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This paper is concerned with the problem of finding upper bounds and lower

bounds of matrix operators from lp(v) into lp(w,∆), where (vn) and (wn) are two non-

negative sequences. Moreover, the norms and lower bounds of matrix operators such as

quasi-summability matrices and Hilbert operator are computed.
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1. Introduction

Let p ≥ 1 and ω denote the set of all real-valued sequences. The space lp is the set of

all real sequences x = (xn) ∈ ω such that

∥x∥p =

( ∞∑
n=1

|xn|p
)1/p

< ∞.

If w = (wn) ∈ ω is a non-negative sequence, we define the weighted sequence space lp(w) as

follows:

lp(w) :=

{
x = (xn) ∈ ω :

∞∑
n=1

wn|xn|p < ∞

}
,

with norm, ∥.∥p,w, which is defined in the following way:

∥x∥p,w =

( ∞∑
n=1

wn|xn|p
)1/p

.

The idea of difference sequence spaces was introduced by Kizmaz [9]. Similarly, we define

the sequence space lp(w,∆) as below:

lp(w,∆) =

{
x = (xn) ∈ ω :

∞∑
n=1

wn|xn − xn+1|p < ∞

}
,

with semi-norm, ∥.∥p,w,∆, which is defined by

∥x∥p,w,∆ =

( ∞∑
n=1

wn|xn − xn+1|p
) 1

p

.
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Note that this function will be not a norm, since if x = (1, 1, 1, ...) then ∥x∥p,w,∆ = 0 while

x ̸= 0. It is significant that in the special case wn = 1 for all n, we have lp(w) = lp and

lp(w,∆) = lp(∆).

Let (vn) and (wn) be two non-negative sequences. In this paper, we shall consider

the inequality of the form

∥Ax∥p,w,∆ ≤ U∥x∥p,v,

for all sequence x ∈ lp(v). The constant U is not depending on x, and we seek the smallest

possible value of U . We write ∥A∥p,v,w,∆ for the norm of A as an operator from lp(v) into

lp(w,∆), and ∥A∥p,w,∆ for the norm of A as an operator from lp(w) into lp(w,∆), and

∥A∥p,∆ for the norm of A as an operator from lp into lp(∆), and ∥A∥p for the norm of A as

an operator from lp into itself.

The problem of finding the upper bounds of certain matrix operators on the sequence spaces

lp(w), d(w, p) and bvp are studied before in [5], [6], [8] and [10]. In the study, we examine

this problem for matrix operators from lp(v) into lp(w,∆) and we consider certain matrix

operators such as quasi-summability matrices and Hilbert operator.

Let A be a matrix operator with non-negative entries from lp(v) into lp(w,∆). The

other purpose of this study is to consider the inequality of the form

∥Ax∥p,w,∆ ≥ L∥x∥p,v,

for all non-negative decreasing sequence x ∈ lp(v), where L is a constant not depending on

x. Also we seek the largest possible value of L.

The problem of finding the lower bounds of matrix operators was introduced by

Lyons [11], and has been intensively studied on lp by Bennett [1,2,3]. Jameson [6] was

computed the lower bounds of operators on Lorentz sequence space d(w, 1). Then Jameson

and Lashkaripour [7] were examined lower bounds of certain matrix operators on lp(w) and

d(w, p). More recently, this problem has been developed in the block sequence space [5]. In

this paper, we study the problem of finding the lower bound for matrix operators from lp(v)

into lp(w,∆) and investigate certain matrix operators such as quasi-summability matrices

and Hilbert operator.

2. The norm of matrix operators from l1(v) into l1(w,∆)

In this section, we tend to compute the norm of operators from l1(v) into l1(w,∆).

We may begin with the following theorem which is essential in the study.

Theorem 2.1. Let A = (an,k) be a matrix operator and (vn), (wn) be two non-negative

sequences. If supk
uk

vk
< ∞ where uk =

∑∞
n=1 wn|an,k − an+1,k| for all k, then A is a

bounded operator from l1(v) into l1(w,∆) and

∥A∥1,v,w,∆ = sup
n

un

vn
.

