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OPTIMIZATION OF MONITORING METHODS WITH LAMB 
WAVES OF THE COMPOSITE MATERIALS USING 

PIEZOCERAMICS PATCHES 
Constantin PETRICEANU1, Gheorghe AMZA2, Cătalin Gheorghe AMZA3 

Acest articol prezintă o nouă tehnică  de monitorizare a stării de integritate a 
materialelor compozite prin utilizarea unor patch-uri de control. Metoda este 
rapidă, cu productivitate ridicată, adaptată condiţiilor de măsurare in situ. În prima 
parte sunt prezentate aspectele teoretice ale modelarii şi simulării propagării 
undelor Lamb în materialele compozite, utilizând formalismul matematic al seriei 
Debye. Sunt discutate apoi diferite aspecte legate de sensibilitatea de detectare a 
defectelor, prin evidenţierea influenţei parametrilor acustici urmărindu-se 
optimizarea rezultatelor obţinute experimental. În final sunt prezentate concluziile şi 
perspectivele pentru dezvoltarea metodei. 

This article presents a new monitoring technique of the composite materials’ 
integrity status using control patches. The method is quick, with high productivity, 
adjusted to the “in situ” measurements’ conditions. In the first part are presented 
theoretical aspects of the modeling and simulation of the Lamb wave propagation 
into composite materials, using mathematical formalism of the Debye’s series. Then, 
different aspects related to defects’ detection sensibility are discussed, by 
highlighting the influence of the acoustic parameters aiming optimization of the 
results obtained experimentally.  At the end conclusions and perspectives for the 
method development are presented. 

Keywords: Lamb waves, piezoelectric active sensors, piezoelectric patch, damage 
detection, wavelet-based signal processing, Debye’s series 

1. Introduction  

Monitoring of the composite materials with Lamb waves is a developing 
domain due to multiple sensitive structures, of major importance, that contains 
materials used in aeronautic industry, aerospace industry, civil engineering, auto 
industry, nuclear industry by production electric energy [1] (especially for 
protection the concrete walls of the safety enclosure of the reactor). 

Monitoring of the integrity status of the composite structures [2] is a new 
method which permits permanent assessment of them by measuring some critical 
parameters (in the presented case acoustical parameters). These ones offer 
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information about changes of the undamaged condition of the material in real 
time.   

At present, there are many nondestructive evaluation methods of the 
materials, different techniques to identify the localized defect, assessment of the 
integrity status of the structures etc. Among them, the methods that use ultrasound 
as the information bearer agent about the controlled test have a special place.  

The control with ultrasounds is a control method similar to radar type or 
sonar type technique. Classically, this consists of emission of a short term impulse 
in the sample and observation of the reflected or diffused echoes on the possible 
encountered discontinuities [3].   

Appearance and development of composite materials led to improvement 
of the control methods with classical ultrasounds which were often in the situation 
to be unadjusted to the specific control needs of such a structure. For this purpose 
is constituted this intercession which aims to identify the most appropriate control 
method for the control of composite material layers [4].     

The most important problems of the control methods with classical 
ultrasounds are related to: accessibility (to be able to work, for example, in 
transmission the sample should have been many times disassembled), problems 
with acoustic coupling (when a coupling gel is used results reproductibily may be 
inaccurate or in case of working with high temperatures or with porous materials, 
coupling through classical methods practically is impossible, control techniques 
with ultrasounds generated by laser or air transmitter/transducer were developed 
[5]), difficulties when dimensions of the pieces become important (interferometry 
or acoustic microscopy resolves the problem of the irreproducible coupling, but 
this can be applied only in case of pieces with large size).   

In conclusion, the choice of a certain control method with ultrasounds is 
made in close correlation with the specific application that will be used.   

In developing control systems of composite materials integrity [6] the 
most encountered practical problems were related to the control of layers of small 
thickness, such as structure of airplane wings, the walls of different reservoirs, 
floating structure of boats, different pipes etc. Consequently, the majority of 
models led to the use and study of their own vibration modes of a solid layer in 
vacuum. These particular modes of vibration in vacuum (or in the air in a quite 
good approximation from the acoustic point of view) are Lamb waves.     

