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THE PRIME ORDER CAYLEY GRAPH 

Behnaz TOLUE12 
Let S be the set of prime order elements of the group G. In this paper we introduce 

the prime order Cayley graph of the group G relative to S. The structure of the 
prime order Cayley graph associated to the certain cyclic groups and a dihedral 
group is discussed under special conditions. Moreover, it is proved that the prime 
order Cayley graph of an abelian group G is planar if and only if  

nnnnG 3.23.262232 Z,Z,Z,ZZ,Z,Z ×≅  
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1. Introduction 

The algebraic graph theory involving the use of group theory and the study of 
graph. Recently mathematician try to assign a graph to an algebraic structure. 
They hope to use the advantage of graph properties for the algebraic structures 
and vice versa. 

Study of Cayley graphs that their properties related to the structure of the 
group is one of the interesting topics in this area. Cayley graph was considered for 
finite groups by Cayley in 1878 to explain the concept of abstract groups which 
are generated by a set of generators in Cayley's time. Later, many similar 
researches about the Cayley graph have been done by some authors for instance 
see [1, 2]. 

Let G be a finite group and GS ⊆  be a subset. The corresponding Cayley 
graph Cayley(G, S) has the vertex set equal to G. Two vertices Ghg ∈, are joined 
by a directed edge from g to h if and only if there exists Ss∈  such that shg = . 
Each edge is labeled to denote that it corresponds to Ss∈ . A Cayley graph 
Cayley (G, S) is connected if and only if SG = , so that Cayley ( )SS ,  is a 
component of Cayley(G, S). 
The importance of the order of the elements of the groups is the subject which is 
clear for every group theorist. We introduce the prime order Cayley graph which 
is related to the elements of prime order in a group. It is a Cayley graph associated 
to a group G, such that S is the set of prime order elements of G. We denote this 
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graph by Cayley(G, S). Under this assumption we may treat Cayley (G, S) as an 
undirected graph because 1−= SS . Moreover as S does not contain the identity, so 
that Cayley (G, S) does not contain any loops. We present the general properties 
of Cayley(G, S), where G is an elementary abelian p-group, non-nilpotent group 
of order pnq, it is isomorphic to the simple group A5, 

pirpqpqpqp n
i

nnG
1

Z,Z,Z,Z,Z
=Π

≅ and D2n, where n is a non-negative integer and p, q, 

pi are prime numbers. The diameter, girth and clique, chromatic and independent 
numbers of some them are found. The planarity of the prime order Cayley graph 
associated to the groups of order less than 16 is verified. We observe that the 
prime order Cayley graph associated to an abelian group is planar if and only if 

nnnnG 3.23.262232 Z,Z,Z,ZZ,Z,Z ×≅ . 

2. Preliminary notions  

       In fact this paper is combination of two fields of graph theory and group 
theory. Therefore, in this section we present some notions which are useful in 
sequel from these two sights.   

 We consider simple graphs which are undirected, with no loops or multiple 
edges. The degree of a vertex v in Γ is the number of edges incident to v. We 
denote it simply by deg(v).  A simple graph of order n for which every two 
vertices are adjacent is called a complete graph and is denoted by Kn. A subset X 
of the vertices of Γ is called a clique if the induced subgraph on X is a complete 
graph. The maximum size of a clique in a graph Γ is called the clique number of Γ 
and denoted by ω(Γ). A k-vertex coloring of a graph Γ is an assignment of k 
colors to the vertices of Γ such that no two adjacent vertices have the same color. 
The vertex chromatic number χ(Γ) of a graph Γ, is the minimum k for which Γ has 
a k-vertex coloring.  A subset S is called an independent set of the graph Γ if no 
two vertices of S are adjacent in Γ. The number of vertices in a maximum 
independent set is called independence number of Γ and is denoted by α (Γ). A 
Hamilton cycle of Γ is a cycle that contains every vertex of Γ. A graph which 
contains a Hamilton cycle is called Hamiltonian. If  Γ is a graph such that each 
vertex has equal number of neighbors, then it is a regular graph. A graph is said to 
be embeddable in a plane or planar, if it can be drawn in the plane so that its edges 
intersect only at their ends. Throughout the paper, all the notations and 
terminologies about the graphs are found in [3, 4] and for more details one can 
refer to these references. 
      Let p be a prime number. A group G is called a p-group if every element g of 
G has order pn  , 0n ≥ . Moreover, a finite group G is a p-group if and only if G 
has order pm for some non-negative integer m. An abelian group of exponent p is 
called an elementary abelian p-group. An elementary abelian p-group can be 
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considered as a direct sum of cyclic groups of prime order p. We denote a cyclic 
group of order k by Zk. 

