U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 4, 2016 ISSN 1223-7027

SOLVING BOUNDARY VALUE PROBLEMS BY GENETIC
ALGORITHM

Ali Tavakoli', Daniel Plante?

In this paper, we describe the genetic algorithm method for solv-
ing large scale ill-posed problems. By using a suitable initial population gen-
erated by iterative methods, a genetic algorithm is developed that converges
well. Moreover, in the crossover process we use a random Flexible GMRES
method with (or without) an SSOR preconditioner.

Keywords: Genetic algorithm, Boundary value problem

MSC2000: 78M50, 92D15, 30E25.

1. Introduction

The idea of solving boundary value problems (BVPs) using genetic al-
gorithm (GA) is not new. In [1], solving the inverse initial-boundary value
problems via GA is presented. However, no method is presented for the selec-
tion of first population (that is very important in convergence of solution) and
moreover, the presented method works only for small scale inverse boundary
value problems. Furthermore, in [2]| a large scale problem has been solved by
GA. But, the proposed genetic algorithm is for optimal scheduling and resource
allocation problems (that are formulated as integer linear programs) and are
not boundary value problems.

In this paper, we propose an efficient GA for solving such large systems.
By using a suitable initial population and a novel approach to real-valued
recombination, the algorithm presented yields good results for convergence on
systems that otherwise converge slowly or not at all. In addition, for discrete
ill-posed problems, we use the FGMRES method for the crossover process with
(or without) a preconditoner such that the FGMRES with GA converges well
compared with the FGMRES method alone. By iterative methods converging
slowly or diverging after some iterations, the idea of using these methods to
initialize a population for a GA to then search for a solution is appealing.

!Mathematics department, Vali-e-Asr University of Rafsanajn, Iran, e-mail:
tavakoli@mail.vru.ac.ir

?Department of Mathematics and Computer Science, Stetson University, USA

143



144 Ali Tavakoli, Daniel Plante

2. Operators of Genetic Algorithm

In order to obtain the solution of the large scale system
Au = f, (1)
we can solve equivalently the following nonlinear programming problem:

min maxi<;<p {Ifi = Aul}

s.t. Au< f (2)

where A is an n x n full rank matrix, A* and f; for i = 1,--- ,n denote the
rows of A and the columns of f respectively.

The optimization problem (2) forms a nonlinear system that is readily
transformable to a linear system [3]. However, when the system is large in
scale, it is not convenient to solve it by linear programming algorithms (e.g.
simplex algorithm). Hence, we should use an alternative method more suitable
for such large-scale problems. One method that we propose is a variation of a
GA for solving (1). By an appropriate recombination (crossover) operator, we
find that the algorithm works very well.

Remark 2.1. Of course, one can use an alternative objective functions such
as ||Au — f||3. However, in GA, we consider the fitness value based on the
components of f — Au. Hence, the given objective function seems suitable.

GAs provide a means for solving various optimization and search prob-
lems by simulating the process of natural selection and evolution [4, 5, 6]. An
outline of the GA presented in this paper is provided in Algorithm 1.

Algorithm 1. Implementation of GA
) Input: p° p™;
) Output: a single solution satisfying the termination criteria;
) initialize parent population;
) WHILE termination criteria not meet DO
) evaluate fitness of all individuals in population;
)  WHILE child population smaller than parent population DO
) select two individuals from parent population;
) with probability p® apply recombination to obtain two children;
) with probability p™, apply mutation operator to two children;
) add children to child population
) END
) apply elitism by directly transferring fittest n "parents"
to child population;
(13) replace parent population with child
population (new parent population);
(14) END



Solving boundary value problems by genetic algorithm 145

1-th layer 1-th layer
4-th layer
2-th layer —
2-th layer 3-th layer

FIGURE 1. The layers of a subdivided domain.

Encoding; In our algorithm, each chromosome (individual) encodes a real-
valued string. Each gene represents the corresponding component of the so-
lution. For the recombination and mutation steps, we define 1-th layer to
be the boundary of domain  C R? and K-th layer be the generated K-th
boundary by regular subdivision scheme in each level (see Figure 1).