The choice of Lamb waves is justified by numerous advantages which are 
offered to specific study. Unlike the surface waves (Rayleigh waves) whose 
amplitude decrease with increasing the depth of penetration, Lamb waves have the 
capacity to detect internal discontinuities regardless of the depth to which they are 
situated. Also, Lamb waves are spread through the length of the composite 
material layers without a significant energy loss although composite materials 
have a high acoustic attenuation coefficient.  In fact, the use of vibration modes 
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with relative low frequency which limit the influence of intrinsic diffusion is 
preferred. In addition, because of the fact that propagation occurs in the interior of 
the limited domain with relatively reduced dimensions in thickness, the loss of the 
amplitude caused by diffraction is lower than in the case of volume waves.          

The structure of a composite material is heterogeneous, because it consist 
of fibers fabric more or less compact, integrated in a matrix, usually epoxidic 
resin. From the literature and taking into consideration working frequencies 
situated in the interval between 1-6 MHz, , in a first approximation and with a 
good reflection in reality, the whole structure could be assimilated as being 
homogenous. Instead of it the presence of fibers make the composite material to 
have a strong anisotropic character [7].        

Thus, Lamb waves open the way to their use in the integrate systems of 
control to long distance [8] without the need of a very big number of transducers 
and hence to increase the complexity of the evaluation system.    

This method presents some disadvantages which make its regular use 
difficult. Wavelength and structure dimension (thickness of the plate, cylinder 
diameter, disc height) that propagates should have same dimensions; otherwise 
the propagated waves become pure surface waves. Lamb waves have a 
pronounced multimodal character, respectively at certain frequency several waves 
may coexist, each being spread with different speeds [9]. The dispersive character 
of the Lamb waves refers to the fact that for a certain mode of propagation 
(usually it is used one fundamentally symmetric or anti-symmetric of zero order) 
the speed of waves’ propagation depends on the frequency. Theses disadvantages 
lead to a signal complex which may be received in the frequency band of the 
transducer receptor. Interpretation of them is relatively difficult and that’s why 
currently the nondestructive control methods that use Lamb waves are limited 
[10].   

This article applies monitoring methods with Lamb waves of the 
composite materials using piezoceramics patches for a specific application, 
respectively, layer of composite material, with protective role against ionizing 
radiation of the safety enclosure of atomoelectric reactors.  

Specific restrictions that exist in case of nondestructive control with 
ultrasounds of the protective walls of the composite material of the safety 
enclosure of a nuclear reactor are as follows: difficult and unilateral access of the 
piece that needs to be tested; important damages in case of structure deterioration; 
economical waste being out of operation during the test control; danger of harm of 
the health and safety of the operator that is doing the investigation; human and 
ecological catastrophe in case of nuclear accident.     

In this study such problems are solved by setting up an intelligent control 
structure by adding transducers, transmitters and receptors on the wall of the 
composite material (affixing composite material patches, then these ones are 
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connected to the installation that will generate/receive Lamb waves into/from the 
interior of the structure). Beside transducers, there is a need of classical 
equipments for any control process, respectively ultrasound generator, signal 
amplifier, oscilloscope for signal visualization, informatics equipment with 
specialized software for data registering and processing, automatic alert systems, 
warning alert, actions in case of accident.     

2. Lamb waves 

In elastic solid and with hypothesis of small deformations, tensor relation 
among tensions Tij and deformations Skl, may be expressed as follows:   

 ∑∑
= =

=
3

1

3

1k l
klijklij SCT ,    (1) 

where coefficients Cijkl are the components of elastic rigidity tensor and are named 
rigidity constants.   

Writing the equation of wave propagation in a solid of infinite dimensions 
allows deduction of its characteristics in the phase and polarization matter. 
Neglecting the forces of gravity and inertia from the interior of elementary 
volume of solid matter, the fundamental principle of dynamics may be written as 
follows:  
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Introducing the value of tensor Tij in the above written equation and taking 
into consideration the deformation tensor expression Slj, the following equation 
system will be obtained: 
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where:  ρ is the density of the propagation medium; up, p = i, l – components of 
the displacement vector; xp, p = j, k – components of the position vector; t - 
propagation time; Cijkl - is the elastic rigidity tensor of 4th grade. 

