜎22

0 = 𝑞𝑞0 + 𝑞𝑞1𝜎𝜎3 + 𝑞𝑞2𝜎𝜎32
 (22) 

which corresponds to the situation in which no deformation of the multifractal 
medium is observed. Again, the characterization of this multifractal medium 
depends on the number of non-trivial solutions of the system, and the most general 
form of the deformation matrix is here 

𝜺𝜺 = 𝐾𝐾1−1(𝝈𝝈 − 𝜎𝜎1𝒆𝒆)(𝝈𝝈 − 𝜎𝜎2𝒆𝒆) (23) 

where 𝐾𝐾1 is a constant. The relation (23) with 𝜎𝜎1 + 𝜎𝜎2 = 0, in the absence of the 
multifractality, was found by Bell [29] as a characteristic of metals. 

 Again, if the interest is in measurable quantities for characterization of this 
material, its intrinsic stresses assume the following convenient tensor 
representation, analogous to equation (20): 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎2𝛿𝛿𝑖𝑖𝑖𝑖 + (𝜎𝜎1 − 𝜎𝜎2) ⋅ 𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗 ,  𝑖𝑖. 𝑗𝑗 = 1,2,3 (24) 

where 𝑚̂𝑚 is a unit vector corresponding to the main value 𝜎𝜎1. It can be stated that 
the general property of the material that does not show deformations under tensions 
is embedded in the form (23), all particular cases being included. 

The case of equations (20) and (24) is specific to the tensors that should 
further be called equivalent to a vector field. This equivalence can be understood in 
the following way: let 𝑣⃗𝑣 be a vector field, with the help of which the following 
matrix is built 

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 . (25) 

It is obvious that if 𝑣𝑣𝑘𝑘 are the components of a vector, and admitting 𝛼𝛼 and 
𝛽𝛽 scalars, 𝑣𝑣𝑖𝑖𝑖𝑖 are automatically the components of a tensor. One of its main values, 
namely 𝛼𝛼, is double. The other main value, different from 𝛼𝛼, is given by 

𝛼𝛼′ = 𝛼𝛼 + 𝛽𝛽𝑣𝑣2 (26) 

There are some interesting properties of this tensor. First, if either 𝛽𝛽 or 𝑣𝑣𝑘𝑘 
is zero, 𝑣𝑣𝑖𝑖𝑖𝑖 is a purely spherical tensor. Second, if the eigenvector of 𝐯𝐯 is calculated 
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corresponding to the eigenvalue (26), it is found that it is 𝑣⃗𝑣, up to a normalization 
factor. This one property is independent of the parameter 𝛼𝛼, and in fact it is what 
allows defining the afore-mentioned equivalence: given 𝑣⃗𝑣, it is possible to directly 
construct 𝐯𝐯 as a family of tensors depending on two arbitrary parameters that has 
this vector as an eigenvector. It could be stated that 𝐯𝐯 represents some kind of action 
directed in the general direction of 𝑣⃗𝑣, but not exactly in that direction. 

4. An exemplification of the model 

A tensor which would then describe the multifractal medium, could be of 
the form: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 + 𝛾𝛾𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗  (27) 

It can be noted that the calculations are much more symmetrical if (27) is 
written in a more convenient form, namely 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑢𝑢𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑣𝑣𝑖𝑖𝑖𝑖  (28) 

where 𝜆𝜆 and 𝜇𝜇 are real parameters, which describe the degree of "spatial" and 
"material" of the multifractal medium, with the matrices 𝒖𝒖 and 𝒗𝒗 defined by 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −
1
2
𝑢𝑢2𝛿𝛿𝑖𝑖𝑖𝑖; 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 −

1
2
𝑣𝑣2𝛿𝛿𝑖𝑖𝑖𝑖

𝑢𝑢2 = 𝑢𝑢12 + 𝑢𝑢22 + 𝑢𝑢32; 𝑣𝑣2 = 𝑣𝑣12 + 𝑣𝑣22 + 𝑣𝑣32.
 (29) 

This tensor contains eight measurable quantities and two intrinsic vectors. 
Extensively written, the matrix (28) will be 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 + 𝜇𝜇𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 −
1
2

(𝜆𝜆𝑢𝑢2 + 𝜇𝜇𝑣𝑣2)𝛿𝛿𝑖𝑖𝑖𝑖. (30) 

It can be observed that this tensor has three real and distinct principal values. 
Its orthogonal invariants are 

𝐼𝐼1 = −𝑒𝑒;  𝐼𝐼2 = −𝑒𝑒2 + 𝑔𝑔2;  𝐼𝐼3 = −𝑒𝑒(𝑒𝑒2 − 𝑔𝑔2) (31) 

where  

𝑒𝑒 ≡
1
2

(𝜆𝜆𝑢𝑢2 + 𝜇𝜇𝑣𝑣2);  𝑔⃗𝑔 ≡ �𝜆𝜆𝜆𝜆(𝑢𝑢�⃗ × 𝑣⃗𝑣). (32) 

The main values of 𝑤𝑤𝑖𝑖𝑖𝑖 can then be calculated as the roots of the 
characteristic equation of matrix, and they are 

𝑤𝑤1 = 𝑒𝑒,  𝑤𝑤2,3 = ±�𝑒𝑒2 − 𝑔𝑔2. (33) 
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It happens that the pair in equation (32) is one of the eigenvectors of 𝑤𝑤 
together with its own value. The other two eigenvectors of 𝑤𝑤 are perpendicular, 
located in the plane of the vectors 𝑢𝑢�⃗  and 𝑣⃗𝑣. 

5. Conclusions 

The main conclusions of the present paper are the following: 
i) A short reminder of the multifractal hydrodynamic models is given. In 

such a context, the existence of a multifractal medium was highlighted 
and moreover, a characterization of this medium was made, by means 
of a multifractal tensor; 

ii) The existence of the multifractal tensor allowed the construction of 
several multifractal material constitutive laws. Since deformations exist 
even when no tensions are applied to the material, they can be viewed 
as intrinsic or pure material properties - in particular, see Bell’s 
constitutive laws;  

iii) In the same context of the proposed model, it is shown that not only 
radiation cosmic background, but the electromagnetic field in general, 
in its Maxwellian form, is in truth the expression of the existence of the 
multifractal medium.   
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