3. Main results 

Let G be a group and S be the set of prime order elements of G. Consider the 
Cayley graph Cayley (G, S) associated to the group G relative to S. We call it 
prime order Cayley graph.  

 
Example 3.1. In this example we present some groups such that its prime order 
Cayley graphs are complete. 
(i) It is clear that if pG = , then Cayley (G, S)=Kp ,where p is a prime number. 
(ii) If G is an elementary abelian p-group of order αP , then Cayley (G,S) 

αp
K= .Thus prime order Cayley graph of an elementary abelian p-group is 

connected. 
(iii) Suppose G is a group such that order of its elements are not composite, then 
Cayley (G, S) is a complete graph. A finite group having  all (nontrivial) elements 
of prime order if it is a p-group of exponent p or a non-nilpotent group of order 

qpn  or it is isomorphic to the simple group A5 , where n is a non-negative integer 
and p, q are prime numbers (see[5]). Consequently prime order Cayley graph of 
the dihedral group of order 2p is an example, where p is an odd prime number. 

If x  is an element of order p, then deg 1)( −≥ px , where p is a prime number. 
Suppose y is an element of composite order. Then deg my ≥)( , where m is the 
number of primes which are appear in |y|.  

 
Proposition 3.2. Let G be a group. 
(i) If there are k distinct prime numbers greater than 2 which divides the order of 
the group, then at least k distinct cycles exist in the graph Cayley(G, S). 
(ii) If p divides the order of G, then Cayley(G, S) is not planar, where 5≥p is a 
prime number. 
Proof. (i) For each prime that divides the order of G, there is an element of that 
order. Since all the powers of such an element are adjacent, we have a cycle by 
these powers. 
(ii) There is an element of order p and all its power are adjacent. Thus K5 is 
induced subgraph of Cayley(G, S).                                                           □ 

Nathanson [6] open the way to a new class of graphs, namely, arithmetic 
graphs. An arithmetic graph is the graph whose vertex set is the set of  first n 
positive integers 1, 2, 3,…,n and two vertices x  and y  are adjacent if and only  if 



 210                                                         Behnaz Tolue  

syx ≡+ , (mod n) where Ss∈ . The prime order element Cayley graph of cyclic 
groups are kind of arithmetic graphs. 

 
Proposition 3.3. Let G be a cyclic group of order pn   , p is a prime number ,  n>1. 
Then for Cayley(G, S) we have, 

(i) Cayley(G, S) is )1( −p  -regular. 
(ii) Cayley(G,S) is not connected. Cayley(G,S) has pn-1 complete components 

each of them contains p vertices. In particular, S  is one of its component. 
(iii) Cayley(G, S) is not planar except for nZG 2≅  and nZG 3≅  .  

(iv) Cayley p
n

p
KpSZ n )(),( 1−= ∪ . 

(v)ω (Cayley(G, S)) = χ (Cayley(G, S))=p and α (Cayley(G, S))=pn-1, where 
χω,  and α  are clique, chromatic, independent numbers of the graph. 

Proof. (i) It is obvious that { }111 )1(,...,2, −−− −= nnn ppppS . 

(ii) Since ( )1n
im ip − ≡

1

1
1p

i

−

=∑ (mod pn)  , we observe that npZ∈1  is not 

generated by S, where mi are integers. Thus Cayley(G, S) is not connected. The 
rest is clear. 

(iii) It is clear by part (ii), if 5≥p  then K5 is induced subgraph of Cayley 
(G,S). 

(iv) and (v) follows by (ii).                                                                      □  
In the following proposition we present some properties of Cayley (Zpq, S). 
 

