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APPLICATION OF FRACTIONAL DERIVATIVE TO THE
RELAXATION OF LASER TARGET

Liliana PREDA %, Mona MIHAILESCU?, Alexandru PREDA?

In aceastd lucrare se aplica derivata fractionard la modelarea procesului de
relaxare a temperaturii unei tinte laser. Pentru a descrie relaxarea temporald a
unui fir in urma iradierii cu un puls laser se propune o ecuatie diferentiald
fractionarda. Prin rezolvarea acestei ecuatii diferentiale cu derivate fractionare se
obtin functia de transfer a temperaturii, raspunsul impuls si solufia generald.
Relaxarea temporala a temperaturii tintei este exprimatad prin functii Mittag-Leffler
care prezinta o relaxare polinomiald in timp lung.

This paper focuses on the relation between fractional derivative and
temperature relaxation of a wire after irradiation with a short laser pulse. We
propose a fractional relaxation equation from which one obtains the transfer
function of temperature, the impulse response. The general solution of fractional
differential equation presents specific characteristics. In our model the temporal
relaxation of target temperature is given by a linear combination of Mittag-Leffler
Sfunctions which provides a simple generalization of the classical exponential
function and describes the dynamic response of the temperature relaxation.

Keywords: Fractional Caputo derivative, Mittag-Leffler function, relaxation of
temperature, laser target

1. Introduction

New technologies based on the interaction of ultra short laser pulses with
the layer sequence of photonic crystals and quantum wells has allowed a huge
further step to be made in temporal resolution at attoseconds level of physical and
chemical processes [1]. The interaction of these pulses with matter is
characterized by the proper time relaxation. A fundamental question of relaxation
of energy of laser pulse in complex materials such as biotissue, photonic crystals
and more general dielectrics, conductors and magnets is how to model the
mechanical, thermal and electromagnetical relaxations of the target. For example,
one of the applications is to produce under diffraction limit structures whose index
of refraction is different from that of the sample. In this case it has been proposed
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that the laser induced strain field is responsible for the localized change of the
material densification and heating [2]. Other example is the analyses of laser
ablation of metals based on the so-called two —temperature model. It is based on
the coupled temperature evolution of the electronic and atomic subsystems [3].

Unitl now, considerable amount of research in fractional calculus was
published in physics literature [4], [5]. There in no doubt that fractional calculus
has become a new mathematical method for solution of diverse problems in
science and engineering. For example, almost all deformed materials exhibit both
elastic and viscous properties through simultaneous storage and dissipation of
mechanical energy. So any viscoelastic material may be treated based on a
fractional equation of the dynamic connection between the stress and the strain.
The analysis reveals that the fractional calculus models of viscoelastic behavior
are much more satisfactory then the previously adopted classical models of
viscoelasticity [6].

In this paper we discuss the application of fractional derivative to temporal
relaxation of a laser target, and we show that fractional mathematical technique
can be used for description of the temperature relaxation of a laser target. We
propose a fractional relaxation equation from which one obtains the transfer
function of temperature, the impulse response. The general solution of the
fractional differential equation presents specific characteristics. In our model the
temporal relaxation of the target is given by a linear combination of Mittag-
Leffler functions. Note that the Mittag-Leffler function exhibits exponential
behavior at short times and power-law relaxation (polynomial memory) at long
times.

2. Fractional relaxation equation

There are many relaxation phenomena in nature whose relaxation function
obeys the simple approximate equation

z’% FO)+ £(6)=0 )
with the exponential normalized solution
16y =exp(- /) 0

and the relaxation time 7. For example, in dielectrics, the equation (1) is known
as the Debye type relaxation equation. In this case the relaxation function is the
dielectric displacement or polarization.

We define a fractional derivative d%t“ = D” as an operator. The equality
DE (t“) = E,(t*) 3)
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defines E,(¢“) as its eigenfunction [7]. This function is known as Mittag- Leffler

function and is represented by the polynomial series:
© tak

Ea(fa)=kzz;,m (4)

If @ =1 inequation (4) the Taylor series of exp(¢) is obtained. Therefore, Mittag-
Leffler function can be thought as a generalized exponential function.

The composite fractional relaxation equation is obtained starting from the
simple relaxation equation (1) in the form

GO+ 60+ 0= 00) ©)
4 dt

with o a real number, 0<a <1 and Q(z) a given continuous function, with
¢t > 0, which describes the source. 7, is the coherent relaxation time, which yields

an exponential relaxation and z, is an incoherent relaxation time, which acts for a

polynomial memory of Mittag-Leffler type function. For « =0, equation (5) is
reduced to a well-known one.

The fractional derivative from equation (5) is a Caputo fractional
derivative of order « definite by

a’fe)y__ 1 j'fl(T)dr O<a<l (6)
@ Tl-a)s (- |

where f'(r)=D'f s the derivative of order 1. Wherever we use the operator

;’it“ = D“ we tacitly assume the absolute integrability of the derivative of order 1.
We remark the non-local character of Caputo fractional derivative, because it
explicitly involves an integral which implies that the result depends not just on the
values of f'at the given ¢z, but also on the whole stipulated range from 0 to ¢.