For an infinite propagation medium we are looking for solutions under the 
form of plane waves, progressive, which propagate with the phase speed c, to the 
defined unitary vector direction ሬ݊Ԧ, coordinates ni,nj,nk. For the components of the 
unitary displacement vector the relation will result in form of: 
 ( )( )cxntiPAu jjii /exp −⋅= ω , i, j = 1,2,3 (4) 
where: A is the wave amplitude; Pi – wave polarization vector; ω -   pulsation; t -  
time; xj – vector position of the point where the evaluation is made; nj - unitary 
vector which indicates the direction of the wave propagation; c phase speed of the 
wave. 

Under other form the previous relation may be as follows: 
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where the systematic term eiω has been omitted.   
Replacing in the propagation equation relation, the Christoffel equation  is 

obtained: 
 lkjijkli nnnCuc =⋅ 2ρ , i, j, k, l = 1,2,3 (6) 

In plane waves’ regime, monochromatic, solutions of the propagation 
equation are the eigen vectors, for polarization and eigen values, for phase speed 
of the tensor Christoffel Гil: 
 kjijklij nnC=Γ , (7) 

In a general case, of one triclinic material with propagation to the direction 
of a vector ሬ݊Ԧ, it will result coexistence of three plane waves orthogonally 
polarized, every second: one quasi-longitudinal wave (the direction of polarization 
is close to direction of propagation) and two quasi-transversal waves (rapid one 
and slow one with almost perpendicular propagation waves, orthogonal with each 
other).         

The values for these three phase speeds according to these three waves are 
given by the following equation (Christoffel’s equation): 
 02 =⋅−Γ ilij c δρ , (8) 

If the solid, in which the waves propagate, is limited by two parallel faces 
(the case of a solid slate in vacuum), than two types of surface waves may 
propagate, without any interaction with each other as long as the thickness of the 
slate is big enough comparative to the acoustic wavelength.  

When the dimensions of the thickness of the slate are comparable with the 
wavelength, Lamb waves emerge discovered for the first time in 1917[11]. The 
waves named and as layer waves, are dispersive and have the feature of 
propagation through the whole thickness of the layer. There are two modes of 
propagation of the Lamb waves: symmetric and anti-symmetric mode.  

The study of Lamb wave’s propagation shows the calculation of the 
dispersion curves which represents the profiles of the phase speeds depending on 
the relation frequency-thickness of the layer.   

To calculate the dispersion curves of the Lamb waves in a solid layer of 
isotropic composite material, Viktorov [12] decompose the acoustic field from the 
interior of the layer in sum of the scalar sum Ф and rotational vector potential શሬሬሬሬԦ. 
 Ψ∧∇+Φ∇=u , (9) 

The studded layer has finite dimensions to x1 and x2 directions of the 
triaxial orthogonal mark from the Fig. 1 and the thickness d, finite to x3 direction.  
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Fig. 1. Tridimensional model of homogenous and isotropic solid layer in vacuum.   
A plane wave, non-uniform by propagated to the x1 direction is considered. 

Potentials are invariant translating to the x2 direction, thus all the physical dates 
have partial derivative as zero in relation with x2 variable.  

Scalar potential Ф and vector potential શሬሬሬԦ, will have the following form: 

 ( ) ( ) ( ) ( )1 1; .3 3
i kx t i kx tx e x eω ωϕ ψ− −Φ = Ψ =  (10) 

where: Ф - amplitude of the scalar potential; શሬሬሬԦ -  amplitude of the vector  
potential; k -  wave number; ω – wave pulsation; t – time. 

Hereinafter, the phase term ݁௜ሺ௞௫భషఠ௧ሻ will be omitted, because we are 
interested only in variation of the amplitudes Ф, ψ1, ψ2 and ψ3 of the particular 
displacement on the length of axe x1.  

For a wave that propagates with wave number k and pulsation ω, the 
components of the displacement vector u  may be calculated with the relation:  
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It can be noticed that first two equations are coupled and depend only on 
scalar and vector potentials Ф and ψ2. They describe Lamb wave which 
propagates through the polarized layer in sagittal (vertical) plan.  