In particular if vn = wn = 1 for all n, then A is a bounded operator from l1 into l1(∆) and

∥A∥1,∆ = supn un.
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Proof. Let M = supn
un

vn
and (xn) be in l1(v). We have

∥Ax∥1,w,∆ =
∞∑

n=1

wn

∣∣∣∣∣
∞∑
k=1

(an,k − an+1,k)xk

∣∣∣∣∣ ≤
∞∑

n=1

∞∑
k=1

wn|an,k − an+1,k||xk|

=
∞∑
k=1

uk|xk| ≤ M
∞∑
k=1

vk|xk| = M∥x∥1,v,

which says that ∥A∥1,v,w,∆ 6 M . Conversely, we take x = en which en denotes the sequence

having 1 in place n and 0 elsewhere, then ∥x∥1,v = vn and ∥Ax∥1,w,∆ = un which proves

that ∥A∥1,v,w,∆ = M . �

We say that A = (an,k) is a quasi-summability matrix if it is an upper-triangular

matrix, i.e. an,k = 0 for n > k, and
∑k

n=1 an,k = 1 for all k. In the following, we consider

the norm problem for quasi-summability matrix operators.

Theorem 2.2. Let A = (an,k) be an upper-triangular matrix with non-negative entries and

(wn) be an increasing sequence. If the columns of A are decreasing, i.e.

an,k ≥ an+1,k, (n, k = 1, 2, · · · )

and M = supk a1,k < ∞, then A is a bounded operator from l1(w) into l1(w,∆) and

∥A∥1,w,∆ ≤ M.

In particular if A is a quasi-summability matrix, then ∥A∥1,w,∆ = 1.

Proof. According to above notation

uk =

k−1∑
n=1

wn(an,k − an+1,k) + wkak,k.

Since the sequences (wn) is increasing

uk

wk
≤

k−1∑
n=1

(an,k − an+1,k) + ak,k = a1,k,

so by applying Theorem 2.1, we have ∥A∥1,w,∆ ≤ M . In particular if A is a quasi-

summability matrix, we deduce that ∥A∥1,w,∆ ≤ 1. Using the fact that ∥Ae1∥1,w,∆ =

∥e1∥1,w = w1 finishes the proof. �

Next, we identify a class of quasi-summability matrices for which the norm problem

is very easy. If (an) is a non-negative sequence with a1 > 0 and An = a1 + · · · + an, the

matrix Ma = (an,k) is defined as follows:

an,k =

{
an

Ak
n ≤ k

0 n > k.
(1)

Ma is the transpose of the weighted mean matrix.

Corollary 2.1. If (an) is decreasing and (wn) is increasing, then Ma is a bounded operator

from l1(w) into l1(w,∆) and

∥Ma∥1,w,∆ = 1.
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Note that Ma is called the Copson matrix when an = 1 for all n, hence the Copson

Matrix C = (cn,k) defined by

cn,k =

{
1
k for n ≤ k

0 for n > k.

Corollary 2.2. Let C be the Copson operator and (vn) and (wn) be two non-negative

sequences. If supk
wk

kvk
< ∞, then C is a bounded operator from l1(v) into l1(w,∆) and

∥C∥1,v,w,∆ = sup
k

wk

kvk
.

Proof. Since

uk =
∞∑

n=1

wn(cn,k − cn+1,k) =
wk

k
,

by applying Theorem 2.1, we obtain the desired result. �

In the next statement, we try to compute the norm of the certain matrix operators

from l1 into l1(∆).

Theorem 2.3. Suppose that A = (an,k) is a matrix with non-negative entries and M =

supk a1,k < ∞. If the columns of A are decresing i.e.

an,k ≥ an+1,k, (n, k = 1, 2, · · · )

and limn→∞ an,k = 0, for all k. Then A is a bounded operator from l1 into l1(∆) and

∥A∥1,∆ = M.

In particular if A is a quasi-summability matrix, then ∥A∥1,∆ = 1.

Proof. Since

uk =
∞∑

n=1

(an,k − an+1,k) = a1,k,

by using Theorem 2.1, we obtain the desired result. �

We recall the Hilbert operator H which is defined by the matrix:

hn,k =
1

n+ k
, (n, k = 1, 2, · · · ).

Corollary 2.3. If H is the Hilbert operator, then H is a bounded operator from l1 into

l1(∆) and ∥H∥1,∆ = 1
2 .

In the following, we try to solve the problem of finding the norm of the Hilbert

matrix operator from l1(v) into l1(w,∆). For this purpose, the same as the most studies of

the Hilbert operator, it uses the well-known integral∫ ∞

0

1

tα(t+ c)
dt =

π

cα sinαπ
,

where 0 < α < 1, (see [4], page 285).

Theorem 2.4. Let H be the Hilbert operator. If wn = 1
nα for all n, where 0 < α < 1, then

H is a bounded operator from l1(w) into l1(w,∆) and

∥H∥1,w,∆ ≤ π

sinαπ

(
1− 1

2α

)
.