Initial Population: We consider three types of initial populations:
Type 1: Run the iterative methods v times with initial guess ug where v is an
integer number satisfying 1 < v < 3. However, here more than one iterative
method can be applied. For example we can use the Jacobi, Gauss Seidel and
SOR stationary relaxation methods or non-stationary conjugate gradient and
GMRES methods with different initial guesses.

Remark 2.2. Individuals of Type 1 are used to construct a suitable initial
population, because the relaxation methods converge well in a few first itera-
tions while the subsequent iterations converge slowly. This is why the multigrid
algorithm runs a few iterations with the relazation operators. However, the
multigrid algorithm needs the prolongation and restriction operators, though
their construction is hard most of the times. This is one of the advantages of
using a GA rather than a mutigrid algorithm for solving a BVP.

Type 2: Generation of this type of population depends upon the physical
properties of the problem and may vary for different problems. For example,
when we are solving a problem with a Dirichlet boundary condition v = 0,
the value of u can increase as we move to higher layers or it may become
oscillatory from one layer to the next one. For some BVPs there exist, not
necessarily exact, additional information about the physical properties of the
problem other than just the boundary information. For example, symmetry of
solution for a rectangular domain with respect to its diagonal or the maximum
values of the solution may be known (see [7] for instance).



146 Ali Tavakoli, Daniel Plante

Type 3: In this type, an individual is produced by an interpolation multivariate
polynomial. For example, when the boundary is v = 0 and there is information
about the physical properties of solution, we may construct an interpolation
polynomial (see next section).

Fitness: The fitness of an individual in a GA is the value of an objective
function for its phenotype. In general, the formula for fitness depends on the
objective function. Here we propose two fitness measures. One possible fitness
measure is defined to be

fitness_value(u) = 24{i : |fi — Asu| < €} (3)

where f shows the cardinality of the set, n is the dimension of the matrix A
and € is an acceptable bound for || f — Aul| and depends on the problem. An
alternative fitness measure is

fitness_value(u) = %wl(wlﬁ{i C|fi — Al < e}
+ wott{i e <|fi — Aju| < e} (4)
+ wa{i: e <|fi — Aju[ < e5})

where €;, €y, €3 are acceptable bounds for |f; — A;u|l and wy,wy, w3 are the
weights of these bounds, respectively. Moreover, €3 is the minimum acceptable
bound, namely

fitness_value({u : | fi — Aju] > e3}) =0

for « = 1,---,n. Clearly w; and ws should be the largest and smallest
weights of the bounds, respectively. Also, we note that in both formulas
(3) and (4), the fitness value of every vector u is no larger than 1, with
0 < fitness_value(u) < 1.

Selection: For our implementation of GA, we use truncation selection
to determine which individuals survive to the next generation. This can be
implemented by allowing some percentage of the present generation to pass
on to the next generation or by selecting some fixed number of individuals
to do so, here, we choose the latter approach. Also, we implement elitism to
preserve monotonicity of maximum fitness for the population from generation
to generation, with the fittest three parents in the present generation being
copied to the new population.

Hybrid Recombination (Crossover): Recombination is the process
in which two parent solutions are mated to produce offspring. For our imple-
mentation, we begin by implementing recombination as explained in [8]. There,
Miihlenbein and Schlierkamp-Voosen present their Breeder Genetic Algorithm
(BGA), which is a recombination of evolutionary strategies (ES) [9, 10] and
GAs [11]. Miihlenbein and Schlierkamp-Voosen describe three recombination
algorithms whose operators work well especially when BGA is used for pa-
rameter optimization. However, when the genes of the individuals collectively
represent a function, we have found that the above algorithms do not work.



Solving boundary value problems by genetic algorithm 147

In the present work, all solutions are found to diverge when these algorithms
are implemented.

Algorithm 2. Crossover process

(1) Input: up,us (two individuals);

(2) Output: Generation of children by crossover process;

(3) set r = [rand x n| + 1 where n and rand show the length of the
matrix and a random number between O and 1, respectively.
Also, [z] denotes the largest correct number no less than z;

(4) set chi(1:7r) =wuy(1:7) and chi(r+1:n) =us(r+1:n);

(5) set cha(l:7r) =wuz(1:7) and cho(r+1:n)=ui(r+1:n);

(6) run one iteration of selected method with initial guesseschy
and chy to produce child; and childy, respectively;

(7) modify ch; and chs.

