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THE APPLICATION OF GROUP THEORY IN THE GLOBAL 

ANALYSIS OF MECHANISM KINEMAT CHARACTERISTICS 

 

Dengfeng ZHAO1, Guoying ZENG2, Yubin LU3,Guolu MA4 

 

The global analysis of mechanism kinematic characteristics is commonly to 

obtain the distribution characteristic of global mechanism kinematic characteristics, 

based on the adjacency relation of numerous simple geometries, which are divided from 

the mechanism parameter space by using the singularity condition of mechanism motion. 

In this analysis process, the calculation workload will be rapidly increased with 

increasing the number of mechanism parameters. By using group theory for the 

symmetry analysis of mechanism parameters, the calculation workload can be greatly 

reduced. In this paper, firstly the transformation group and its basic properties are 

introduced. Then the transformation group of mechanisms is defined, and the 

transformation group of planar single-loop mechanisms and sphere single-loop 

mechanisms is analyzed. Finally, the application of mechanism transformation group in 

mechanism global characteristics analysis is discussed. The results show that the 

mechanism transformation group is a necessary mathematical tool for the mechanism 

global characteristics analysis, otherwise the whole distribution characteristics of global 

mechanism performance could not be grasped. 

Keywords: transformation group; symmetry; planar mechanisms; spherical 

mechanisms 

1. Introduction 

Traditional mechanisms analysis is to solve variation with time about motion 

parameters or to solve performance parameters (such as pressure angle, motion 

decoupling, etc.) of the different motion location of the mechanism, under the 

condition that links connection relationship, links size and drive condition have been 

determined. Whereas, global analysis of mechanisms performance is to discuss 

distribution characteristic and the whole evolution process with links size for the 

whole structure and motion parameters of mechanism in the whole range of the 

parameters of links size, under the condition that links connection relationships have 
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been only determined. Traditional mechanisms analysis is engineering science 

problems based on the kinematics and dynamics, whose theoretical basis is complete 

and the analysis method is also quite mature. Even considering links deformation, 

friction, collision contact and so on, many software applications can solve very 

complicated problems of mechanisms analysis. Global analysis of mechanism 

kinematic characteristics is based on modern mathematics theories such as topology, 

singular bifurcation theory and group theory and so on.  

The global kinematic characteristics of mechanisms were closely related with 

the singularity of mechanisms. However, the current researches only focus on 

singularity of mechanisms. Adequate study has been conducted on almost all types of 

mechanisms and analysis methods. In the early time, Ting et al. [1] studied the 

rotatability law for N-bar kinematic chains by a traditional method. Afterwards the 

researches on the singularity of mechanisms are widely conducted. Alici [2] focused 

on the determination of singularity contours for a manipulator. Jiang et al. [3] gave 

the singularity orientation of the Gough–Stewart platform. Hang et al. [4] presented 

the decoupling conditions of spherical parallel mechanisms. Wolf et al. [5] analyzed 

the singularities of a three degree of freedom spatial Cassino Parallel manipulators. 

Yangmin Li et al. [6] performed dynamics analysis of a three-prismatic-revolute-

cylindrical (3-PRC) parallel kinematic machine (PKM). 

Researches on the relations between the global motion characteristics and the 

singularity of mechanisms are few. Gao et al. [7] introduce the concept of solution 

space to the mechanisms evolution analysis, the workspace atlas of parallel planar 

manipulators were obtained. Zhao et al. [8,9,10,11,12] using the convex hull division 

method explored the classification method of single-loop planar and spherical 

mechanisms. 