Proposition 3.4. Let G be a cyclic group of order pq, where p and q are distinct 
prime numbers. Then for Cayley(G, S) we have, 

(i) Cayley (G, S) is )2( −+ qp -regular. 
(ii) The elements of order r are adjacent, where r is a prime number. 
(iii) The elements of orders p and q are not adjacent. 
(iv) If x  is a generator, then it joins to k, where 1+= tpk  or 1+sq and  

.,,11,11 Nstpsqt ∈−≤<−≤<  
(v) Cayley (G, S) is connected. Moreover, diam (Cayley(G, S))=2 and girth 

(Cayley(G, S)) .4≤  In particular, SG = . 
(vi) Cayley(G, S) is not planar except Cayley ).,( 6 SZ  

Proof. (i) If pqG Z≅ , then { }qpqqpqppS )1(,...,2,,)1(,...,2, −−= . Therefore 

2−+= qpS , and Cayley(G, S) is )2( −+ qp -regular. 
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(ii) It is clear. 
(iii) If pqba Z∈,  of orders p and q respectively, then pqba =−  and so a and 

b are not adjacent. 
(iv) Let y  be an element which is adjacent to x . As x  is a generator, we 

have kxy =  and their adjacency implies that pkpq =− )1,( or q. Hence the result 
is clear. 

(v) Suppose Vba ∈, (Cayley(G, S)) are not adjacent. If a  and b  are distinct 
prime numbers, then both join 0 so 2),( =bad . Assume a and b are two non-
adjacent generators. Then by (iv) there is a vertex that joins both. That means 

2),( =bad . Hence diam (Cayley(G, S)) = 2. If there exist two elements of prime 
order which are adjacent, then it is clear that both join 0. Thus we have a triangle. 
But if S contains just two elements of two different prime orders, then these two 
prime order elements are not adjacent. This means there is no prime order 
elements which join. These two prime order elements join to zero and a generator. 
Thus we have a square. This happens for Z6 (see Figure (1)). 

 
 
 
 
 
 

Fig. 1. Cayley(Z6, S) 
 
(vi) Easily one can see Cayley (Z6, S) is planar (see Figure (1)). Therefore we 

consider Cayley (Zpq, S), where p or q are greater or equal than 5. By (i) we 
deduce the number of elements of order p or q are more than 4. Thus these 
elements and 0 form K5 as induced subgraph of Cayley (Zpq, S). Hence Cayley 
(Zpq, S) is not planar whenever p or q are greater or equal than 5 .                      □ 

 
Proposition 3.5. Let G be the cyclic group of order pqn, n>1. Then 

(i) Cayley(G, S) is (p + q-2)-regular. 
(ii) Cayley(G, S) is not connected and union of qn-1 isomorphic components of 

size pq. 
(iii) The components of Cayley( nZ 3.2

, S) and Cayley(
3.2nZ ,S) are isomorphic 

to the graph in Figure (2), the first and second Cayley graphs have 3n-1 and 2n-1 
components, respectively. 

 
 

5 3 

1 4 
. .

0 2 
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(iv) Cayley(G, S) is not planar except Cayley(Z2.3
n, S) and Cayley(Z2

n
.3,S). 

Proof. (i) There are p-1 elements of order p and q-1 elements of order q, 
{ }111 )1(,...,2,,)1(,...,2, −−− −−= nnnnnn pqqpqpqqpqqS  . 

     (ii) Since G is not generated by S, Cayley(G, S) is not connected. The identity 
element, elements of order p, q and elements of order pq form a component.  
The other components are isomorphic to this component. 

(iii) and (iv) follows by the second part and Proposition 3.2 .                     □ 
 

 
Fig. 2. 

 
Proposition 3.6. Let G be a cyclic group of order pqr such that p<q<r. Then 

(i) Cayley(G, S) is ( )3−++ rqp -regular. 
(ii) If there are kkk ′′′,,  such that pkkqk ′′−=′ , then the elements of order pq 

and p are adjacent, where kkk ′′′,,  are integers satisfies ( ) 1, =pqk , ( ) 1, =′ pk  
and ( ) 1, =′′ qk . For instance, the elements of order pq and p are adjacent, 
whenever 2=p  and 3=q . 

(iii) If  pkkqk ′−=′′ , then the elements of order pq and q are adjacent, where 
kkk ′′′,, are integers such that ( ) 1, =pqk , ( ) 1, =′ qk  and ( ) 1, =′′ pk . Suppose 

2=p  and 3=q . Then there are 21, xx  and 21, yy  elements of order 3 and 6, 
respectively. Moreover ix  and iy  are adjacent but ix  does not join iy , i, j=1, 2, 

.ji ≠  
(iv) The elements of order pq and r are not adjacent. 
(v) The elements of order pr and p are adjacent whenever there are integers 

kk ′,  and k ′′  such that rkpkk ′=′′− , where ( ) 1, =prk , ( ), 1k p′ =  and ( ), 1k r′′ = . 
(vi) The elements of order pr and q are not adjacent. 
(vii) The elements of order pr and r are adjacent whenever there are integers 

kk ′,  and k ′′  such that rkpkk ′′=′− , where ( ) 1, =prk , ( ) 1, =′ rk and ( ), p 1k ′′ = . 
(viii) The elements of order qr and p are not adjacent. 
(ix) Suppose there are integers kk ′,  and k ′′ , such that rkqkk ′=′′− , where  

( ) 1, =qrk , ( ) 1, =′ qk  and ( ) 1, =′′ rk . Then the elements of order qr and q are 
adjacent. 



