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APPLICATION OF FRACTIONAL DERIVATIVE TO THE 
RELAXATION OF LASER TARGET 

 Liliana PREDA 1, Mona MIHAILESCU2, Alexandru PREDA3 

In această lucrare se aplică derivata fracţionară la modelarea procesului de 
relaxare a temperaturii unei ţinte laser. Pentru a descrie relaxarea temporală a 
unui fir în urma iradierii cu un puls laser se propune o ecuaţie diferenţială 
fracţionară. Prin rezolvarea acestei ecuaţii diferenţiale cu derivate fracţionare se 
obţin funcţia de transfer a temperaturii, răspunsul impuls şi soluţia generală. 
Relaxarea temporală a temperaturii ţintei este exprimată prin funcţii Mittag-Leffler 
care prezintă o relaxare polinomială în timp lung. 

 

 This paper focuses on the relation between fractional derivative and 
temperature relaxation of a wire after irradiation with a short laser pulse. We 
propose a fractional relaxation equation from which one obtains the transfer 
function of temperature, the impulse response. The general solution of fractional 
differential equation presents specific characteristics. In our model the temporal 
relaxation of target temperature is given by a linear combination of Mittag-Leffler 
functions which provides a simple generalization of the classical exponential 
function and describes the dynamic response of the temperature relaxation. 

Keywords: Fractional Caputo derivative, Mittag-Leffler function, relaxation of  
                    temperature, laser target  

1. Introduction 

New technologies based on the interaction of ultra short laser pulses with 
the layer sequence of photonic crystals and quantum wells has allowed a huge 
further step to be made in temporal resolution at attoseconds level of physical and 
chemical processes [1]. The interaction of these pulses with matter is 
characterized by the proper time relaxation. A fundamental question of relaxation 
of energy of laser pulse in complex materials such as biotissue, photonic crystals 
and more general dielectrics, conductors and magnets is how to model the 
mechanical, thermal and electromagnetical relaxations of the target. For example, 
one of the applications is to produce under diffraction limit structures whose index 
of refraction is different from that of the sample. In this case it has been proposed 
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that the laser induced strain field is responsible for the localized change of the 
material densification and heating [2]. Other example is the analyses of laser 
ablation of metals based on the so-called two –temperature model. It is based on 
the coupled temperature evolution of the electronic and atomic subsystems [3].  

Unitl now, considerable amount of research in fractional calculus was 
published in physics literature [4], [5]. There in no doubt that fractional calculus 
has become a new mathematical method for solution of diverse problems in 
science and engineering. For example, almost all deformed materials exhibit both 
elastic and viscous properties through simultaneous storage and dissipation of 
mechanical energy. So any viscoelastic material may be treated based on a 
fractional equation of the dynamic connection between the stress and the strain. 
The analysis reveals that the fractional calculus models of viscoelastic behavior 
are much more satisfactory then the previously adopted classical models of 
viscoelasticity [6].  

In this paper we discuss the application of fractional derivative to temporal 
relaxation of a laser target, and we show that fractional mathematical technique 
can be used for description of the temperature relaxation of a laser target. We 
propose a fractional relaxation equation from which one obtains the transfer 
function of temperature, the impulse response. The general solution of the 
fractional differential equation presents specific characteristics. In our model the 
temporal relaxation of the target is given by a linear combination of Mittag-
Leffler functions. Note that the Mittag-Leffler function exhibits exponential 
behavior at short times and power-law relaxation (polynomial memory) at long 
times. 

2. Fractional relaxation equation 

There are many relaxation phenomena in nature whose relaxation function 
obeys the simple approximate equation 

0)()( =+ tftf
dt
dτ        (1) 

with the exponential normalized solution    

)exp()( τ
ttf −=        (2) 

and the relaxation time τ . For example, in dielectrics, the equation (1) is known 
as the Debye type relaxation equation. In this case the relaxation function is the 
dielectric displacement or polarization. 
We define a fractional derivative α
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defines )( α
α tE  as its eigenfunction [7]. This function is known as Mittag- Leffler 

function and is represented by the polynomial series: 
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If 1=α  in equation (4) the Taylor series of exp(t) is obtained. Therefore, Mittag-
Leffler function can be thought as a generalized exponential function.  