The global analysis of mechanism kinematic characteristics should include the 

following three main parts. One is to analysis the whole motion range of mechanism 

parameters. The second is the global distribution characteristics of mechanism 

kinematic characteristics in the whole motion range. The third is the whole evolution 

process of the motion range and distribution characteristics with the structure and 

motion parameters of mechanisms. The basic methods of mechanism global analysis 

is dividing the structural parameter space to obtain mechanism dimensional type 

with different performance characteristics, or dividing the motion parameter space to 

obtain the range of motion parameters with significantly different performance 

distribution characteristics. Then the global mechanism performance is grasped, 

according to the mechanism performance characteristics in the above range and the 

relationship among this range. In the process of division, many division conditions 

are involved, and multitudinous geometric objects adjacent to each other are 

generated. On the other hand, all kinds of symmetry always exist in mechanisms, 

which are important to clarify the relationship among geometries. Introducing the 

group theory, as a powerful mathematical tool for analyzing complex symmetry, is 

necessary to the global performance analysis. 
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This paper includes four parts. The first is transformation group and its basic 

properties, where group theory terms and their meaning involved in this study are 

introduced. The second is defining the transformation group of mechanisms, and the 

transformation group of planar single loop and spherical single loop mechanisms are 

presented. Then possible applications of transformation group for the analysis of 

mechanisms are given. Finally, results show that the mechanism transformation group 

is a necessary tool for the global analysis of mechanism kinematic characteristics. 

Otherwise, it will be impossible to grasp the overall distribution of global 

performance. 

2. Transformation group and its basic properties 

Let X be a thing, g(X) is an operation on X, satisfying X=g(X), where g(X) is 

called the symmetric transform of X. If both gi and gj are symmetric transforms of X, 

the "multiplication" gigj is defined as the composite transformation gi(gj(X)), usually 

gigjgjgi。 The set of all symmetric transforms of X, (X)={e, g2, …, gi ,…}, is called 

as the transformation group of X. [13] 

Transformation group (X) satisfies the following four group axioms of 

abstract group. 1) Closure, gigj∈ , gi, gj∈ ; 2) Associativity, gi(gjgk) = (gigj)gk，gi, 

gj, gk∈ 3) The existence of an identity element (i.e., identity transformation), e: 

gie = egi = gi，gi∈ ; 4) Inverse, for each gi∈ , there exists gi
-1∈ , thus gigi

-1 = gi
-

1gi = e. The number of elements in  is called the order of , written as | |. If | | is 

finite,  is said to be a finite group. Otherwise, it is known as infinite group. 

If a subset  of group  also forms a group,  is called a subgroup of , 

denoted as  . Obviously, e is the smallest subgroup, while group is the biggest 

subgroup. 

If = {e, h2,…, hm} is a subgroup of , for one element x∈ , group x  = { x, 

xh2,…, xhm } is called left coset of . Left coset has the following basic properties, 

(1)All left cosets of have the same number of elements. 

  (2)If g∈ x there is g  = x namely all elements of cosets can be obtained by 

multiplying itself and Any two of the left cosets x  and y  is precisely equal, or 

totally different. 

     (3)Mother group could be divided into the set of left coset of subgroup .

Namely, the order | | must be the integer k times of the order | | called k as the 

index of in namely the number of cosets of in 

Subgroup  also has right coset x, which has the same properties with left 

coset, but may be not equal. If x  = x, the is called normal subgroup, then all 

cosets of  form a group which is called quotient group, written as / . Element of 

quotient group is each coset itself. 

The orbital theory of transformation group based on subgroups and their cosets 

is the foundation of symmetry analysis. 

https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Subset


36                              Dengfeng Zhao, Guoying Zeng, Yubin Lu, Guolu Ma 

Let A be a set, its transformation group is (A), given an element x∈A, (x) is 

the transformation group of x in (A), namely satisfying (x) ={g | g∈ ，g(x) = x}. 

The set {g(x)| g∈  } is defined as the group orbital of element x. 

The group orbital of element x is given by the left coset of (x) in (A). The 

transformation group of g(x) is the conjugate of (x), g g-1. If is the finite group, 

the number of elements in the group orbital is k = | |/| |. Examples of typical groups 

are as follows, 

(1) The set of all real numbers (or integers) with the addition and 0 as identity is 

a group. It is denoted by A (or A) and called the additive group of real number (or 

integer). Obviously, A is a subgroup in A 

(2) The set of nonzero (or >0) real numbers with the multiplication and 1 as 

identity is a group. It is denoted by M (or +
M) and called the multiplicative group of 

real number. Obviously, +
A is a subgroup in +

M. the set {1, -1} is also a 

multiplicative group and is subgroup in M. 

