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THE NORMS AND THE LOWER BOUNDS FOR MATRIX OPERATORS
ON WEIGHTED DIFFERENCE SEQUENCE SPACES

Davoud FOROUTANNIA!, Hadi ROOPAEI?

This paper is concerned with the problem of finding upper bounds and lower
bounds of matriz operators from ly(v) into lp(w, A), where (vy) and (wyn) are two non-
negative sequences. Moreover, the norms and lower bounds of matriz operators such as
quasi-summability matrices and Hilbert operator are computed.
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1. Introduction

Let p > 1 and w denote the set of all real-valued sequences. The space [, is the set of
all real sequences © = (z,) € w such that
I~ 1/p

lzlly = | D lzal” | < oo

n=1
If w = (w,) € w is a non-negative sequence, we define the weighted sequence space [,,(w) as
follows:

o0
lp(w) = €Tr = ("L‘n) cw : an|xn|p < o0 5
n=1

with norm, ||.||p,w, which is defined in the following way:
1/p

o0
12]lp,w = Z Wy |z |?
n=1

The idea of difference sequence spaces was introduced by Kizmaz [9]. Similarly, we define
the sequence space I,(w, A) as below:

o0

ly(w,A) = x:(xn)ew:an|xn—mn+1|p<oo ,

n=1
with semi-norm, ||.|[p.w,a, which is defined by

o0 p

|2 llpwa = | D walwn — zaral?

n=1
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Note that this function will be not a norm, since if z = (1,1,1,...) then |||y w,a = 0 while
xz # 0. It is significant that in the special case w,, = 1 for all n, we have l,(w) = [, and
Ly(w, A) = 1,(A).

Let (v,) and (w,) be two non-negative sequences. In this paper, we shall consider
the inequality of the form

[AZ]|p,w,a < Ull2|p,0,

for all sequence x € l,(v). The constant U is not depending on z, and we seek the smallest
possible value of U. We write ||Al|p4,w,a for the norm of A as an operator from [,(v) into
ly(w,A), and ||Al|p,w,a for the norm of A as an operator from I,(w) into I,(w,A), and
|Allp,a for the norm of A as an operator from [, into I,(A), and ||Al|, for the norm of A as
an operator from /, into itself.
The problem of finding the upper bounds of certain matrix operators on the sequence spaces
lp(w), d(w,p) and bv, are studied before in [5], [6], [8] and [10]. In the study, we examine
this problem for matrix operators from I,(v) into I,(w,A) and we consider certain matrix
operators such as quasi-summability matrices and Hilbert operator.

Let A be a matrix operator with non-negative entries from [,(v) into l,(w, A). The
other purpose of this study is to consider the inequality of the form

[ Az]

paw,A = L||$||p,v7

for all non-negative decreasing sequence x € [, (v), where L is a constant not depending on
x. Also we seek the largest possible value of L.

The problem of finding the lower bounds of matrix operators was introduced by
Lyons [11], and has been intensively studied on [, by Bennett [1,2,3]. Jameson [6] was
computed the lower bounds of operators on Lorentz sequence space d(w,1). Then Jameson
and Lashkaripour [7] were examined lower bounds of certain matrix operators on I, (w) and
d(w, p). More recently, this problem has been developed in the block sequence space [5]. In
this paper, we study the problem of finding the lower bound for matrix operators from ,(v)
into {,(w,A) and investigate certain matrix operators such as quasi-summability matrices
and Hilbert operator.

2. The norm of matrix operators from /;(v) into Iy (w, A)

In this section, we tend to compute the norm of operators from I (v) into I (w, A).
We may begin with the following theorem which is essential in the study.

Theorem 2.1. Let A = (an k) be a matriz operator and (vy), (wy) be two non-negative
sequences. If supy, Z—: < 00 where up = Y o0 Wylank — ant1k| for all k, then A is a
bounded operator from ly(v) into I (w,A) and

U
1Al = sup —=.
n n

In particular if v, = w, = 1 for all n, then A is a bounded operator from ly into l1(A) and
[All1.a = sup,, un.
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Proof. Let M = sup,, v and (z,,) be in l1(v). We have

) oo 00 o
||A$||1,w,A - Z W, Z(an,k - an-i—l,k)xk S Z an|an,k — Anp41,k |$k|
n=1 k=1 n=1 k=1

oo o0
= > uklak] <MD vklak] = Mz,
k=1 k=1

which says that || A]|1,4,w,a < M. Conversely, we take x = e,, which e,, denotes the sequence
having 1 in place n and 0 elsewhere, then ||z||1,, = v, and ||Az|1,4,a = w, which proves
that || Al|1,0,w,a = M. O

We say that A = (ay ) is a quasi-summability matrix if it is an upper-triangular
matrix, i.e. a,r =0 for n > k, and ZZ:I an.; = 1 for all k. In the following, we consider

the norm problem for quasi-summability matrix operators.