The composite fractional relaxation equation is obtained starting from the 
simple relaxation equation (1) in the form 

)()()()()( tQtftf
dt
dtf
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d

fi =+τ+τ
α

α
α     (5) 

with α  a real number, 10 ≤≤ α  and Q(t) a given continuous function, with 
0≥t , which describes the source. iτ  is the coherent relaxation time, which yields 

an exponential relaxation and fτ  is an incoherent relaxation time, which acts for a 
polynomial memory of Mittag-Leffler type function. For 0=α , equation (5) is 
reduced to a well-known one. 

The fractional derivative from equation (5) is a Caputo fractional 
derivative of order α  definite by 
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where  fD)(f 11 ≡τ is the derivative of order 1. Wherever we use the operator 

α
α

α

D
dt
d

≡  we tacitly assume the absolute integrability of the derivative of order 1. 

We remark the non-local character of Caputo fractional derivative, because it 
explicitly involves an integral which implies that the result depends not just on the 
values of f at the given t, but also on the whole stipulated range from 0 to t. 

We easily recognize that in general the standard fractional derivative 
Riemann-Liouville of order α  is defined by 
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and it is different from Caputo fractional derivative: )()( 11 tfDJtfD αα −= . 
The fractional differential equation (5) with Caputo derivative appears 

more suitable to be treated by Laplace transform technique because it requires the 
knowledge of the initial values of the function and its integer derivatives. The 
Laplace transform of Caputo derivative is given by 



14                                     Liliana Preda, Mona Mihailescu, Alexandru Preda 
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∞ −  L is the Laplace transform. 

The interaction of laser beam with a variety of targets shows a relaxation 
with memory. For example, laser cooling, the photorefractive effect, 
interferometry, optical diode, optical transistor and other laser interaction with 
solids and plasmas can be analyzed by fractional calculus.   

3. Transfer function of target temperature 

We first consider one long metallic wire with the diameter D which is 
irradiated with a laser pulse with the temporal shape described by function )(tδ . 
The goal is to determine the dynamic (frequency) response of this laser target 
presented in figure 1. There are experimental difficulties regarding the time 
response of temperature measurement device, but with fast submicrometer 
thermocouples, thin film semiconducting thermistors, fluorescence thermometers, 
and Superconducting Transition Edge Sensors (TES) this problem can been 
overtaken. 

 
Fig. 1. PL-laser pulse, L-lens, T-source, W-wire, D-detector, M-medium 

 
Temperature temporal relaxation by heat exchange between an ordinary 

wire and its surroundings can be written according to the classical theory in the 
following form: 

)/exp(/)( 0 τtTtT −=        (9) 
where mkcD /2 ρτ =  is response time, c is the specific heat of the metal, ρ  the 
density of the metal, T the difference between the medium and wire temperature, 
D the wire diameter, and  km is thermal conductivity of surrounding medium. For 
example, a copper wire of diameter D=20μ m in water has a response time 
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.2ms=τ  The response time of submicrometer thermocouple is as small as 
sμτ 5.0= . 

In this paper we assume that the conducted heat rate of one semi-infinite 
wire is given by 

)()( tTDd
ktQ tc

α
α=        (10) 

were k is the thermal conductivity, d is the thermal diffusivity, 10 ≤< α  α
tD  is 

the fractional derivative operator and T is temperature of the target in 
neighborhood of the laser focus. For 1=α  fractional derivative operator is the 
ordinary derivative operator. 