(3) The set of NN real orthogonal matrices is a group for the matrix product and 

identity the matrix In. It is denoted by N and called the orthogonal matrices group. 

The subset with determinant of 1 is a subgroup of N, denoted by N and called the 

special orthogonal matrices group. 
(4) The operation of arranging elements of a set of N elements to a certain 

sequence is called permutation. All permutation of N-elements form a symmetry 

group N, whose order is | N|=N!, which contains abundant subgroups. For example, 

the transformation group of regular triangles is symmetry group 3 of three vertexes, 

which includes three rotation elements around the centroid  0、120 and 240, and 

three mirror transformations around the medians. 

3. Transformation group of mechanisms 

The mechanism parameter can be divided into motion space parameter u=(u1,…, uU) 

changing with time and structural space parameter v=(v1,…,vV) remaining constant 

during motion. The mechanism can be regarded as a constraint equation defined in 

motion space and structural space. 
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The solution space of mechanisms is defined as the solution set of constraint 

equations in motion space, whose dimension is D=U-F. All characteristics of 

mechanism performance depend on the characteristics of the constraint equations, and 

completely reflect in the solution space. The singularity properties depend on the 

first-order deferential properties to motion parameters. 
uJf dd   (2) 
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where J is the Jacobi matrix of f to u, whose element Jij=fi/uj. When J is an owe-

rank matrix, the topology of the solution space may mutate, and the whole 

distribution characteristics of mechanism performances may mutate. At this time, the 

determinants of FF square matrices taking F columns from J are all zero. The 

number of such conditions is U!/F!/(U-F)!, but the number of independent conditions 

is only U-F+1. Combining these conditions with the constraint equations eliminates 

motion parameters, and forms the singularity division condition of mechanism 

structural space, 
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Usually there are numerous division conditions of singularity which divide the 
structural space into many geometric objects corresponding to solution space with 

different topologic. These division conditions are the intrinsic condition of 

mechanism dimension classification. 

         For mechanisms with fixed structural parameters, the solution space and global 

structure of mechanism performance are determined. To find out the overall structure 

of the solution space, a straightforward method is dividing the solution space into 

geometric objects with inner performance being monotonous distribution, while the 

adjacency relationship of geometric objects reflects the global structure of solution 

space. The determinant of FF square matrices taking F columns from J is zero, 

corresponding to the singularity condition of mechanism motion parameters. The 

number of such conditions is U!/F!/(U-F)!, which forms the division condition of 

solution space 
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For structural space and solution space, division conditions and division results 

are complex, and there are various kinds of symmetry. So the introduction of group 

theory for analyzing symmetry to analyze division conditions and division results is 

necessary. 

For a nonsingularity transformation (u, v)=Tp(u, v) of mechanism parameter, if 

meanwhile there is nonsingularity transformation f=Tf(f),  vv

f

v
fTf   and 

 uu

f

u
fTf   respectively satisfying the invariant condition in following composite 

transformations, 
u

p

uu

f

v

p

vv

fpf FTFTFTFTFFTT    (5) 

Then transformation Tp is called the symmetry transformation of mechanisms, 

transformation Tf, v

fT  and u

fT  is called the dual transformation for constraint 
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equations, structural space and solution space, respectively. All symmetry 

transformations of TP form transformation group (u,v) of mechanisms, all dual 

transformations of TF, u

FT  and v

FT  form dual the transformation group (f), (fv) and 

(fu) of constraint equations, structural space and solution space, respectively. 

Transformation group and dual transformation group keep homomorphism. 