We easily recognize that in general the standard fractional derivative
Riemann-Liouville of order « is defined by

t
D% = D% £ (1), where J* £ (1) = 1 .f (-1 f()dnt>0 (7)
['(a) ’

and it is different from Caputo fractional derivative: D® £'(¢) = J"“D" f ().

The fractional differential equation (5) with Caputo derivative appears
more suitable to be treated by Laplace transform technique because it requires the
knowledge of the initial values of the function and its integer derivatives. The
Laplace transform of Caputo derivative is given by
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m—1
LID* () =s*LA @)= Y. 0" )s* T  m-1<a<mm=012..(8)
k=0

where L(f(2)) = J': e f(¢t)dt = F(s) L isthe Laplace transform.

The interaction of laser beam with a variety of targets shows a relaxation
with memory. For example, laser cooling, the photorefractive effect,
interferometry, optical diode, optical transistor and other laser interaction with
solids and plasmas can be analyzed by fractional calculus.

3. Transfer function of target temperature

We first consider one long metallic wire with the diameter D which is
irradiated with a laser pulse with the temporal shape described by function o(¢).

The goal is to determine the dynamic (frequency) response of this laser target
presented in figure 1. There are experimental difficulties regarding the time
response of temperature measurement device, but with fast submicrometer
thermocouples, thin film semiconducting thermistors, fluorescence thermometers,
and Superconducting Transition Edge Sensors (TES) this problem can been
overtaken.

L R
“i'
—_—
‘l‘:t]_ \ID
—_—
— 11

Fig. 1. PL-laser pulse, L-lens, T-source, W-wire, D-detector, M-medium

Temperature temporal relaxation by heat exchange between an ordinary
wire and its surroundings can be written according to the classical theory in the
following form:

T(t)I T, =exp(-t/7) 9)

where 7= D?cplk, is response time, c is the specific heat of the metal, p the

density of the metal, T the difference between the medium and wire temperature,
D the wire diameter, and k,, is thermal conductivity of surrounding medium. For
example, a copper wire of diameter D=20m in water has a response time
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7 =2ms. The response time of submicrometer thermocouple is as small as
7=0.5us.

In this paper we assume that the conducted heat rate of one semi-infinite
wire is given by

0.(0)=k/. DT () (10)
were £ is the thermal conductivity, d is the thermal diffusivity,0 <a <1 D/ is

the fractional derivative operator and 7 is temperature of the target in
neighborhood of the laser focus. For « =1 fractional derivative operator is the
ordinary derivative operator.

In this case the time domain behavior of wire is described by the following
heat rate equation:

hA(T () =T (0) =28/, DIT(0) + peDT (1) (12)
were / is the heat transfer coefficient from a source having a temperature 7 to the
neighborhood through the surface area A of the laser-heated region and pc is the
product of the target mass and the specific heat of the material. To find out the
transfer function, the effects of initialization are not required, therefore, all 7(0)
are zero. Equation (11) is in the shape of equation (5).

Taking the Laplace transform of this equation we obtain the transfer
function as

H(s) = T(s) 1

(12)
T(s) (“3 +( ﬂ 11

In the Fourier space, the magnltude H (a)) and phase angle ¢(w) are determined
by letting s =i in equation (12), and noting that ;“ = Cosa% +1isin a% .
2k

hAd’?
1

H(w) = Y w7 (13)
a’w® +b’w+2abw’? sinz+2ba) 2 cosz+1

=5.0 equation (12) yields

pPC —
For example, if ,a= =—=0.005 and 5=
ple, if o = }/ a= =

aa)+ba)% Sin%
gplo)=——— (14)
bw’? cosz+1
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Fig. 2 shows the magnitude # (@) and phase angle ¢(w) of the transfer

function in the form of a Bode plot for «=0.3,0.50.7, %zaz0.0S

2k
and 7 =b=5.0.
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Fig. 2:Amplitude and phase of transfer function: a — amplitude, b - phase

log10(frequency)

The response shows two distinct asymptotes; in the low frequency range a
slope of -10db/decade corresponds to the 1/s*? behavior and a slope of
-20db/decade for frequencies above 107 radians/second corresponds to 1/s
behavior.