In this case the time domain behavior of wire is described by the following 
heat rate equation: 

)()(2))()(( 1 tTcDtTDd
ktTtThA tts ρα

α +=−    (11) 

were h is the heat transfer coefficient from a source having a temperature Ts, to the 
neighborhood through the surface area A of the laser-heated region and cρ  is the 
product of the target mass and the specific heat of the material. To find out the 
transfer function, the effects of initialization are not required, therefore, all T(0) 
are zero. Equation (11) is in the shape of equation (5). 

Taking the Laplace transform of this equation we obtain the transfer 
function as 
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 In the Fourier space, the magnitude H (ω ) and phase angle )(ωϕ are determined 

by letting ωis =   in equation (12), and noting that 2sin2cos παπαα ii += . 

For example, if 2
1=α , a= 005.0=
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Fig. 2 shows the magnitude H (ω ) and phase angle )(ωϕ  of the transfer 

function in the form of a Bode plot for 7.0,5.0,3.0=α ,  05.0== a
hA

cρ  

and 0.52
2

1 == b
hAd

k . 

a b 
Fig. 2:Amplitude and phase of transfer function: a – amplitude, b - phase 

The response shows two distinct asymptotes; in the low frequency range a 
slope of -10db/decade corresponds to the 1/s1/2 behavior and a slope of  
-20db/decade for frequencies above 102 radians/second corresponds to 1/s 
behavior. 

4. Impulse Response 

With a transfer function as in equation (12) we can perform the inversion 
quite easily, by following the steps: 1) Transform H(s) into H(z), by substitution 
of αs  with z. 2) Perform the expansion of H(z) in partial fractions. The 
denominator polynomial in H(z) is the indicial polynomial. We must use only the 
zeros of the indicial polynomials, that are really in the principal Riemann 
surface,{ }ππ <≤− )arg(: zz , because only this one leads to a real system. 3) 
Substitute back αs  for z, to obtain the partial fractions in the form: 

,...2,1,)(
1)( =

−
= kassF kα  . 4) invert each partial fraction. 5) Add the different 

partial impulse responses. 
 In our case, we rewrite the equation (9) in the form:  
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with z1 and z2 the roots of equation az2+bz +1=0 and –A=B=1/(z1-z2). By Inverse 
Laplace Transform (ILT) of a partial fraction as )(

1)(
1

1 zssH
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= α  the impulse 

response h1(t) is a linear combination of q=1/α , Mittag-Leffler function: 
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with α rational, z1, z2 real numbers, and Mittag-Leffler function is defined by 
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For example, if 2
1=α  the Impulse function is given by [11]  
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In the figure 3 is shown the function  
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where erf (erfc) denote the error (complementary) function defined as 
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Fig. 3. Exponential function (F1) and Mittag-Leffler function (F2) 
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5. Solutions of composite fractional relaxation equation 

Equations (5) and (11) can be thought as a generalization of the ordinary 
differential equation related to relaxation phenomena. We note that when 1=α  
these equations reduce to an ordinary differential equation whose solution can be 
expressed in terms of a solution of the homogeneous equation and of one 
particular solution of the inhomogeneous equation. We rewrite the equation (5) in 
the dimensionless form:   
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We shall apply the method of the Laplace transform (LT) to solve the 
fractional differential equation (21). Using the rule  
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where U(s), Q(s) are the LT of u( )τ , respectively )(τq  and c0 is the initial value 
of )(τu , namely )0(0
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where 1)( ++= αasssP  we find, from ILT, the general solution of equation (21) 
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In equation (24), )(0 τu  is the fundamental solution, and )(τδu is the 
impulse response solution. 