The symmetry transformation of Jacobi matrix can be obtained by taking the 

derivative of symmetry transformation of constraint equations to motion parameter,  
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Eq. (6) shows that the symmetry transformation and dual transformation of Jacobi 

matrix are the derivative of transformation of constraint equations, namely the Jacobi 

matrix inherit all symmetry features of constraint equations. In addition, because all 

division conditions include all singularity conditions of Jacobi matrix, the set of all 

division conditions naturally inherit the symmetry features of constraint equations. 

N-links planar and spherical single-loop mechanisms shown in Fig.1 are taken as 

two examples to illustrate transformation group and dual transformation group of 

mechanisms. 

      

(a)                             (b) 

Fig.2 planar and spherical single-loop mechanism and its parameters 

For a planar single-loop mechanism shown in Fig.1(a), the motion parameter is 

the rotation angle of links, u=(1,…,N), the structural parameter is length of links, 

v=(l1,…,lN), and the constraint equation is a closed condition, 
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The dimension of solution space (namely the degree of freedom) is N-2. For the 

spherical single-loop mechanism shown in Fig.1(b), the motion parameter is the 

relative rotation angle of each motion pair, u=(1,…,N), the structural parameter is 

the angle between two motion pairs on each links, v=(1,…,N). To analyze 

conveniently, coordinate systems of (O,xi,yi,zi) and (O,xi,yi,zi) are established on 

each link. The constraint equation of this is a closed condition, 
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where i is the coordinate transformation matrix rotating i around zi axis, and i is 

the coordinate transformation matrix rotating i. around xi axis. Although Eq.(8) is a 

33 matrix equation, the number of independent equations is 3 rather than 9, since all 

coordinate transformation matrixes are rotation matrix. The dimension of solution 

space (namely the degree of freedom) of this mechanism is N-3. 

The Jacobi matrix of the planar single-loop mechanism can be easily obtained,   
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The determinant of a 22 matrix taking any two columns i, j from this Jacobi 

matrix is zero, singular division conditions with the number of N(N-1)/2 can be 

obtained,  

},,2,1{,0)sin( Njill jiji   (10) 

Eq.(10) requires that links i, j are positive or reverse parallel. By using parallel 

conditions of all links to eliminate motion parameters, the division conditions of 

structural space can be obtained, 

01  Nll   (11) 

After the tedious mathematical derivation, the Jacobi matrix of spherical single 

loop mechanisms is obtained, 
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where (xi,1,yi,1,zi,1) is the coordinate of motion pair i  in the coordinate  (O,x1,y1,z1). 

The determinant of a 33 matrix formed by taking any three columns i,j,k from a 

Jacobi matrix of spherical mechanism is zero, singular division conditions with the 

number of N(N-1)(N-2)/6 can be obtained, 
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Eq. (13) requires that three motion pair vectors i,j,k are coplanar. By using the 

coplanar conditions of all motion pairs to eliminate motion parameters, the division 

conditions of structural space can be obtained, 

},2,1,0{21   kkN   (14) 

The transformation group of the mechanism constraint equations depends on 

mechanism parameters and the form of constraint equations. But still there are some 

universal conditions as follows, 



40                              Dengfeng Zhao, Guoying Zeng, Yubin Lu, Guolu Ma 

⑴ Whole movement symmetry: mechanism performance has nothing to do 

with the position and direction of overall mechanism in three-dimensional physical 

space, so all transformations of mechanism translation, rotation and mirror in physical 

space are symmetry transformation, whose transformation group is motion group. 

        Motion parameters of planar single-loop mechanisms only have absolute rotation 

angle, so the whole translational invariance is certainly satisfied. Whole rotation 

transformation is that all motion parameters (1,…,N) meanwhile adding arbitrary 

angle 0 transform to be (1+0,…, N+0), whose transformation group is real 

additive group, written as +(u). Dual transformation is left multiplication rotation 

matrix, whose group is written as 2(f). The invariance verification of the constraint 

equations is, 
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For Eq.(10) and (11) of division conditions of structural space and solution space, the 

invariance is obvious, whose all dual transformations are identical transformation. 