 The prime order Cayley graph                                          213  

(x) The elements of order qr and r are adjacent whenever there are integers 
kk ′,  and k ′′  such that rkqkk ′′=′− , where ( ) 1, =qrk , ( ) 1, =′ rk and ( ) 1, =′′ qk . 

(xi) The elements of prime order are not adjacent to the generators. 
(xii) If yx, are the generators and ,'',', yqrkoryprkykpqx +++=  then 

they are adjacent, where 1),'(,1),( == qkrk  and .1),( =′′ pk  
Proof. (i) We can observe that prkykqrx ', ==  and pqkt ''=  is of orders p, q 
and r  respectively, where 1),'(,1),( == qkpk  and 1),( =′′ rk . It is enough to 
count such elements. For instance the possible cases for x  are 

( )qrpqrqr 1,...,2, − . Therefore we have 1−p , 1−q  and 1−r  elements of order 
qp,  and r . Hence the assertion is clear. 

(ii) kr and k′ qr are elements of order pq and p  respectively, where 
( ) 1, =pqk and ( ) 1, =′ pk . Clearly the order of kkr ′− qr  is not p  and r . It is 
possible that qqrkkr =′−  this means qrkqrkkr ′′=− ´ . For instance, if 1+= pq , 
then it is possible that the order of qrr −  become q and consequently these two 
vertices are adjacent. 

(iii) Similar to the (ii) the first part follows. Let G=Z6r, where r is a prime 
number greater than 3. Clearly there are two elements of order 3, rx 21 = and 

.42 rx =  Moreover there are just two elements ry 51 =  and ry =2  of order 6. 
Hence the assertion follows. 

(iv) Follows immediately. 
(v), (vi), (vii), (viii), (ix) and (x) are deduced similar to the previous parts. 
(xi) Let x be a generator. Then || x = pqr on the other hand || x = 

|1| /( |1| , x ). 
Therefore ( , ) 1pqr x = . Consider an element of order p , say kqr, where ( ) 1, =pk . 
Thus xkqr −  is not p, q or r as x does not have factors rq, rp or pq, respectively. 

(xii) It is clear that if ,', ypqkoryprkykpqx +′′++=  then order of yx −  
is r, q or p, respectively.                                                            □ 

Similar result can be proved for a cyclic group G of order i
n
i p1=Π ,where spi '  

are distinct prime numbers ni ≤≤1 . For instance, { }ePPPS n −= )...( 21 ∪∪∪  and 

Cayley(G, S) is ( )∑ =
−

n

i ip
1

)1( -regular, where iP  are Sylow pi-subgroups of G. 
The adjacency in Cayley(G, S) is similar to the graph which is clarify in 
Proposition 3.6. 
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Example 3.7. In this example we present some groups and associated prime order 
Cayley graphs. 

(i) Cayley(S3, S) is complete 5-regular graph K6 ,where S3 is symmetric  
group of order 6 and S = {(1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. 

(ii) Let D8= a, b : a4 =b2=1, ab =a-1 be dihedral group of order 8. Clearly 
Cayley (D8, S) is union of complete 2-partite graph (with 4 vertices in each part) 
and the edges { } { } { } { }baabbabaaa 3232 ,,,,,,,1  where 

{ }babaabbaS 322 ,,,,=  (see Figure (3)). Moreover, Cayley(D8, S). 
 

 
Fig. 3. 

 
is a Hamiltonian graph. The cycle which pass through vertices 

1,,,,,,,,1 2332 bbaaababaa  is a Hamiltonian cycle. 
 