Remark 2.3. In Step 6 of Algorithm 2, only those individuals whose fitness
value is more than the average of fitness values participate in the crossover
process.

Therefore, we present a novel approach which is found to work well.
First, the reproduction operator selects at random a pair of two individual
strings, u; and wuo, for mating. Each pair of selected parents generate two
children using Algorithm 2. In Step 6 of the algorithm, we run one iteration
of a stationary relaxation method with initial guesses ch; and chs to generate
two initial children. However, for discrete ill-posed problems, the crossover
Algorithm 2 may not be effective and one can instead use the Krylov subspace
method. In Algorithm 3, we provide a flexible GMRES method (FGMRES)
as described by Simoncini and Szyld [12]. Using this algorithm, the method
selected in Step 6 of Algorithm 2 is the FGMRES method with SOR, variable
preconditioning.

Algorithm 3. Random Flexible GMRES method (RFGMRES)

(1) Input: A,b,z;
(2) Output: Generation of a child;
(3) m = (30 x rand + 1];
(4) compute 1o = b — Axg, 8 = ||1o]|2 and wy = ro/p;
(5) FOR j = 1,...,m DO
(6) compute z; = GMRES(A, w;);
(7) FORi=1,...,j DO
(8) Tij = (Azj, wi);
(9) END
(10)  compute v = Az; — Z]: T; jw;
i=1
(11)  compute Tji1; = [[v]|s;
(12)  compute wj1 = v/Tjt1;;



148 Ali Tavakoli, Daniel Plante

(13) END
(14)  Compute y,, = argmin,||fe; — T,,y||2 and z; = zo + 2jYm.
In the Algorithm 3, m is a random integer number in the interval [1,30]. We
note that when the inner system is preconditioned from the right, this can be
viewed as a global preconditioning strategy (see for instance [12]). In other
words, we consider preconditioning for the inner system (Step 6 of Algorithm 3)
with a fixed matrix P, so that the inner system is transformed to AP~'Z; = w;
with z; = P~'Z;. Hence, we apply FGMRES for the system AP~'& = b with
Z = Px. One can consider P, for example, to be either a SSOR preconditioner,
in which the relaxation parameter w is a random number in the interval (0, 2),
or an incomplete LU factorization (ILU) in which the tolerance is a random
number in the interval (0,1). Also, one can use other preconditoners, such as
Lanczos bidiagonalization preconditioner, for discrete ill-posed problems [13].
Mutation: After recombination, the strings are subjected to mutation.
Mutation prevents the algorithm from becoming trapped in local minima. We
implement mutation by allowing each gene z; of individual x to be mutated
with probability p,, where p,, = 1/n and

zi:xi:tfxrmaxxp.

Here, 7,4, is set to the maximum range of values for x, f is some fraction
of the maximum range (typically some small values such as 0.1), and p is a
randomly generated real number in the interval (0, 1).

3. Numerical results

In this section, we present some numerical experiments and compare the

exact solutions with the approximated solutions obtained by our implementa-
tion of the GA.

Example 1. The first example is defined on a unit square. To define the
grid, we start by dividing the square into nine smaller squares of side length
1/3 and then dividing each smaller triangle into two triangles (see Figure 2).
Thus, a triangulation 7y is determined for the coarsest grid. Suppose 75, with
k > 2 is obtained by 7;_; via a regular subdivision; the edge midpoints in 7;_1
are then connected by new edges to form 7.

We consider the following Poisson’s problem:

—Au = f(z,y), inQ=]0,1]x]0,1],

(5)
u = 0, on 0f).

Suppose that we know the maximum value of exact solution u occurs at
the midpoint (1/2,1/2) of €2, but its value is unknown. In order to construct an
individual of Type 3 of the initial population, we make a bivariate interpolation
polynomial P(x,y) by setting P(0,0) = P(1/2,0) = P(1,0) = P(0,1) =
P(1/2,1) = P(1,1) = 0 and P(1/2,1/2) = a where « is a scalar. Therefore,



Solving boundary value problems by genetic algorithm 149

FiGURE 2. Coarsest grid with 3 partitions in x and y directions.