The mirror transformation is that all motion parameters (1,…,N) is meanwhile 

transformed to (-1,…,-N), whose group is written as (u). The dual transformation 

of constraint equations is f1=-f1，f2=-f2，whose group is written as (f). The dual 

transformation of division conditions of solution space is (-fu
1,…,-fu

N), whose group is 

written as (fu).  

Motion parameters of spherical single-loop mechanisms only have relative 

rotation angle of links, so the whole translational invariance and rotational invariance 

can be certainly satisfied. The whole mirror transformation is that all motion 

parameters (1,…,N) is meanwhile transformed to be (-1,…,-N), whose group is 

written as (u). The invariance verification of the constraint equations is, 
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where I is special 33 diagonal matrix, whose element I11= I22=1， I33=-1. 

Similarly, when all motion parameters (1,…,N) are simultaneously transformed to 

be (-1,…,-N), it becomes  symmetry transformation, whose group is written as (v). 

The dual transformation and invariance verification of the constraint equations are 

similar with Eq.(16), only replacing I with diagonal matrix I, whose element I11=-

1，I22=I33=1. The dual transformation and its invariance verification of Eq.(13) of 

solution space division conditions is similar with Eq.(16), thus omitted here. The 

invariance of solution space division conditions, Eq.(14), is obvious, whose dual 

transformation is identical transformation.  

⑵ Projective symmetry: Projective transformation is zooming all linear sizes of 

a mechanism with special size at same ratio, but the same ratio doesn't be required for 

the mechanism with different sizes. The transformation group is real multiplicative 

group. Projective transformation of planar single-loop mechanisms is that all 
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structural parameters (l1,…,lN) are multiplied by any non-zero real number . The 

dual transformation of constraint equations Eq.(7) and division condition Eq.(14) of 

structural space are all equation multiplied with 1/. The division condition of 

solution space has nothing to do with structural parameters, whose dual 

transformation is identical transformation. All parameters of spherical mechanisms 

are angle parameters, which certainly satisfy projective invariance.  

 ⑶ Inversion symmetry: If a parameter set (p1,…,pP) replaced by (-p1,…,-pP) is 

the symmetry transformation of mechanisms, which has inversion symmetry. The 

inversion transformation of planar mechanisms is that any parameter li is replaced by 

-li, and corresponding rotation angle i is replaced by i+, whose transformation 

group is written as (li,i). The dual transformation of constraint equations is identical 

transformation. The dual transformation of structural space division conditions, 

Eq.(10), is the exchange of division conditions, whose li sign is opposite and other 

signs are the same. The dual transformation of solution space division conditions, 

Eq.(11), is division conditions related with I multiplied with -1. 

In spherical mechanisms, the inversion transformation of parameter i is i 

replaced by -I, and the rotation angle i and i-1 replaced by i+ and i-1+, whose 

transformation group is written as (i,i,i-1). The dual transformation and the 

invariance verification of constraint equations are, 
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  iiiiiiii IIII ΦΨΦΦΨΦ  
                     (17) 

Correspondingly, the dual transformation and the invariance verification of 

structural space division conditions is equal with Eq.(17). The dual transformation of 

structural space division conditions is the exchange of division conditions, whose i 

sign is opposite and other signs keep the same. 

In spherical mechanisms, the inversion transformation of parameter i is i 

replaced by -i,  and the rotation angle i and i-1 replaced by i+ and i-1+, whose 

transformation group is written as (i,i,i-1), the invariance is equal with Eq.(17). 

⑷ Cycle-symmetry: The symmetry transformation of mechanisms is replacing a 

parameter p by p+kT, whose transformation group is integer additive group, written 

as (p). There is symmetry with 2 circle for motion parameters of planar 

mechanisms. And the dual transformation of all parameters of spherical mechanisms 

is identical transformation. 