The norms and the lower bounds for matrix operators on weighted difference sequence spaces 155

Proof. According to above notation

un =

∞∑
i=1

1

iα

(
1

i+ n
− 1

i+ n+ 1

)
≤
∫ ∞

0

1

tα

(
1

t+ n
− 1

t+ n+ 1

)
dt

=
π

sinαπ

(
1

nα
− 1

(n+ 1)α

)
,

so

nαun ≤ π

sinαπ

(
1−

(
n

n+ 1

)α)
≤ π

sinαπ

(
1− 1

2α

)
,

hence ∥H∥1,w,∆ ≤ π
sinαπ

(
1− 1

2α

)
. �

3. Upper bounds of matrix operators from lp(v) into lp(w,∆)

In this section the problem of finding the norm of certain matrix operators such as the

transpose of the weighted mean, Copson and Hilbert from lp(v) into lp(w,∆) are considered.

We first give the Schur’s Theorem and a lemma which are essential in the study.

Lemma 3.1 ([8], Lemma 2.2). Let p > 1 and B = (bn,k) be a matrix operator with bn,k ≥ 0

for n, k = 1, 2, · · · . Suppose that (sn) and (tk) are two sequences of strictly positive numbers

such that for some C, R

s1/pn

∞∑
k=1

bn,kt
−1/p
k ≤ R (for n ≥ 1), t

(p−1)/p
k

∞∑
n=1

bn,ks
(1−p)/p
n ≤ C (for k ≥ 1).

Then ∥B∥p ≤ R(p−1)/pC1/p.

Lemma 3.2. Let p ≥ 1 and (vn), (wn) be two non-negative sequences. If A = (an,k) and

B = (bn,k) are two matrix operators such that bn,k =
(

wn

vk

)1/p
(an,k − an+1,k), then

∥A∥p,v,w,∆ = ∥B∥p.

Hence, if B is a bounded operator on lp, then A will be a bounded operator from lp(v) into

lp(w,∆).

Proof. For every x ∈ lp(v), we define y = (yk) by yk = v
1/p
k xk. It is obvious that ∥x∥p,v =

∥y∥p, and

∥A∥pp,∆,w = sup
x∈lp(v)

∥Ax∥pp,∆,w

∥x∥pp,v
= sup

x∈lp(v)

∑∞
n=1 wn |

∑∞
k=1(an,k − an+1,k)xk|

p∑∞
k=1 vk|xk|p

= sup
y∈lp

∑∞
n=1

∣∣∣∣∑∞
k=1

w1/p
n (an,k−an+1,k)

v
1/p
k

yk

∣∣∣∣p
∞∑
k=1

|yk|p
= sup

y∈lp

∥By∥pp
∥y∥pp

= ∥B∥pp.

�

In the following, we investigate the norm of the transpose of the weighted mean

matrix.
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Theorem 3.1. Let p > 1 and (an) be a decreasing sequence such that a1 = a2 = 1 and

limn→∞ An = ∞, where An =
∑n

i=1 ai. If Ma is defined as in (1) and vn =
(

An−1

an

)p
for

all n, with A0 = 1, then Ma is a bounded operator from lp(v) into lp(∆) and

∥Ma∥p,v,1,∆ = 1.

Proof. By applying Lemma 3.2 we have ∥Ma∥p,v,1,∆ = ∥B∥p, where

bn,k =


ak(an−an+1)

Ak−1Ak
for n < k

a2
k

Ak−1Ak
for n = k

0 for n > k.

In Lemma 3.1, take sn = tn = 1 and let C,R be defined as before. Since

∞∑
k=1

bn,k =
a2n

An−1An
+

∞∑
k=n+1

ak(an − an+1)

Ak−1Ak

=
a2n

An−1An
+ (an − an+1)

∞∑
k=n+1

(
1

Ak−1
− 1

Ak

)
=

a2n
An−1An

+
an − an+1

An
,

we have
∑∞

k=1 b1,k = 1 and
∞∑
k=1

bn,k =
an

An−1
− an+1

An
,

for n > 1, so R ≤ 1. Also, since

∞∑
n=1

bn,k =

k−1∑
n=1

ak(an − an+1)

Ak−1Ak
+

a2k
Ak−1Ak

=
a1ak

Ak−1Ak
≤ 1,

we deduce that C ≤ 1, so ∥Ma∥p,v,1,∆ ≤ 1. Now let x = (1, 0, 0, · · · ), we have ∥x∥p,v = 1

and ∥Max∥p,∆ = 1. So ∥Ma∥p,v,1,∆ ≥ 1, this completes the proof of the theorem. �

Now we are ready to compute the norm of the Copson matrix operator.