TABLE 1. GA for Poisson’s problem with different right hand sides f.

u | [ty GAir Jir GSur SORy,
10z(1 — z)y(1 —y) 1 1 130 oo 00
102(1 — 2)y(1 — y)sin(rz)sin(ry) | 0.27 22 120 oo 00
10(z — 22)3(y — v?)? 0.96 3 10 6 5
sin(mx)sin(my) 0.18 24 142 oo 00
10z(1 — 2)y(1 — y)sin(2rzy) 0.18 21 120 oo 00

TABLE 2. GA for Poisson’s problem.

hk ‘ ftzp GAitr Jitr rate
1/12 0.18 24 142 5.92
1/24 | 0.34 87 130 1.49
1/48 0.62 249 1000 4.02
1/96 0.81 45 1416 31.47

we can form the individual u, in terms of a. In order to find «, it is enough
to solve the linear equation b(i) — A'u, = 0 for some 1.

For Step (7) of the recombination algorithm in GA mentioned in the
previous section, we first modify all points located in the neighbourhood of
midpoint (1/2,1/2) as

child(i) = (b(i) — ZA(i,j) X child(j))/A(i, 7).
J#i
We consider the fitness value as defined in Equation (4).

In Tables 1 and 2, ft;, shows the maximum fitness of the initial popula-
tion, GA;;, denotes the fewest number of iterations need to reach the fitness
value 1 in GA. Moreover, Ji,., GSj, and SOR;;,. show the number of iterations
needed to converge the Jacobi, Gauss-Seidel and SOR algorithms,; respectively.
In Table 1, we consider different right hand sides f with corresponding exact
solutions w of Poisson’s problem given by Equation (5) for hy = 1/24. We
used w = 1.5 for the relaxation parameter in the SOR algorithm. G A, cal-
culates the total number of iterations carried out for all generations. For the



150 Ali Tavakoli, Daniel Plante

generation of the initial population, we used v = 2 iterations for the Jacobi,
Gauss-Seidel and SOR methods with initial guesses o = 0, +1. There are 13
individuals in the initial population and they are constructed as follows:
e 9 individuals are of Type 1 comprised of 3 each for Jacobi, Gauss-Seidel,
and SOR
e 2 individuals of Type 2
e 1 individual of Type 3
e 1 individual produced from the initial layer
The stopping criteria is considered as ||[b — Av|| < € for the fittest
individual in the population, where € = .001.
In Table 2, the values of ft;,, Ji, and GS;, are calculate for level 3
(hy = 1/12) through level 6 (hy = 1/96) and f has been chosen such that
u = sin(mx)sin(my) is the exact solution to the Poisson equation (5). As
can be seen from the table, as the level increases, the fitness of the initial
population increases. In the last column, we indicate the rate between J;;,. and
G A;, for each level. This rate is increasing saliently from level 4 to 6.
Example 2. We consider the computation of the second derivative DE-
RIV2 example from Hansen [15]. This is a mildly ill-posed problem that is a
discretization of a Fredholm integral equation of the first kind,

/1 K(s,t)z(t)dt = g(s), 0<s<1,

whose kernel K is the Green’s function for the second derivative:
s(t—1), s<t
K(s,t) =
t(s—1), s>t

Both integration intervals are [0, 1], and as the right-hand side, g, and corre-
sponding solution, x, one chooses the following:

RHS 1:g(s) = (s*—s)/6,z(t) =t,

453 — 3s 1
o1 5< 3 t, t <3,
RHS 2:¢4(s) = x(t) =
—4s? 128" —9s+1 1 1—t, t>4.
S —
24 T

We implement the GA for DERIV2 with RHS 1 and RHS 2 for n = 1000
that yields A € R000x1000 For the fitness value, we consider ¢, = 1078, ¢y =
107* and e3 = 1072. We use an elitism process such that in each iteration,
the 3 individuals with the highest fitness value directly survive to the next
generation. Moreover, mutation is run on the 3 elite individuals as z; = z;
0.01p where p is a randomly generated real number in the interval (0,1). In
the first iteration, only 12 individuals exist as initial population. In addition,
we consider at most 25 individuals for the crossover process. The stopping
criteria is chosen as MAXF = 1 where M AXF denotes the maximum value



Solving boundary value problems by genetic algorithm 151

TABLE 3. Convergence trend of GA for DERIV2 with RHS 1.