⑸ Permutation symmetry: If permutating certain mechanism parameters is the 

symmetry transformation of mechanisms, these parameters have permutation 

symmetry, whose transformation group is a permutation group. The constraint 

equations of planar single-loop mechanisms are vector summation, which have 

nothing to do with the order of vectors. If the same permutation is executed at the 

same time for structural parameters (l1,…,lN) and motion parameters (1,…,N), the 

constraint equations maintain invariant, and the transformation group is N-element 

symmetry group, whose dual transformation is identical transformation. The dual 
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transformation of division conditions of structural space and solution space is always 

certain permutation. 

For spherical mechanisms, it should be verified that the symmetry 

transformation of exchanging adjacent links i and i+1 is ii+1， i-1 and i+1 are 

replaced by i-1+ and i+1-,  and  can be solved, whose transformation 

process is shown in Fig.3. The steps of transformation are as follows, 
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By composite transformation for the exchange of any adjacent links, the 

conclusion can be obtained that all permutations are the symmetry transformation of 

spherical mechanisms, whose transformation group is N-element symmetry group. 
 

 

Fig.3 The exchange transformation of adjacent links 

All above transformation groups are the subgroup of mechanism transformation 

groups, the product of all transformation groups forms mechanism transformation 

group. In the global analysis of mechanism kinematic characteristics, the structural 

space is divided to realize dimension classification firstly. Then the solution space is 

divided to obtain the global distribution of mechanism kinematic characteristics. So 

the symmetry of structural space should contain both the symmetry of structural 

parameters itself and the symmetry of structural parameters associated with motion 

parameters. The symmetry of solution space only contains the symmetry of motion 

parameters themselves. 

In planar single-loop mechanisms, the transformation groups of structural space 

are the direct product +
M(v) (v) (v) of the transformation groups of projective, 

inversion and permutation. The transformation groups of solution space are the direct 

product A(u) (p) (u) of the transformation groups of rotation, circle and mirror. 

In spherical single-loop mechanisms, the transformation groups of structural space 

are the direct product (v) (p) (v) of the transformation groups of projective, 
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circle and permutation of structural space, and the transformation groups of solution 

space are the direct product (u) of the transformation groups of mirror and circle. 

4. Applications of mechanism transformation group 

Applications of the mechanism transformation group are very wide in global 

analysis of mechanism performance. Here only applications in three aspects for basic 

areas of parameter space, classification of division geometries and the generation of 

division conditions are introduced. 

⑴ The basic area of parameter space: The basic area is a continuous set in 

parameter space, which can cover the whole parameter space under the action of 

mechanism transformation group, and the measure of overlapping areas is 0. Only 

dividing basic areas can realize global analysis of mechanism performance. The 

transformation group of mechanisms is decomposed into some direct products of 

subgroups, by using different subgroups to reduce parameter space, the basic area of 

mechanisms is finally obtained. 

        If the transformation subgroup of mechanisms is a D-dimensional continuous 

group, D-dimensions can be reduced for the dimension of parameter space. The 

whole motion transformation group is a 6-dimensional continuous group, which can 

make the dimension of motion space reducing 6-dimensions at most. The whole 

motion transformation group A(u) of planar single-loop mechanisms is a 1-

dimensional rotation group, so the dimension of motion space can reduce 1. The 

projective transformation group of mechanisms is 1-dimension, so the dimension of 

parameter space can also reduce 1. The projective transformation group of planar 

single-loop mechanisms can reduce structural space to the unit sphere l2
1+…+l2

N=1. 

If a transformation group is +
M(v), the reduced area is the whole sphere. While a 

transformation group is M(v)={1,-1} +
M(v), the reduced area is any half sphere, 

and points of symmetry transformation on the boundary should be bonded to a closed 

Mobius strip. The status of 3-dimensional structural space is shown in Fig.4. The unit 

sphere can also be replaced by other convex surfaces, such as a regular polyhedron 

with 2N, |l1|+…+|lN|=1. 