Proposition 3.8. Let 12

2 ,1:, −==== aababaD bn
n  be dihedral group of 

order 2n, where .4≥n  
(i) If i

k
i pn 1=Π=  , then Cayley (D2n, S) is ( )∑ −

−+
k

i ipn
1

)1(  -regular, where 

iP  are distinct prime numbers ki ≤≤1 . 
(ii) Cayley (D2n, S) is a connected graph. Moreover diam (Cayley(D2n, S))=2 

and girth (Cayley(D2n, S))=3.                                                                            
(iii) Let i

i
k
i pn α

1=Π=  , where pi are distinct prime numbers. Then 

{ } { } .......:10: 111
1

1
11 SPPpPPsanjba ksss

ksss
sj ⊆=−≤≤ +−

+
−

−
ααααα∪  Moreover |S|≥ n+k 

and also we have S is the set of all elements as follows 
{ } { }1 11 1

1 1 1: 0 1 : ( ... ... )s s s kj s
s s s ka b j n a s P P P P Pα α α αα γ− +−
− +≤ ≤ − =∪ , where 1<s≤n-1. 

(iv) Cayley(D2n, S) is union of complete 2-partite graph and edges { }baba ji , , 
{ }tae,  and { }ji aa ,  such that Saa jit ∈−, . Furthermore, there are n vertices in 
each part { }10: −≤≤ nibai  and { }10: −≤≤ nja j . 

(v) Cayley(D2n, S) is not planar. 
(vi) As mentioned in (iv) consider two parts in the graph Cayley(D2n, S). If 

we use c colors for coloring of one part, then we require c different colors for the 
second part. Moreover, the chromatic number of Cayley(D2n, S) is an even 
number. 
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(vii) Cayley(D2n, S) is Hamiltonian graph. 
Proof. (i) It is enough to count the prime order elements in the cyclic subgroup 
a . The elements of prime order in the group a belongs to Sylow pi-subgroups 

and since it is abelian they are normal and unique for each prime pi. As ji PP =  
the assertion is clear. 

(ii) Since b, ab∈S we deduce that bab=a-1∈ S . Hence b, a∈ S  and so 

G= S  which implies Cayley(D2n, S) is a connected graph. Suppose x  and y are 
two vertices which are not adjacent. If both belong to S, then both join to the 
identity element and d( yx, )=2. If order of x and y are not of prime number, then 
they are powers of a. Let iax =  and jay =  .It is clear that babaa iii 2=−  and 

babaa ijij +− =  so ia and ja join bai . Thus diam(Cayley(D2n,S))=2. Further 
{1,an/2,b} is a cycle, where n is an even number. If n is an odd number, then 
{1,at,b} is a cycle, where t is such that the ratio n/(n, t) is a prime number. 

(iii) It is clear that 10, −≤≤ njba j  are of order 2 and as is of order ps where 
ksss

ksss PPPPPS ααααα ...... 1111
1111
+−−

+−−=  .The other elements of nD2  are not of prime order. 
The rest follows clearly. 

(iv) It is obvious. 
(v) Since 4≥n  by the previous part Cayley(D2n, S) has K3,3 as its induced 

subgraph. 
(vi) Clearly follows by presentation of D2n and finiding the adjacent vertices 

in each part. 
(vii) Since degree of each vertices is more than n+k, Cayley(D2n, S) is 

Hamiltonian by Dirac theorem.                                                                        □ 
 

Proposition 3.9. Let D2n be a dihedral group of order 2n, where 4≥n  is an even 
integer. Then 

(i) For Cayley(D2n, S), |S|≥n+1. Moreover, |S|=n+1 where D2n is dihedral 
group such that n=2m-1. 

(ii) ω (Cayley( mD2 , S)) = χ (Cayley( mD2 , S)) = 4. 

Proof. (i) Suppose 12
2 ,1:, −==== aababaD bn

n . It is clear that 

{ } { } Sanjba nj ⊆−≤≤ 2/10: ∪ . Hence the first part is clear. Since 21 2),2( −− = mm i  

whenever 22 −= mi we conclude that 2||
22 =

−m

a   and S is 

{ } { }221 120:
−

−≤≤ − m

ajba mj ∪ .  
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(ii) We use two different colors for identity element and 
22 −m

a . The other 
powers of a  can be colored by these 2 colors. Some of them join to 1 and some of 
them not so we use the suitable color out of these two colors. Thus here we use 2 
colors. Moreover for babaabb

m 122 ,...,,,
−

 we use two other different colors. 
Therefore χ (Cayley( mD2

, S))=4. As ω (Cayley( mD2
, S))≤ χ (Cayley( mD2

, 

S))=4 and vertices 1, baba
mm 22 22 ,,
−−

 form K4 ,the assertion follows .                               
□ 

Cayley(G, S) is ( )∑ −
−

k

i ipi pn
1

)1(  -regular, for a non-abelian group of order 

i
k
i p1=Π  ,where ( )kipi ≤≤1  are distinct prime numbers and 

ipn is the number of 
Sylow ip -subgroups. 