The third equation is independent and describes the transversal 
horizontally polarized wave on the length of axe x2, named HT wave (horizontally 
transversal).  

Replacing first two equations of the Lamb wave propagation in relation 
that describes fundamental principle of the dynamics (2), the following 
expressions will be obtained:  
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If the wave number of the longitudinal and transversal plane waves will be 
noted as kL and  kT which propagate through the layer with the phase speed  cL and 
cT, the following expressions will result: 
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Replacing afterwards in relation (12), these ones will take the form 
mentioned bellow: 
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where: ݌ଶ ൌ ݇௅
ଶ െ ݇ଶ and ݍଶ ൌ ்݇

ଶ െ ݇ଶ are material constants; φ - scalar 
potential amplitude ; ψ2 - vector potential amplitude corresponding to the 
component of the length of the axis x2. 

The solutions of the Lamb waves propagation equations’ should satisfy the 
boundary conditions such as cancelling of the normal and shear stresses on the 
free surfaces: 

 0)
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where: d is the thickness of the layer; T33 – normal stress on the interface; T13 – 
tangential stress on the interface. 

With these restrictions the following solutions for the equations will be 
obtained (10): 
 ( ) ( ); .3 2 3cos sinB px A qxϕ ξ ψ ξ= + = +  (16) 
where: B is scalar potential amplitude ; A - vector potential amplitude; ξ = 0 or ξ 
= π/2,  dephasage. 

For a certain value given to ξ, potentials φ  and ψ2 depending on x3 are in 
opposition of phase.   

If we will replace the previous relations in the restrictions system, for each 
ξ value a linear system of two equations with two unknown A and B will be 
obtained. This system admits nonzero solutions if and only if its determinant is 
zero, respectively if the following expression is satisfied:  
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It may be noticed that if ξ = 0, the component u1 (respectively u3) of 
displacement is a pair function, respectively impair for x3. In this case, a 
symmetric mode of propagation or compression mode, is described (fig. 2). 

When ξ = π/2, component u1 is pair while u3  is impair. Thus the anti-
symmetric mode of propagation is defined (fig. 2). 

For each of these two possible values of ξ, dispersion equations for the 
symmetric mode will be obtained, when ξ = 0 and anti-symmetric when ξ = π/2: 
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Fig. 2. Lamb propagation modes: symmetric and anti-symmetric. 
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Solving the equations (18) permits determination of waves numbers k of 
symmetric and anti-symmetric propagation modes depending on elastic constants   
C11 and C55 (they are in the parameters expressions p and q and thickness d of the 
layer). 

Analytically, this is only possible in particular cases when ω = 0, or 
when ߱ ൌ ∞. In general, these equations may be solved numerically with the help 
of specific software and may represent the evolution of wave number k depending 
on pulsation ω, on phase speed cp, or depending on multiplication between 
frequency and thickness fd. 

The authors have elaborated a software using the platform BorlandC++ 
Builder6, with which dispersion curves have been traced depending on the phase 
speed of the first propagation modes of the Lamb waves in a silicon layer with 
following characteristics: ܥଵଵ ൌ 78,5 ሾܽܲܩሿ, ܥଵଷ ൌ 16,1 ሾܽܲܩሿ, ܥହହ ൌ
ሺܥଵଵ െ ଵଷሻ/2ܥ ൌ 47,3 ሾܽܲܩሿ,ߩ ൌ 2,20 ሾ݃/ܿ݉ଷሿ, (fig. 3). 

 

Fig. 3. Dispersion curves of the Lamb waves for the symmetric propagation mode (continuous 
line) and anti-symmetric (discontinuous line) in the silicon crystal  
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The obtained results were compared with those presented in the literature and a 
good agreement was noticed, the differences being under 5% thus, it can be 
concluded that elaborated model is correct. 

3. Plane wave reflexion/refraction. Mathematical formalism of 
Debye’s series  

Hereinafter it is presented the simplified case of reflexion and refraction of 
heterogeneous plane wave with unitary amplitude on the origin, in isotropic layer 
presumed absorbent immersed in a fluid with known acoustic properties.     