 

Fig.4 The projective symmetry for reducing a three-dimensional space 
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If the transformation subgroup  of mechanisms is an infinite discrete group, 

after reducing, the dimension does not change, and analysis area reduces to a closed 

finite area from an infinite open area. For example, parameter set (p1,…, pN) with 

cycle symmetry makes the analysis area reducing to a N-dimensional torus from 

infinite area. Cases of 1-dimension and 2-dimension are shown in Fig.5. The motion 

space of planar single-loop mechanisms, and the motion space and structural space of 

spherical single-loop mechanisms belong to this case. 

 

Fig.5 The analysis area after reducing the cycle symmetry of 1and 2-dimension space 

If the transformation subgroup of mechanisms is a finite discrete group, after 

reduction, the dimension keeps the same, but the measure of analysis area reduces to 

1/|H|. The simplest transformation group, namely the inversion transformation group 

of single parameter (x1)={1,-1}x1, reduces the analysis area to a half, generally 

taking the range of x1>0. The inversion transformation group of N parameter is 

(x1)… (xN), whose analysis basic area reduces to 1/2N, generally taking the 

first quadrant, xi>0. The joint inversion transformation group of N parameter is 

(x)={1,-1}(x1,…, xN), whose analysis basic area is reduced to be a half, taking any 

half is feasible. But points of symmetry transformation on the boundary should be 

bonded. The case of 2 parameters is shown in Fig.Fig. 1(a).  

 
Fig. 1  (a) The inversion symmetry of 2 parameters and (b) the cycle symmetry of 3 parameters 

The simplest permutation group is the symmetry group (x1,x2)of 2 parameters, 

whose analysis area is reduced to be a half, generally taking the range of x1>x2. The 

transformation group is exchanging two parameter sets (x1,…,xN) and (y1,…,yN), 
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whose analysis area is reduced to be a half. With constructing any function satisfied 

f(x1,…,xN;y1,…,yN)= -f(x1,…,xN;y1,…,yN;x1,…,xN)， the range of f>0 is taken, and 

symmetry transformation exchanging points on the boundary are bonded. When the 

transformation group is the symmetry group of N-parameters, whose analysis area is 

reduced to be 1/N!, generally taking the range of xi>xi+1. While if the transformation 

group is the cyclic group of N-parameters, whose analysis area is reduced to be 1/N. 

With constructing any function f(x1,…,xN) satisfied f(x,…,x)=0, the range of 

f(x1,…,xN)>0 and f(x2,…,xN,x1)<0 is taken  as the analysis area, and symmetry 

transformation points on the boundary are bonded. The case of cyclic transformation 

group of 3 parameters is shown in Fig.Fig. 1(b). 

According to above analysis, the basic analysis area of structural space and 

solution space of planar single-loop mechanisms can be determined, 
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The basic area of structural space and solution space of spherical single-loop 

mechanisms is,  
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⑵The classification of division geometries  

The global analysis of mechanism performance can also be carried out through 

following steps. Firstly the whole parameter space is divided. Then the symmetry of 

division results is analyzed. Finally correct analysis results can be obtained. The 

division results have two equivalent forms of expressions, with one being sign 

sequence, and the other being complex expression. The sign sequence of structural 

space is three value sequence Sv=(sv
1,…,sv

Nv), whose length is equal with the number 

Nv of division conditions, and their elements are  
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Any geometry is always corresponding to only sign sequences Sv, where there 

may exist 3Nv sign sequences, but some sign sequences have no corresponding 

geometries. The definition of sign sequences Su=(su
1,…, su

Nu) of solution space is the 

same with this. 

        After solution division, all coordinates of 0-dimensional simplex (namely vertex) 

is sorted into a N0Nv coordinate matrix A, where N0, is the number of vertexes. Then 

any geometry Pv is the complex of structural space, which is expressed by a vertex 

sequence, 
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The coordinate matrix of geometry Pv is a NpNv matrix. There is large number 

of vertex combinations, but most of them is not real geometries. In the solution space, 

complex Pu and its coordinate matrix Au
P are same with this. 