Let G be a nilpotent group of order i
k
i p1=Π  ,where ( )kipi ≤≤1  are distinct 

prime numbers. Then Cayley(G, S) is connected. Since G is generated by its 
prime order elements the assertion follows. 

 
Proposition 3.10. Let G be a simple group which contains an element of order p. 
Then Cayley(G, S) is connected. 
Proof. By the graph definition S  contains all the elements of prime order. Since it 
contains an element of prime order p , G is generated by all the elements of order 
p  (see[7, Proposition 2.5]) and consequently by S . Hence the assertion is clear.□ 

Every non-abelian finite simple group has even order, hence contains an 
involution. Thus its prime order Cayley graph is connected. 

The alternating groups An for 5≥n  are generated by involutions. Therefore 
Cayley(G, S) is connected. 

 
Theorem 3.11. Let G be a group. Then 
(i) Suppose G is a group of order less or equal than 15. Then Cayley(G, S) is a 

planar graph if and only if  .,,,,,, 83.23.262232 223 QZZZZZZZ ×≅G  

(ii) If G is an abelian group. Then Cayley(G, S) is a planar graph if and only if 
.,,,,, 3.23.262232 nnnnG ZZZZZZZ ×≅  

Proof. Suppose Cayley(G, S) is a planar graph. By the second part of 
Proposition 3.2 we deduce that the order of G is βα 3.2 , where βα ,  are  
non-negative integers. If 0=α  or 0=β , then nn ZZG

32
,≅ by third part of 

Proposition 2.3 or 2 2G ≅ ×Z Z . 
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Now let α  or β  be greater than one. If G is a non-nilpotent group of order 
β3.2  or 3.2α  then all its elements are of prime order by [5]. Therefore all its 

elements are join and since 6≥G  we have K5 as induced subgraph of 
Cayley(G,S) so they are not planar. 

Assume G is of order β3.2  or 3.2α  and nilpotent. Initially suppose β3.2=G . 

There are one Sylow 3-subgroup and β3  Sylow 2-subgroup. Thus we have β3  
elements of order 2 which are adjacent. As Cayley(G, S) is planar 1=β  and 

6=G . G is not symmetric group of order 6 because its prime order Cayley graph 
is not planar or we can say S3 is not nilpotent. If 6ZG ≅ , then Cayley(G,S) is 
planar. If 3.2α=G , then the number of Sylow 2-subgroups of G, n2, are 1 or 3 

and the number of Sylow 3-subgroups, n3  , are α2  or 1  , respectively. If 12 =n  and 
α23 =n  then we have 12 +α  elements of order 3 which are adjacent. As Cayley(G, 

S) is planar we conclude that 42 1 ≤+α  and so 1=α . Thus 6|| =G  which we 
discuss about it before. Suppose 32 =n   and 13 =n . With out loss of generality we 
can assume 6|| >G . If G contains 4 elements of order 2, then Cayley(G, S) is not 
planar. Therefore, G is a group which has at most 3 elements of order 2. The 
group of order 15,14,13,11,7|| =G  or 10DG ≅  are not acceptable by the second 
part of Proposition. 2.2. if 8DG ≅ , then Cayley(G, S) is not planar by Proposition 
3.8. Clearly Cayley ( ) 933 , KSZZ ≅×  is not planar. By these conditions we must 
cheque the planarity of prime order Cayley graph of 

1243222121 ,,, DAZZZGZG ××==  and 1326 ,,1:, −==== aaababaT b . 
Immediately, we omit D12 and T, because they are not nilpotent. Cayley(G1, S) is 
3-regular graph which is planar by Proposition 3.5. G2 has 5 elements of prime 
order. Thus the number of edges of the Cayley (G2 ,S) is 30. Now by [3, Corollary 
9.5.2] Cayley(G2, S) is not planar. Similarly Cayley (A4, S) is 11-regular which is 
not planar. 

Let G be a group of order βα 3.2 , where 1, >βα  Thus 36|| ≥G  Hence the  
assertion is clear.                                                                                                □ 
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