4. Impulse Response

With a transfer function as in equation (12) we can perform the inversion
quite easily, by following the steps: 1) Transform H(s) into H(z), by substitution
of s“ with z. 2) Perform the expansion of H(z) in partial fractions. The
denominator polynomial in H(z) is the indicial polynomial. We must use only the
zeros of the indicial polynomials, that are really in the principal Riemann
surface, {z : —z < arg(z) < z}, because only this one leads to a real system. 3)

Substitute back s* for z, to obtain the partial fractions in the form:
F(s)= (5" — a)! k=12,.. .4) invert each partial fraction. 5) Add the different

partial impulse responses.
In our case, we rewrite the equation (9) in the form:
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1 __4 B

az’ +bz+1 z-z, z-z,

H(s)=— 4 . - B (16)
T -z, 8§ —z

with z; and z, the roots of equation az’+bz +1=0 and —A=B=1/(z;-z). By Inverse

H(z) = (15)

Laplace Transform (ILT) of a partial fraction as H,(s) = (s - 2,) the impulse
!
response /,(t) is a linear combination of g=1/ « , Mittag-Leffler function:
1 &
h(t)=—=> 2B, (1,2]) (17)
Zy ja
with « rational, z;, z, real numbers, and Mittag-Leffler function is defined by
o) Zn
E =Y ———  a>0,zeC 18
«(2) ;F(az+1) (18)

For example, if a = % the Impulse function is given by [11]
(1) = C.E, (z,8t) + CLE  (2,+1) (19)
b2 b2

where C, = “ and C =—Z/ .
! (z1-2,) 2 (z,-2,)
In the figure 3 is shown the function

E%(—t%) - exp(—t“z)[l— erf(it%)} —exp(—t"2)erfe(—1?)  (20)

where erf (erfc) denote the error (complementary) function defined as

erf(z) = %je"“zdu yerfc =1—erf(z).
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Fig. 3. Exponential function (F1) and Mittag-Leffler function (F2)
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5. Solutions of composite fractional relaxation equation

Equations (5) and (11) can be thought as a generalization of the ordinary
differential equation related to relaxation phenomena. We note that when « =1
these equations reduce to an ordinary differential equation whose solution can be
expressed in terms of a solution of the homogeneous equation and of one
particular solution of the inhomogeneous equation. We rewrite the equation (5) in
the dimensionless form:

du(7) i d“u(7)
dr dr”

where 1= 7,7,u(r) = f(z,0) = £(1), a = ()" and q(r) = O(1).

We shall apply the method of the Laplace transform (LT) to solve the
fractional differential equation (21). Using the rule

+u(z) = q(7) (21)

o m-1
L(M) = s*Lu() - Y " O")s*T* m-1<a<m

dt® k=0

we are led to the algebraic equation
a-1
U(s) = col+as™ ™) N 0(s) (22)
s+as®+1  s+as®+1

where U(s), Q(s) are the LT of u(z), respectively ¢(z) and ¢y is the initial value

of u(z), namely ¢, =u(0") . Putting

co(L+as“™) 1
Uy(s)=—2——2 U, (s)=—— 23
o) = S Us ) = 5 (23)
where P(s) =s+as” +1 we find, from ILT, the general solution of equation (21)
T
u(1) = couo (1) + [ g(t = )us (v')dx’ (24)
0

In equation (24), u,(r) is the fundamental solution, and u (z)is the
impulse response solution.

The problem to obtain u,(7) as the ILT of U,(s) is solved in [8] and given
by

_OO —rt gyl
ug(t) = Ie H, o(r,a)dr (25)
0

with



Application of fractional derivative to the relaxation of laser target 19

Hho(ra) =Ly ntom)_____ (26)
TA-r)+a“r°" +2(1—r)ar™ cos(amn)

the spectral function of u,(z). The figure 4 shows the spectral function H_ ,(r,a)

for some values of « and a. One observes that the spectral function is positive for

any » >0. This is a sufficient condition for the function u,(z) to be completely

monotone for » >0. If ¢=1.5 and «>0.51, the spectral function H(r) shows
resonant behavior with a maximum at 0.3<r<0.4. This resonance propagates to the
fundamental solution u,(z). The resonant behavior is not present for a=1.5

and & < 0.5, the fundamental solution having an essential feature of the exp(—A4r)
type. If the parameter a (0.5,3), the spectral function H ,(r,a) looks like that

corresponding to the case of a=1.5.
The determination of u;(z) is straightforward by derivative of u,(7),

namely u;(7) = —u,(7).

7

Fig. 4. Spectral function H, ,(r,a)

If « is rational number, namely o = % where p, g € N are assumed to

be relative prime, a factorization of P(s) is possible. In these cases the solution can
be expressed in terms of a linear combination of g, Mittag-Leffler functions of
fractional order 1/g as in paragraph 4.

Several forms of fractional differential equation have been proposed as
models in physics, and there has been significant interest in developing numerical
schemes for their solution [13], [14].
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6. Conclusions

We show that fractional mathematical technique can be used for
description of the temperature relaxation of a laser target. We propose a fractional
relaxation equation from which one obtains the transfer function of temperature
and the impulse response. The general solution of this fractional differential
equation is given by a linear combination of Mittag-Leffler functions. Mittag-
Leffler function provides a simple generalization of the classical exponential
function and describes the dynamic response of the laser target temperature
relaxation. We note that a possible physical interpretation of the fractional
relaxation equation can be connected with memory effects or fractal properties of
the medium [11].
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