Acoustic displacement field in the interior of the layer, in the stationary 
regime, will be given by the formula:  
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where: pmX*  - wave amplitude, the sign „*” denotes the fact that the value may 

be complex; pmP  - wave’s polarization vector; pmK
*

 - wave vector;  m = L,T – 
wave type that propagates (L – longitudinal, T – transversal); p = 1,2 – interface 
where diffraction of the waves occurs (1 – superior, 2 – inferior); 

In the immersion fluid the field of analog will be given by relations: 

( )

( ) .

;

2
*

2
*

2
*

2

1
*

1
*

1
*

1
*

1
*

1

exp,,

expexp,,

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ −=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ −=

MKtiPXtMU

MKtiPXMKtiPtMU

RRR

RRR

ωω

ωωω

R

R

 (20) 

In order to be able to calculate the global coefficients of 
reflexion/refraction of the layer, to find the amplitude expression for all the 
excited waves in the solid material layer and fluids each layer’s interface will be 
considered as an acoustic diopter between two semi-infinite mediums situated on 
a distance of +/-d/2 of it’s median plane [13]. The problem then is to calculate 
three amplitudes corresponding to five elementary possible cases, separately 
considered (fig. 4). 

 
Fig. 4. Simplified model to calculate the reflexion/refraction coefficients in composite material 

layer   
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In the figure with discontinuous line is represented the incidental wave and 
with continuous line is indicated reflected wave and/or transmitted wave.   

Each of these cases is a classical problem of propagation of four waves 
and the solution is resolved in the literature [14]. Solutions obtained should take 
into account the fact that interface on which reflection/refraction take place is 
situated on the distance of +/-d/2 regarding the centered mark in median plane of 
the layer.  

Thus if  0*
psX  (p,s – conversion coefficient of the incidental wave p type  

transmitted/reflected in wave s type) is the amplitude of evaluated wave placing 
the origin of the cartesian mark on the interface, the expression of this amplitude 
on the distance z will be given by relation 
 ( )mpsps iXX φ*0** exp −= , (21) 

where: mmm zK θφ *** cos= ; exponential ( )mi φ*exp −  is named phase factor, and 
( )mi φ*exp −  is named dephasage.  

Three vectors will be defined composed from reflexion and refraction 
coefficients of the layer, as follows: 

 { } { }* ** * * * * *; .0 , , , ,
T T

pR L T pR pL pTX R R R X X X X= = (22) 

where: ( )TLRmRm ,, * =  are the components of the vector 0X  from relation (22), 
respectively, reflexion coefficients R, longitudinal transmission L and transversal 
transmission T, on the separation interface (diopter), fluid-solid, for an incidental 
wave in fluid; pX

*
-  are the components of the vector, relative to the excited 

waves in solid on the separation interface p, more detailed quantities pmX* , with p 
= 1,2 and m = L,T. 

For the case when an incidental wave (discontinuous) is considered to 
propagate in the fluid in the sense of axe Oz, vector 0X  components will be 
obtained from the Fig. 4.  

Similar for the rest of the cases, when it is analyzed the situation of 
longitudinal and transversal waves incidental on the interface 1, coming from the 
solid (cases 2 and 3 on top of axe Ox), then that of the incidence on the surface 2 
of the same waves types coming from the solid into the increasing sense of the 
axe Oz, the components of the four reflexion/refraction vectors on each interface 
will result.  

For each of the evaluated cases the amplitude of the incidental wave is 
considered known and equal with unity.  

In turn, theses permit definition of two reflexion/refraction matrices on 
each considered interface, as follows: 
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Without getting into calculation details, all reflexion/refraction coefficients 
present in the expression (23) are determined writing the continuity equations in a 
point on the considered interface [14]. 

Let [T] be double reflexion matrix in the interior of the solid layer: 
 [ ] [ ][ ]21 RRT = , (24) 

Developed, this one will have the form: 
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where the 6 nonzero coefficients of the double reflexion matrix [T], are given by 
the formula:  
 2121

TspTLspLps RRRRT += , (26) 
This double reflexion matrix is the ratio of the geometrical series (27), 

named Debye’s series: 
 [ ] [ ] [ ] [ ] [ ]( ) 0

32
1 ...1 XTTTTX nn

+++++= , (27) 
The coefficients vector on the second interface is obtained with relation: 

 [ ] nn
XRX 122 = , (28) 

The vector that gives transmission and reflexion coefficients will be 
obtained taking into consideration infinity of successive reflexion in the interior of 
the composite material layer, which is the limit of the previous series when n is 
the number of successive reflexions, increase unlimited.   