Theorem 2.2. Let A = (an k) be an upper-triangular matriz with non-negative entries and
(wy) be an increasing sequence. If the columns of A are decreasing, i.e.

Ak > Qnt1 ks (n,k=1,2,--)
and M = supy, a1, < 0o, then A is a bounded operator from l1(w) into l1(w,A) and
[All1w.a < M.
In particular if A is a quasi-summability matriz, then ||All1,0.4 = 1.

Proof. According to above notation
k—1
Up = 5 W (An ks — Ont1,k) + Wk -

n=1

Since the sequences (wy,) is increasing

kS

—1
Z(an,k — Apt1,k) + Qg = a1k,

n=1

UL
ig
Wi

so by applying Theorem 2.1, we have ||A|1,w,a < M. In particular if A is a quasi-

summability matrix, we deduce that ||A||1,w,a < 1. Using the fact that ||Aei|1,wa =
lle1]]1,0 = w1 finishes the proof. O

Next, we identify a class of quasi-summability matrices for which the norm problem
is very easy. If (a,) is a non-negative sequence with a; > 0 and A,, = a1 + -+ + ay, the
matrix M, = (an k) is defined as follows:

Qn <k
= A, S 1
On.k {0 n> k. (1)

M, is the transpose of the weighted mean matrix.

Corollary 2.1. If (ay,) is decreasing and (wy,) is increasing, then M, is a bounded operator
from 1 (w) into Iy (w,A) and
[ Mallaw,a = 1.
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Note that M, is called the Copson matrix when a,, = 1 for all n, hence the Copson
Matrix C = (¢, 1) defined by

Cn.k = {

Corollary 2.2. Let C be the Copson operator and (v,) and (w,) be two non-negative
sequences. If supy, 1= < oo, then C' is a bounded operator from li(v) into Iy (w, A) and

forn<k
forn > k.

O ==

Wi
1Cl1,0,w,0 = SUp
Proof. Since
o0
Uk = > Wn(Cnk = Cnt1k) = %
n=1
by applying Theorem 2.1, we obtain the desired result. |

In the next statement, we try to compute the norm of the certain matrix operators
from Iy into I;(A).

Theorem 2.3. Suppose that A = (an k) is a matriz with non-negative entries and M =
supy, a1, < 0o. If the columns of A are decresing i.e.

Gn,k > An+1,k>y (’I’L,k‘ = 1527)
and lim,,_, o n x =0, for all k. Then A is a bounded operator from Iy into I1(A) and

lAll1,Ao = M.

In particular if A is a quasi-summability matriz, then ||Al1,a = 1.

Proof. Since

oo

up = (Gnk = Gni1k) = aL,
n=1
by using Theorem 2.1, we obtain the desired result. O

We recall the Hilbert operator H which is defined by the matrix:

1
R
Corollary 2.3. If H is the Hilbert operator, then H is a bounded operator from ly into
I1(A) and |H|1,a = %

P i (n,k=1,2,---).

In the following, we try to solve the problem of finding the norm of the Hilbert
matrix operator from [y (v) into I;(w, A). For this purpose, the same as the most studies of
the Hilbert operator, it uses the well-known integral

/°° 1 ™

dt = —1
0 t*(t+c) c® sin am
where 0 < o < 1, (see [4], page 285).

Theorem 2.4. Let H be the Hilbert operator. If w,, = n%! for all n, where 0 < a < 1, then
H is a bounded operator from li(w) into l1(w,A) and

™ 1
1 s < = (1 - ) .
sin am 2
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Proof. According to above notation

i 1 1 1 </°O 1 1 1 "
U = —_— —_ R _
" i \it+n i+n+1) 7 Jo t*\t+n t4+n+l

_ T 1 1
- sinam \n® (n+1)«)’

SO

hence ||H||1,w,a < == (1 — L) |

sin am

3. Upper bounds of matrix operators from [,(v) into I,(w, A)

In this section the problem of finding the norm of certain matrix operators such as the
transpose of the weighted mean, Copson and Hilbert from [, (v) into [, (w, A) are considered.
We first give the Schur’s Theorem and a lemma which are essential in the study.

Lemma 3.1 ([8], Lemma 2.2). Let p > 1 and B = (by ;) be a matriz operator with by, j > 0
forn,k=1,2,---. Suppose that (s,) and (t) are two sequences of strictly positive numbers
such that for some C', R

si/”an,kt;l/p <R (forn=>1), tfcp_l)/p Z bn,ksg*p)/p <C (fork=>1).

k=1 n=1
Then ||B|, < RP~V/pC1/p,
Lemma 3.2. Let p > 1 and (v,), (w,) be two non-negative sequences. If A = (an k) and

1/p
B = (byk) are two matriz operators such that b, i, = (15—:) (@nk — Gnt1k), then

[Allp,0,w.8 = | Bllp:

Hence, if B is a bounded operator on l,, then A will be a bounded operator from l,(v) into
Ip(w, A).