Iteration | IL. MAXFE ||b — Azg||2
1 12 0.5360 1.0114e-005
2 29 0.5360 1.0114e-005
3 29 0.5935 5.7405e-006

12 29 0.9985 3.8319e-008
13 29 1.0000 2.1456e-008

of fitness in each iteration. Also, in Tables 3 and 4, IL shows the number of
individuals in each iteration.

Table 3 shows the convergence trend of GA for DERIV2 with RHS 1. A
good initial population is selected, since the maximum fitness value is 0.5360
in the first iteration (i.e. more than 50% fitness). Also, by including elitism
in our GA, the maximum fitness value includes increasing trend for successive
iterations. As is expected, the residual ||b — Axy||2 changes a few between any
two iterations. However, from Table 3, we observe that in only 13 iterations,
the residual significantly decreases. Of course, one may change the value of
€1, €2 and €3 in the definition of fitness value to find a better residual of error
with the cost of more iterations and CPU time.

TABLE 4. Comparison of GA and FGMRES(m) for DERIV2 with

RHS 2.
method Iteration IL MAXF ||b — Azy|l2 CPU(sec.)

DERIV2-RHS 2 1 12 1 1.7e-17 15

FGMRES(10) 3 - - 1.8¢-16 1.6

FGMRES(15) 3 - 1.0e-17 2.0

FGMRES(20) 2 - 1.4e-16 1.4

FGMRES(25) 2 - 5.80-17 1.6

FGMRES(30) 2 - 6.7c-17 18

Table 4 shows a comparison between GA and FGMRES(m) with differ-
ent values of m for DERIV2 with RHS 2, where m denotes the step num-
ber of FGMRES method. Both methods use the SSOR preconditioner. The
FGMRES(m) method utilizes the relaxation parameter w = 0.5 for the SSOR
preconditioner, whereas GA uses a random relaxation parameter 0 < w < 2.
Although GA requires more CPU time compared with FGMRES(m), GA
converges with only one iteration. However, using RHS 2, results are less
favourable.

Example 3. For final example, we consider the PHILLIPS test prob-
lem known as Phillips problem [14]. This problem involves the discretization



152 Ali Tavakoli, Daniel Plante

fitness value

| | | | | | | | | | | | | | | |
0 5 0 15 20 25 30 3H 4 4 0 5 0 15 20 25 30 3H 4 4
iteration iteration

FiGure 3. (Left) Illustration of fitness value, (Right) Illustra-
tion of error in each iteration for PHILLIPS test problem.

of the Fredholm integral equation of the first kind derived by D. L. Phillips.
The function is defined by

1+ cos(zm/3), |z| < 3,
{ 0, |z| > 3.
with the kernel K, solution x, and right-hand side g given by
K(s,t) = ¢(s—1),
z(t) = o),
g(s) = (6—1s])(14 0.5cos(sm/3)) +9/(27) sin(|s|7/3).

Both integration intervals are [—6, 6] and also the order of discretization, n,
must be a multiple of 4.

We implement GA for the PHILLIPS example with n = 1000 that yields
A € R000x1000  For the fitness value, we consider ¢, = 1078, e, = 107* and
€5 = 1072, We again use elitism to propagate the 3 individuals with highest
fitness values to the next generation. Moreover, mutation is run on the elite
individuals as z; = x; = 0.01p where p is a randomly generated real number
in the interval (0, 1). In the first iteration, only 12 individuals exist as initial
population. In addition, we require that no more than 25 individuals partici-
pate in the crossover process. The stopping criteria is chosen as MAXF =1,
where M AX F' denotes the maximum value of fitness in each iteration.

