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UNCONDITIONAL STABILITY OF A FULLY DISCRETE SCHEME FOR THE
KELVIN-VOIGT MODEL

Xiaoli Lu!, Pengzhan Huang?

The purpose of the current paper is to show unconditional stability of a second-order and
two-step full discretization scheme for the nonstationary Kelvin-Voigt model. The proposed scheime
deals with spatial discretization by mixed finite element method and temporal discretization by a Crank-
Nicolson-type scheme. Further, we prove the unconditional stability of the considered scheme, i.e., it
has no time step restrictions. Finally, we verify the unconditional stability numerically.
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1. Introduction
In this article, we discuss stability of a fully discrete scheme for the following system
of equations of motion arising in the Kelvin-Voigt fluids:
w—kAu;+u-Vu—-vAu+ Vp =f(x,t), x€Q, t >0,
V-u=0,xe€Q, t>0,
u=0,0ondQ, t>0,
u(x,0) = ug(x), inx € Q,

@)

where Q is a convex bounded domain in R? (d=2, 3) with boundary dQ. Here u = u(x, f)
represents the velocity vector, p = p(x, ) is the pressure, v is the kinematic coefficient of
viscosity and « is the retardation time. The Kelvin-Voigt model was first introduced and
studied by Oskolkov [13] as a model for certain viscoelastic fluids known as Kelvin-Voigt
fluids. Apart from several applications of this model in the study of organic polymers and
food industry, it also appears in the mechanism of diffuse axonal injury that is unexplained
by traumatic brain injury models proposed earlier but now it can base on the Kelvin-Voigt
model for more detailed description [2, 3].

Recently, a scheme called Crank-Nicolson Leap-Frog (CNLF), which is a classic two-
step method within a class of so-called implicit-explicit linear multistep methods and is
frequently used in atmosphere, ocean, climate codes and computational fluid dynamics
and is based on the classic Crank-Nicolson scheme [4, 5], is proposed [1, 16, 19]. In
[17], Verwer discussed convergence of CNLF governed by a special condition allowing
a wider class of splittings than commonly used in computational fluid dynamics. Although
the firstly analyzed in [9], stability of CNLF for systems is only recently proven in [12],
where Layton and Trenchea have proved stability for the coupled system under time step
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condition suggested by linear stability theory for the Leap-Frog scheme. The time step
condition can not be eliminated, because the unstable mode of Leap-Frog is not damped by
Crank-Nicolson unless the time step condition is met. In fact, Hurl et al. have analysed the
stability of the unstable mode in [7] and proved that under time step condition the CNLF
unstable mode is asymptotically stable for the linear system. Besides, Kubacki [10] has
promoted the CNLF scheme to solve the uncoupling groundwater-surface water flows and
derived a time step condition stability.

In order to remove time step restriction, one popular way to counteract this effect
of the unstable mode in CNLF is to use time filters, such as Robert-Asselin filter [1, 14] or
Robert-Asselin-Williams filter [6, 19]. On other hand, unlike time filters, stabilized method
of the CNLF scheme can also remove all time step conditions for stability and control the
unstable mode. In [8], Jiang et al. have proposed and analyzed a linear stabilization of
the CNLF scheme which is unconditional stable for linear evolution equations. Besides,
Kubacki and Moraiti have proved that the CNLF stabilization scheme is unconditionally
stable and second-order convergent for the evolutionary Stokes-Darcy equations in [11].
Hence, the stabilized method is an effective technique to counteract the effect of unstable
mode for the linear equations. Moreover, for the nonlinear equations, Tang and Huang
[15] have proved the almost unconditional stability of the CNLF scheme for the unsteady
incompressible Navier-Stokes equations.

In this paper, inspired by [12], we will present a Crank-Nicolson-type scheme based
on a mixed finite element approximation for numerically solving the Kelvin-Voigt equations.
The main work is to obtain unconditional stability of the proposed scheme and verify the
numerical theory result by numerical experiments.