Theorem 3.2. Suppose that p > 1 and (vn), (wn) are two non-negative sequences. If C is

the Copson matrix operator and

M = sup
n

1

n

(
wn

vn

)1/p

< ∞,

then ∥C∥p,v,w,∆ = M . In particular if vn = wn for all n, we have ∥C∥p,w,∆ = 1.

Proof. By applying Lemma 3.2 we have ∥C∥p,v,w,∆ = ∥B∥p, where

bn,k =

 1
n

(
wn

vn

)1/p
for n = k

0 otherwise.

In Lemma 3.1, take sn = tn = 1 and let C,R be defined as before. Since the matrix B is

diagonal, we deduce that R ≤ M and C ≤ M , so ∥C∥p,v,w,∆ ≤ M . Now let x = en, we have

∥x∥p,v = v
1/p
n and ∥Cx∥p,w,∆ = w

1/p
n /n. So ∥C∥p,v,w,∆ ≥ M , which concludes the proof. �

Finally, we consider the norm of the Hilbert matrix operator.
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Theorem 3.3. Let H be the Hilbert operator and p > 1. If wn = 1
nα for all n, where

1− p < α < 1, then H is a bounded operator from lp(w) into lp(w,∆) and

∥H∥p,w,∆ ≤ π

sin[(1− α)π/p]

(
1− 1

2(1−α)/p

)
.

Proof. By applying Lemma 3.2 we have ∥H∥p,w,∆ = ∥B∥p, where

bn,k =

(
k

n

)α/p(
1

n+ k
− 1

n+ k + 1

)
.

In Lemma 3.1, take sn = tn = n, and let C,R be defined as before. Then

bn,ks
1/p
n t

−1/p
k =

(
1

n+ k
− 1

n+ k + 1

)(n
k

)(1−α)/p

.

Write M = π
sin[(1−α)π/p]

(
1− 1

2(1−α)/p

)
, it follows that R ≤ M and similarly C ≤ M . Hence

∥H∥p,w,∆ ≤ M , which proves the theorem. �

Theorem 3.4. Let H be the Hilbert operator and p > 1. If vn = 1
np+α and wn = 1

nα for

all n, where 1/p− 1 < p+ α < 1/p. Then H is a bounded operator from lp(v) into lp(w,∆)

and

∥H∥p,v,w,∆ ≤ π

sin(βπ)

(
1− 1

2β

)
,

where β = 1/p− p− α.

Proof. The proof is essentially same as that of Theorem 3.3 and so we omit the details. �

4. Lower bounds of matrix operators from lp(v) into lp(w,∆)

In this part of the study, we consider the lower bound, L, of the form

∥Ax∥p,w,∆ ≥ L∥x∥p,v,

for all non-negative decreasing sequence x. The constant L is not depending on x and we

seek the largest possible value of L. We are looking for the problem of finding the lower

bound of certain matrix operators from lp(v) into lp(w,∆).

We begin with a lemma, which is the key to prove the main theorem of this section.

Lemma 4.1 ([7], Lemma 2). Suppose p ≥ 1 and sequences (ai) and (xi) are nonnegative,

and that (xi) is decreasing and tends to zero. If An =
∑n

i=1 ai, A0 = 0 and Bn =
∑n

i=1 aixi,

then

(i) Bp
n −Bp

n−1 > (Ap
n −Ap

n−1)x
p
n for all n;

(ii) if
∑∞

i=1 aixi is convergent, then( ∞∑
i=1

aixi

)p

>
∞∑

n=1

Ap
n(x

p
n − xp

n+1).

Theorem 4.1. Let p ≥ 1 and (vn), (wn) be non-negative sequences, and that
∑∞

n=1 vn = ∞.

Also let A = (an,k) be a matrix operator from lp(v) into lp(w,∆) such that an,k ≥ an+1,k

for all n, k. If Vn =
∑n

k=1 vk and Sn =
∑∞

i=1 wi (
∑n

k=1(ai,k − ai+1,k))
p
then

∥Ax∥p,w,∆ ≥ L∥x∥p,v,
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for all non-negative decreasing sequence x ∈ lp(v), where

Lp = inf
n

Sn

Vn
.

This constant is the best possible.