The obtained relation relative to first interface will have the form:  
 [ ] [ ]( ) 0

1
1 1 XTX −−= , (29) 

For the second interface the immediate obtained result is:   
 [ ] 122 XRX = , (30) 

It is important to emphasize that all these coefficients calculated till now 
take into consideration the wave propagation through only one acoustic diopter 
that separate two mediums considered semi-infinite fluid-solid, though itdefines 
propagation of the acoustic waves in the interior of a layer with two separation 
interfaces fluid-solid.   
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4. Results  
For the performed experimental studies there were built structures of 

composite material with a thickness of 5 [mm] on whose surface transmitter and 
receptor transducers of Lamb waves were affixed.  

The basic used principle was processing of cylinder type defect with a 
known distance regarding the transmitter patch situated outside of the axis that 
connects transmitter with the closest receptor transducer with an angle θ = 15º and 
variable depth (fig. 5). 

In the first stage, simulated propagation of Lamb waves in this type of 
complex structure was configured mathematically and numerically and generation 
and reception of Lamb waves in its interior was analyzed. Each layer (basic 
composite material, adhesive film, control composite patch) may be considered 
separated as a monoclinic crystal with Ox1, Ox2 symmetry plan. 

 

Fig. 5. Schematic model of a composite with control patches.  
Lamb waves are guided waves which have many propagation modes 

through the whole thickness of a thin layer. The modes properties are given by 
dispersion curves by presenting pulsation ω, depending on the wave number k. 
Afterwards with simple known mathematical relations, the relation of the phase 
speed depending on the frequency may be deduced.  

To calculate theoretical dispersion curves in a multilayer structure of 
composite material the method of the transfer matrix with the formalism of the 
Debye’s series was used.  

In Fig. 6 are presented dispersion curves drawn for CFRP type a 
composite. Adjacent layers are disposed each other orthogonally, with 
observational direction situated on angle of φ = 30º. Test thickness is 5 mm, 
number of layers – 12 placed symmetrically regarding the median plan. 
Simulation was realized with our own software. These curves are important 
because they allow identification of the propagation modes excited in 
experimental conditions. For example, in relative low frequency domain, used 
usually for non-destructive control, only three propagation modes exists: two 
fundamental propagation modes A0, S0 and horizontal transversal mode SH0, that 
are not cut out from Lamb waves in this case.  

In order to study the influence of the direction of propagation in relation 
with orientation of the composite material fibers, simulations were performed on 
the similar material type previously discussed and the evolution of the ratio 
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between maximum and minimum of the focalizing factor  in polar coordinates 
were analyzed. 

 

Fig. 6. Theoretic dispersion curves for a composite with adjacent layers placed orthogonally 
(CFRP type) observational direction on angle φ = 30º, test thickness 5 mm, number of layers 12 

placed symmetrically regarding the median plan.  
It was ascertained for the fundamental propagation mode A0 and S0, so for each 
made a focalization of the acoustic fascicle exists in the fibers direction. Though, 
the ratio between the maximum and minimum of the factor  is 8% for S0 and 
23,5%  for the mode A0. Consequently, in the high anisotropic structures, to avoid 
“blind” zones where defects detection with the integrated system control 
previously described would be impossible, it will be used fundamental 
propagation mode anti-symmetric A0, less sensitive to the anisotropy increase of 
the material than S0 mode (fig. 7). 

The piezoelectric disc affixed to the composite material layer was 
configured as being of thickness  and of diameter .  The thickness of 
the composite material layer stratified is .   

If the dimensions of the components respect conditions: hPZT << hplate and 
PZThR >>  the hypothesis that stresses T33 will be canceled may be made. 
If it is considered that electric impedance of the measurement circuit is 

very high comparative with that one of the piezo disc may be presumed that 
component   of the electric displacement is zero.  