2. Preliminaries

In this paper, we employ the standard notation of vector Sobolev spaces and denote
the usual L2(QQ) norm and its inner productby ||-||and (-, -) respectively. The natural function
spaces for our problem are

X := Hy(Q) = {v € (L*(Q))" : Vv € (LX(Q)™, v =0 on 9Q},
Q:=L%Q)={ge Q) f gdx = 0}.
Q
For f an element in the dual space of X, its norm is defined by

(£, v)I
fl|-1 =su .
[I£]-1 ve)l(g T2

Furthermore, in the rest of the paper, we adopt a bilinear form:
a(u,v) := (Vu, Vv),

and a skew-symmetrized trilinear form [18]:
1 1 1
b(u,v,w) := E(u -Vv,w) — E(u -Vw,v) = (u-Vv,w) + E((V -u)v, w). 2
Then, by using the Green formulas, the variational formulation of problem (1) is to
find (u(t), p(t)) € X x Q such that u(0) = up and
(ut/ V) + Ku(utr V) + Va(ul V) + b(u/ u, V) - (P/ V. V) = (fl V)r 3
(V-u,9) =0, ®

forall (v,q) e XxQand t > 0.
From now on, let Tj, be a regular and quasi-uniform triangulation partition of Q
with element diameters bounded by a real positive parameter i (h — 0). The conforming
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subspace pair (X", Q") of (X, Q) is constructed based on Tj,. In this paper, we employ the
well-known Taylor-Hood element to approximate the velocity and pressure.

X" = (P(K)* X, Q" = {g5 € C%Q) : vylk € P1(K), YK € Ty).
Apparently, the mixed finite element space pair (X", Q") satisfies the so-called inf-sup con-

dition :

Gn, V Vhi_ﬁ 0,

inf s
meQ' , Exh IVvallllgn]

where § is independent of /. Besides, the discrete divergence free subspace of X" is
V'i= (v € X" (Vv q1) = 0, Vi € Q).

With above statements, Galerkin mixed finite element approximation of problem (3)

is to find (uy,(t), pr(t)) € (X", Q") such that u,(0) = uy, and
(upt, Vi) + kaan, vir) + va(ay, vi,) + b(ay, up, vip) = (pn, V - vir) = (£, vi), @
(V-uy,q1) =0,

for all t > 0 and (vy, g1,) € (X", Q").

3. Stability of a Crank-Nicolson-type scheme for the Kelvin-Voigt model

In this section, we consider stability of a Crank-Nicolson-type scheme for time dis-
cretization and a mixed finite element method in spatial direction of the problem (1). Let
{tﬂ}ff:O be a uniform partition of [0, T] and ¢, = nt, where 7 > 0 is time step and T is final
time.

Algorithm 3.1.

Step I: Find (u}, p}) € (X", Q") such that

u}l—ug ui—ug u,11+u2 u}l+u2 u,11+u2
LV |+ xa , Vi | +va —5 LVl + b , , Vi
T T

—(ph Vi) = (82, w), 5)
(Vw40 =0, ©6)

where f? = w and the initial level ug = ugy,.

Step II: Forn > 1, given (u!~!, pi™h), (u, p}') € (X", Q"), find (u/*!, pi*1) € (X", Q") such
that for all (vy,, q5) € (X", Q"):

n+l _ ;yn-1 n+l _ ;n-1 n+1 n—1
w,o o u, -, oty
v, |+xa Vi +va| —————, vy,

27 2

un+1 +un—1 un+1 +un—1 pn+1 pn—l
+b( T ,vh) (%,V-vh]qf(tn),vw, @)
V-utl,q) = 8)

where f* = (1) +£(ta-1)

Next, we will prove unconditional stability of the fully discrete Crank-Nicolson-type
scheme by tracking a discrete energy, which is denoted by

12 2 12 2
B2 o= [l P+ (gl + eV R + (Vg ?).
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Theorem 3.1. Let f € L2(0, T; H"1(Q)?). Then, the Algorithm 3.1 is unconditionally stable: for
any T > 0, solutions to the Algorithm 3.1 satisfy

EN+

N
1 ~1y12 2 2, i T 2
ZIIV(u’“ + DI < I+ Vel + IR, + = ) IR,
n=1

Proof. Setting v, = 2t(u/*! + u!™!) € V" in (7) gives
I = g 2+ e (19 0P = 19wy P + ve [V +u )|
= 27(£(ty), Wt + w7,
since b(3(u/*! + w'™), w*! + w7, w*! + u'™!) = 0. Next, add and subtract |[u/|* + «||Vu!|[*
to get
E 2 — B vtV u )R = 20(f(E), Wit + ). )

Applying the Young’s inequality, we obtain E"™*2 — B~ + Z||V(u/*! + u")|? <
ZL||f(t,)|I*,. Sum up the above inequality from n = 1, .., N to find

N N
2
BV 4 ) IV +ui I < EE+ S ) NI, (10)

n=1 n=1
For the first time level, taking v, = ui + ug € V" in (5). Analogously, applying the
Young's inequality yields
a1 — [l Vull? - [Val]l?
h LI h - h

v 2 . 2
- + 29} + uP < I,

Multiplying the above inequality by 7, we obtain that
T .1
Iyl + kI Vgl < gl + Vgl + 2_v||f; 2. (1)

Finally, taking (11) into (10), we achieve the desired result.