If is the transformation group of mechanisms, and is the coordinate matrix 

AP of geometry P, satisfied (AP)=AP, the congeneric homogeneous geometry of P 

can be obtained by the left coset of group in group . The transformation group of 

congeneric geometry g(AP) is g g-1. The number of congeneric homogeneous 

geometries is equal to the index of group  in group namely |G|/|H|.

Homogeneous geometries have same properties. The classification of geometries can 

also be equivalently carried out through the dual transformation group. 

Generally, the symmetry analysis of division results of high-dimensional 

parameter space is complex and counterintuitive, which is suitable for computer 

processing with a fixed program. Thus, the division of structural space of planar 

mechanisms with 3-parameters is taken as an example to illustrate here, although the 

corresponding triangle does not form mechanisms, which can make the process of 

division and symmetry analysis clearly. 

As shown in Fig.7, projective symmetry has reduced the division of the unit 

sphere. Four independent division conditions are {f1
v=l1+l2+l3=0, f2

v=-l1+l2+l3=0, 

f3
v=l1-l2+l3=0, f4

v= l1+l2-l3=0}, whose transformation group can be decomposed into 

direct product of permutation symmetry group 3(l) and inversion transformation 

group with 3-parameters, namely = 3(l) (l1) (l2) (l3), with the order of 

|G|=6222=48. Although there are 14 areas, 24 lines and 12 vertexes in the 

division results, symmetry analysis indicates that there are only two kinds of areas 

with different characters, one kind of boundary and one kind of vertex. The 

information of complex expression, sign sequence and transformation group for these 

typical representative types of geometries is listed in Table.1. 
 
Tab.1 The information for the typical representative types of geometries 
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Fig. 2 The division of structural space with 3-parameters 

 

⑶The classification of division conditions 

If G is the transformation group of mechanism constraint equations , the 

transformation group of universal set T of division conditions of mechanism 

parameter space s is also . The transformation group for one division condition t is 

the subgroup (t) of The cognate division condition of t is given by the coset of 

(t) in whose number is k = |G|/|H|.

All division conditions are divided into some equivalence classes. Let t be a 

division condition, the equivalence classes of t are generated by the coset of 

transformation group of t in . On the other hand, by using the division condition in 

identical equivalence classes to divide parameter space, the division results are 

equivalent. If known the division results of parameter space divided by t, the division 

results of division conditions in the equivalence classes of t can be obtained by the 

coset transformation. 

The division condition of structural space l1+…+lN=0 of planar single-loop 

mechanisms is taken as an example to be analyzed, whose transformation group is the 

direct product of symmetry group and the protective transformation group of 

structural parameters, namely N(l1,…,lN) +
M(l1,…,lN). 

The direct product of symmetry group and protective transformation group with 

the N-elements structural parameter of transformation group is 

N(l1,…,lN) +
M(l1,…,lN).  Compared with the transformation group of universal set 

of division conditions, the number of its coset is 2N. All division conditions can be 

generated by the inversion transformation group (l1)… (l1) of structural 

parameters, and only belong to one type. The case of spherical single-loop 

mechanisms is similar with this. 

5. Conclusions 

In this paper, the group theory is introduced to global characteristics analysis of 

mechanisms. The basic contents include three main parts. The first is transformation 

group and its basic properties. The second is the definition of transformation group of 

mechanisms. The third is the application of mechanism transformation group in 

global characteristics analysis of mechanisms. By using group theory as a 

mathematical tool for symmetry properties of mechanism parameters, the analytical 

l2 l1 

l3 f 1
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v = l 1 - l 2 + l 3 =0 
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range of parameters space is obviously narrowed, so calculation workload can be 

greatly reduced, at the same time   the incorrect classification results can be avoided. 

The group theory is also a necessary mathematical tool for the dimension 

classification and characteristics analysis of mechanisms. 
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