Figure 3(Left) shows the relation between iteration and fitness value.
As is seen, although the maximum fitness of the initial population is 0.0839,
the GA converges to maximum fitness 1 after only 44 iterations. Moreover,



Solving boundary value problems by genetic algorithm 153

15

T
— m=15

m=20
m=25
m=30
1
5
)
0.5
0 g N n n
0 200 400 600 800 1000

iteration

F1GURE 4. Convergence trend of FGMRES(m) for PHILLIPS
test problem.

in the first few iterations, we observe that the fitness value grows rapidly,
thereafter converging more slowly. Figure 3(Right) shows a relation between
iteration and error ||Zezqet — Tk||2. The error value is 0.0023 for the best initial
individual (i.e. a individual with highest fitness value) and after 44 iterations,
the error converges to 7.5701 x 1072, The error decreases rapidly in the first few
iterations, levels off for a number of iterations, indicating temporary trapping
in a local minimum, decreases rapidly after iteration 35. Figure 4 shows that
the FGMRES(m) method with different steps m never decreases to an error
below 10~°. Also, while the initial error is approximately 10~*, even after 1000
iterations, the error reaches a value only about 0.1 times of initial error. While
not displayed here, we also ran FGMRES(20) for 10000 iterations, but again,
the error never dropped below a value of 107°. We have also presented the
elapsed CPU time for GA and FGMRES(m) in Table 5 that show the efficiency
of GA compared with FGMRES(m).

TABLE 5. Comparison of GA and FGMRES(m) for PHILLIPS problem.

method Iteration(k) ||Zezact — Tkll2 CPU(sec.)
GA 44 7.6e-009 642
FGMRES(15) 1000 4.7e-005 684
FGMRES(20) 1000 3.46e-005 825
FGMRES(25) 1000 2.8e-005 965
FGMRES(30) | 1000 2.50-005 1104



154

Ali Tavakoli, Daniel Plante

4. Conclusion

A hybrid genetic algorithm was presented for solving boundary value

problem. Several types of initial population are given for running the genetic
algorithm. Moreover, in crossover process, we used Flexible GMRES method.
Some test problems are given to confirm the importance of our method over
the usual relaxation methods.

1]
2]

REFERENCES

C. L. Karr, I. Yakushin and K. Nicolosi, Solving inverse initial-value, boundary value
problems via genetic algorithm, Eng. Appl. Art. Intel., 13(2000), 625-633.

K. Deb and K. Pal, Efficiently solving: A large-scale integer linear program using a
customized genetic algorithm, Genetic and Evolutionary Computation-GECCO 2004,
1054-1065.

D. Luenberger and Y. Ye, Linear and nonlinear programming, third edition, Springer,
2008.

M. Gen and R. Cheng, Genetic algorithms and engineering optimization, J. Wiley &
Sons, 2000.

J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

X. Yu and M. Gen, Introduction to evolutionary algorithms, Springer, 2010.

Y. Kanno, M. Ohsaki, K. Murota and N. Katoh, Group symmetry in interior point
methods for semidefinite program, Opt. Eng., 2(2001), 293-320.

H. Miihlenbein and D. Schlierkamp-Voosen, Predictive models for the breeder genetic
algorithm: I. continuous parameter optimization. Evolutionary Computation, 1(1993),
25-49.

H.-P. Schwefel, Numerical optimization of computer models, Wiley, 1981.

Th. Back, F. Hoffmeister, and H.-P. Schwefel, A survey of evolution strategies. Pro-
ceedings of the Fourth International Conference on Genetic Algorithms, 1991.

D.E Goldberg, Genetic algorithms in search, optimization and machine learning,
Addison-Wesley, 1989.

V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, STAM J.
Numer. Anal., 40(2003), 2219-2239.

Sh. Erfani, A. Tavakoli, and D.K. Salkuyeh, An efficient method to set up a Lanczos
based preconditioner for discrete ill-posed problems, Appl. Math. Model., 37(2013),
8742-8756.

M. E. Kilmer, D. P. Oleary, Choosing regularization parameter in iterative methods
for ill-posed problems, SIAM J. Matrix Anal. Appl., 22(2001), 1204-1221.

P. C. Hansen, Regularization tools: a MATLAB package for analysis and solution of
discrete ill-posed problems, Numer. Algorithms, 6(1994), 1-35.