4. Numerical experiments

In this section, we present some numerical experiments to verify the unconditional
stability of the proposed algorithm for the 2D/3D unsteady Kelvin-Voigt model (1).
The prescribed solutions are in Q = [0, 1]¢ and d=2, 3. Choose the source term f with
equation parameters v = 1 and «x = 0.01 such that the exact solutions are
t

u = 2P yey2ey) + D™, uz = —xp()(px) + Dy’ (e,
p = (3(9%(@) + 9*(1)) + 6(p() + (1)) - 8)e™,

ford = 2 and

u = 10x2(p2(x)(<2y(p2(y) + Zyz(p(y))zz(pz(z) - yz(pz(y)(ZZ(pz(z) + 222(p(z))) cos(t),

Uy = 1Oy2(p2(y)((22(p2(z) + 222(p(z))x2(p2(x) - zz<p2(z)(2x(p2(x) + 2x2(p(x))) cos(t

us = 102202(2)((2x9% (%) + 2% p(x) )PP () — P> (1) 259> (¥) + 2179 (y))) cos(t),

p =10Q2¢p(x) + 1)2¢p(y) + 1)(2¢p(z) + 1) cos(t),

for d = 3. Here, we denote ¢(&) = (£ — 1), £ = x, y or z, and compute the final time T = 1.
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In order to validate Theorem 3.1, we compute the values of [[u}|lp and [|Vu}|lo for 2D
and 3D problems with different time steps listed in Table 1-4 and compare the values with
different space meshes under the same time step. We can observe from these tables that the
value of lluyllo and ||Vuj!|lo tends to be a constant, which shows that no time-step restriction
is need.

TasLE 1. |luplo of the considered scheme for the 2D problem.

1

2° 2° 2?4 23 22
% 1.4526E-3 1.4765E-3 1.6241E-3 4.0477E-3 6.8058E-3
2° 1.4527E-3 1.4767E-3 1.6240E-3 4.0477E-3 6.8064E-3
26 1.4527E-3 1.4767E-3 1.6240E-3 4.0477E-3 6.8065E-3
27 1.4527E-3 1.4767E-3 1.6240E-3 4.0477E-3 6.8065E-3

==

N

TaBLE 2. [[Vujllo of the considered scheme for the 2D problem.

1

2° 2° 2;4 23 22
% 1.0690E-2 1.1019E-2 1.2998E-2 3.0652E-2 5.0252E-2
2° 1.0698E-2 1.1029E-2 1.2987E-2 3.0643E-2 5.0252E-2
2% 1.0699E-2 1.1031E-2 1.2988E-2 3.0643E-2 5.0257E-2
27 1.0699E-2 1.1031E-2 1.2988E-2 3.0643E-2 5.0257E-2

il [

N

TasLE 3. |luplo of the considered scheme for the 3D problem.

1

}1_1 26 25 2T4 23 22
5 4.3858E-3 4.4058E-3 4.4678E-3 5.6704E-3 8.6080E-3
10 4.3754E-3 4.3952E-3 4.4519E-3 5.6354E-3 8.6026E-3

TasLE 4. ||[Vujl|p of the considered scheme for the 3D problem.

1

2° 2° 2;4 23 22
5 2.0746E-2 2.0641E-2 2.1725E-2 3.4693E-2 5.8571E-2
10 1.6348E-2 1.5974E-2 1.5141E-2 2.0479E-2 4.5093E-2

==

5. Conclusions

In this work, we present the fully discrete Crank-Nicolson-type scheme in solving the
Kelvin-Voigt problem. We find out that the Crank-Nicolson-type scheme is uncondition-
ally stable without using any time filters or stabilized methods for this nonlinear system.
Numerical tests verify our result.
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