                 

       a                       b 
Fig. 7. Focalization factor , with frequency of 300 kHz in a composite material with fibers 

placed orthogonal symmetric with 12 layers; s = 5 mm: a – for the fundamental propagation mode 
S0; b – for the fundamental propagation mode A0. 
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Simplifying constitutive equations of the material leads to relation: 
 ( )2211313

~ SShE +−= , (31) 
where: ܧଷ represents electrical field to direction O3, ෨݄ଷଵ – piezoelectric coefficient 
of the transducer; ௜ܵ௝ – is the deformation tensor. 

The acoustic displacement determined by an incidental plane wave is 
given by relation: 
 ( ) ( )tkxjeUtxu ω−= 1

0, , (33) 
The created volume dilatation may be calculated with: 

 ( )udivSS =+ 2211 , (34) 
The measured tension ܸ is averaged on the whole piezo disc surface 

according to the relation: 

 ( )dsudiv
R

hhV
s

PZT ∫−= 231
~

π
, (35) 

If the Stockes’ theorem is applied to the relation (35) it will be obtained: 

 ( )kRJeU
R

hhjV tiPZT
1031

~2 ω

π
−−= , (36) 

where ܬଵ is Bessel’s function  of the first cause and first order.  
Consequently the tension on the piezoelectric disc terminals respects the 

proportionality relation with the form:  
 ( ) ( )λπ /11 DJkRJ = , (37) 

Thus, incidental plane wave was detected optimally for the wavelength λ 
equal with 1.5 D, when the maximum of the Bessel function is obtained and was 
not detected for the wavelength λ equal with 0.8 D, when first zero of Bessel 
function is obtained.  

The behavior of the piezoelectric disc as transmitter was determined by the 
answer of the level of electric impulse that this one has after applying a tension of 
a certain structure (modulation) on its terminals. The study was realized by 
simulating with a software that uses the formalism of the finite elements 
(Disperse) comparing the simulated results with the one obtained experimentally. 
The 2D the finite element model is similar with the one presented previously 
specifying that one layer of absorbent composite material (patch that contains 
transducers) was added. The influence of adhesive layer that assure the adherence 
of the patch on the support layer was neglected. We revealed that shear stresses 
are transmitted to the inferior layer structure especially on the periphery of the 
piezoelectric disc [15]. The action of the transmitter was configured by a point 
force applied on the transducer extremity. 

Simulations were performed in the domain of specter frequency and 
converted then in function ߣ஺బ, using the curb of wavelength deduced from the 
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dispersion curves of the composite material layer. The simulation results obtained 
with finite elements [16] were compared with experimental measurements 
realized with composite patches as specified previously (fig. 8). The position of 
the cut wavelength is obvious and corresponds with numeric results. As 
presumed, the cut wavelengths are the same in situation of the receptor transducer 
as those considered for piezoelectric transducer in transmitter regime.  

This study revealed the necessity of adjusting piezoelectric disc diameter 
with wavelength of Lamb modes which will be generated or received from the 
support structure of composite material.  

To validate all the results obtained previously, in presented situation, were 
traced, in parallel, theoretical and experimental transmission coefficients of the 
energy of Lamb waves for the fundamental propagation modes symmetrical S0, 
anti-symmetrical A0 and anti-symmetrical of first order 1, A1 (fig. 9). 

 

Fig. 8. Normal speed depending on the ratio from the surface of composite material with 
thickness of 5 mm excited by transducer of 10 mm in diameter submitted to a fusillade of signs 

sinusoidal type with central frequency of 300 kHz    

 

Fig. 9. Transmission coefficients of the energy of Lamb waves for the fundamental 
propagation modes anti-symmetric A0 and A1, respectively symmetric S0; continuous line – 

simulated values, discontinuous line- measured values  

5. Conclusions  
We demonstrated with this study that the use of control sensors with Lamb 

wave patch type for stratified anisotropic composite materials is justified from 
physical reality point of view.  
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Also, definition and programming of mathematical device using the 
formalism of Debye’s series shortens very much the calculation time which could 
be obtained previously with traditional simulation methods with finite elements.  

Particular application, for which the program was created to be used for 
the composite materials study, can be easily extended to other materials and to 
other concrete situations excepting control patches, due to the fact that this 
software contains modules easy to change end to use for any other domain’s 
application.  
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