Proof. Let x be in lp(v) such that x1 ≥ x2 ≥ · · · ≥ 0 and ∥x∥p,v = 1. The condition∑∞
n=1 vn = ∞ implies that limn→∞ xn = 0. Applying Lemma 4.1 and Able’s identity, we

have

∥Ax∥pp,w,∆ =

∞∑
n=1

wn

( ∞∑
k=1

(an,k − an+1,k)xk

)p

≥
∞∑

n=1

wn

∞∑
i=1

(
i∑

k=1

(an,k − an+1,k)

)p

(xp
i − xp

i+1)

=

∞∑
i=1

Si(x
p
i − xp

i+1) ≥ Lp
∞∑
i=1

Vi

(
xp
i − xp

i+1

)
= Lp∥x∥pp,v.

So ∥Ax∥pp,w,∆ ≥ Lp∥x∥pp,v. To show that the above constant is the best possible, we take

x1 = x2 = · · · = xn = 1, and xk = 0 for all k ≥ n+1, then ∥x∥pp,v = Vn and ∥Ax∥pp,w,∆ = Sn,

which finishes the proof of the theorem. �

The problem of finding lower bound for the Copson matrix operator for certain weights

is solved in the following.

Theorem 4.2. Let p ≥ 1 and (vn), (wn) be non-negative sequences, and that
∑∞

n=1 vn = ∞.

If C is the Copson operator, then

∥Cx∥p,w,∆ ≥ L∥x∥p,v,

for all non-negative decreasing sequence x, where

Lp = inf
n

w1 +
w2

2p + · · ·+ wn

np

Vn
.

In particular

(i) if Vn = np+1 and wn = n2p for all n, then Lp = 1
p+1 ;

(ii) if vn = 1 and wn = np for all n, then L = 1;

(iii) if vn = wn for all n, then L = 0.

Proof. With the notation of Theorem 4.1, Sn =
∑n

k=1
wk

kp which completes the proof of the

first part. If wn = n2p and Vn = np+1 then

Lp = lim
n→∞

(
1
n

)p
+
(
2
n

)p
+ · · ·+

(
n
n

)p
n

=

∫ 1

0

xpdx =
1

p+ 1
.

The remaining of the proof is obvious. �

Write tn =
∑∞

i=1 wi(ai,n − ai+1,n)
p, since sn = Sn − Sn−1 we have the following

statement.

Proposition 4.1. If v, w and A satisfy the conditions of Theorem 4.1, and

an,k − an+1,k ≥ an,k+1 − an+1,k+1,

for n, k = 1, 2, · · · , then
Lp ≥ inf

n
[np − (n− 1)p]

tn
wn

.
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Proof. See Proposition 1 of [7]. �

Finally, we compute the lower bound of Hilbert operator from lp(w) into lp(∆, w).

Theorem 4.3. Suppose that wn = 1
nα and vn = 1

np+α for all n, where 0 ≤ p+ α ≤ 1 and

p ≥ 1. If H is the Hilbert operator, then

∥Hx∥p,w,∆ ≥ L∥x∥p,v,

for all non-negative decreasing sequence x, where

Lp =
∞∑
i=1

1

iα(i+ 1)p(i+ 2)p
.

Proof. We have

Lp ≥ inf
n
[np − (n− 1)p]

tn
vn

≥ inf
np−1

vn
tn = inf

n
n2p+α−1

∞∑
i=1

wi(hi,n − hi+1,n)
p

= inf
n

n2p−1
∞∑
i=1

1(
i
n

)α
(i+ n)p(i+ n+ 1)p

.

Now let Ek = {i ∈ N : (k − 1)n ≤ i ≤ kn} for k = 1, 2 · · · . For i ∈ Ek, we have(
i

n

)α

(i+ n)p(i+ n+ 1)p ≤ kαn2p(k + 1)p(k + 2)p,

so ∑
i∈Ek

1(
i
n

)α
(i+ n)p(i+ n+ 1)p

≥ n

kαn2p(k + 1)p(k + 2)p
.

Hence

Lp ≥
∞∑
k=1

1

kα(k + 1)p(k + 2)p
.

Since ∥e1∥p,v = 1 and

∥He1∥pp,w,∆ =
∞∑

n=1

1

nα(n+ 1)p(n+ 2)p
,

and also L = infx∈lp(v)
∥Hx∥p,w,∆

∥x∥p,v
≤ ∥He1∥p,w,∆

∥e1∥p,v
, which concludes the proof. �
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