The problem to obtain )(0 τu as the ILT of )(0 sU  is solved in [8] and given 
by  
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the spectral function of )(0 τu . The figure 4 shows the spectral function ),(1
0, arHα  

for some values of α  and a. One observes that the spectral function is positive for 
any r >0. This is a sufficient condition for the function )(0 τu  to be completely 
monotone for r >0. If a=1.5 and 51.0>α , the spectral function H(r) shows 
resonant behavior with a maximum at 0.3<r<0.4. This resonance propagates to the 
fundamental solution )(0 τu . The resonant behavior is not present for a=1.5 
and 5.0<α , the fundamental solution having an essential feature of the )exp( λτ−  
type. If the parameter )3,5.0(∈a , the spectral function ),(1

0, arHα  looks like that 
corresponding to the case of a=1.5. 

 The determination of )(τδu  is straightforward by derivative of )(0 τu , 
namely )()( 0 ττδ uu −= . 
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Fig. 4. Spectral function ),(1

0, arHα  

If α  is rational number, namely q
p=α  where p, q N∈  are assumed to 

be relative prime, a factorization of P(s) is possible. In these cases the solution can 
be expressed in terms of a linear combination of q, Mittag-Leffler functions of 
fractional order 1/q as in paragraph 4. 

Several forms of fractional differential equation have been proposed as 
models in physics, and there has been significant interest in developing numerical 
schemes for their solution [13], [14].  
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6. Conclusions 

We show that fractional mathematical technique can be used for 
description of the temperature relaxation of a laser target. We propose a fractional 
relaxation equation from which one obtains the transfer function of temperature 
and the impulse response. The general solution of this fractional differential 
equation is given by a linear combination of Mittag-Leffler functions. Mittag-
Leffler function provides a simple generalization of the classical exponential 
function and describes the dynamic response of the laser target temperature 
relaxation. We note that a possible physical interpretation of the fractional 
relaxation equation can be connected with memory effects or fractal properties of 
the medium [11]. 

R E F E R E N C E S 

[1] G.T.Tsakiris, K.Eidmann, J.Meyer-ter-Vehn, and F.Krausz. ,,Route in intense single attosecond 
pulses”. New Journal of Physics 8, 19, 2006 

[2] X.R.Zhang, X.Xu, A.M.Rubenchik. „Simulation of microscale densification during femtosecond 
laser processing of dielectric materials”. Applied Physics A Material Science & Processing 
79, 945-948, 2004 

[3] Carsten Schafer and Herbert M.Urbassek. „Metal ablation by picosecond laser pulses: A 
hybrid simulation”. Physical Review B66,115404, 2002 

[4] Advances in Fractional Calculus, Editors: J.Sabatier, O.P.Agrawal, J.A.Tenreiro, Springer, 
2007 

[5] R. Hilfer.”An extension of the dynamical foundation for the statistical equilibrium concept”. 
Physica A 221, 89-96, 1995 

[6] R. L. Bagley and P.J.Torvik.”On the Fractional Calculus Model of Viscoelastic Behavior”. 
Journal of Rheology, 30, 133-155, 1986 

[7] G. Jumarie, From self-similarity to fractional derivative of non-differentiable function via 
Mittag-Leffler function”.Applied Mathematical Sciences, 2 (40), 1949-1962, 2008 

[8] R. Gorenflo and F.Mainardi „Fractional Calculus; Integral and Differential Equations of 
Fractional Order, in A.Carpinteri and F.Mainardi (Eds),Fractals and Fractional Calculus in 
Continuum Mechanics, Springer, 223-276, 1997 

[9] A. M. A. El-Sayed, A.E.M.El-Mesiry and H.A.A.El-Saka Numerical solution for multi-term 
fractional (arbitrary) orders differential equations. Computational and Applied Mathematics 
23, 33-54, 2004 

[10] Zaid Odibat, Shaher Momani „Modified homotopy perturbation method: Application to 
quadratic Riccati differential equation of fractional order” Chaos Solitons & Fractals 36, 
167-174, 2008. 

[11] V. E. Tarasov, ,,Fractional integro-differential equations for electromagnetic waves in 
dielectric media” Theoretical and Matematical Physics 158(3), 355-359, 2009. 