Proof. For every x € l,(v), we define y = (y1,) by yx = v,/"y,. It is obvious that [, =
1y, and
P
Al» = sup % = sup Dot Wi 12y (@n g — ant1k)k]”
= - o0
A setyv)  Zlpo sel, (o) k=1 Uklexl?
T [y WP (ans—anern), |
T | ey, Byl
~ . = sup LV e
y€El, Z |yk‘p yElp Hy”P
k=1

]

In the following, we investigate the norm of the transpose of the weighted mean
matrix.
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Theorem 3.1. Let p > 1 and (ay) be a decreasing sequence such that a; = as = 1 and
P
limy, o0 A, = 00, where A, = Y7 a;. If M, is defined as in (1) and v, = (M> for

an

all n, with Ay = 1, then M, is a bounded operator from l,(v) into l,(A) and
||Ma||p,v71,A =1
Proof. By applying Lemma 3.2 we have || M, p.v.1,a = || B||,, where

ag(an—0n41) forn <k

Ak,%Ak
b = ay —
n,k T forn=k
0 forn > k.

In Lemma 3.1, take s,, = t,, = 1 and let C, R be defined as before. Since

= a? > ar(an — any1)
S - e 3 et
— A4, it Ap_1 Ay
a% > 1 1 ai Qp — Qpt1
= A, ) 2 (A“AJAMA,L+ A,
k=n-+1

we have > 7, by, =1 and

[eS)
Z [ Qn An+1

n,k — - )
1 Anfl An

forn > 1, s0 R < 1. Also, since

- a (an — any1) a; aja
Z Z k(Gn — Gp41 ; 10k

bn,k = ~ nt + k = <1
n=1 n=1

Ap_1Ay Ap1 Ay A1 Ay~

we deduce that C' < 1, so | Myllp.v1,.a < 1. Now let z = (1,0,0,---), we have [|z|,, =1
and ||Myx||p.a = 1. So ||Mg||pv.1,a > 1, this completes the proof of the theorem. O

Now we are ready to compute the norm of the Copson matrix operator.

Theorem 3.2. Suppose that p > 1 and (v,), (wy,) are two non-negative sequences. If C is
the Copson matriz operator and

1 n 1/p
M = sup — (w) < 00,
n T Un

then ||C]

pww,A =M. In particular if v, = w, for all n, we have ||C||pw.a = 1.

Proof. By applying Lemma 3.2 we have ||C||,.4,w,a = || B||p, where

1w 1/p
b, = H(ﬁ) forn=k

0 otherwise.
In Lemma 3.1, take s,, = t, = 1 and let C, R be defined as before. Since the matrix B is
diagonal, we deduce that R < M and C' < M, so ||C||p,vw,a < M. Now let = e,,, we have

|2[lp,0 = vi/? and [|C||p,w.a = wi/"/n. So ||C]

pwow,A = M, which concludes the proof. [

Finally, we consider the norm of the Hilbert matrix operator.
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Theorem 3.3. Let H be the Hilbert operator and p > 1. If w, = n% for all n, where
1-p<a<l, then H is a bounded operator from l,(w) into l,(w,A) and
s 1
H P — R
Wty < oo (1= 77
Proof. By applying Lemma 3.2 we have ||H||p.w.a = ||B||p, where
. B E a/p 1 B 1
mE T\ n n+k nt+k+1)°

In Lemma 3.1, take s, = t,, = n, and let C, R be defined as before. Then

_ 1 1 ny\ (1-a)/p
bn l/pt 1/]3 == - (7> .
kSn ntk n+k+1/)\k

Write M = s (1 — 502575 ), it follows that R < M and similarly C' < M. Hence
|H|lp.w,a < M, which proves the theorem. O

Theorem 3.4. Let H be the Hilbert operator and p > 1. If v,, = np% and w, = n% for
alln, where 1/p—1<p+a < 1/p. Then H is a bounded operator from l,(v) into l,(w, A)
and

T 1
H )W S N 1_7 )
| pv,w,A sin(Br) ( 25)
where B =1/p—p— a.

Proof. The proof is essentially same as that of Theorem 3.3 and so we omit the details. O

4. Lower bounds of matrix operators from [,(v) into [,(w, A)
In this part of the study, we consider the lower bound, L, of the form
[Az]lpw,a = Lil2|p,0,

for all non-negative decreasing sequence x. The constant L is not depending on = and we
seek the largest possible value of L. We are looking for the problem of finding the lower
bound of certain matrix operators from [, (v) into I, (w, A).

We begin with a lemma, which is the key to prove the main theorem of this section.

Lemma 4.1 ([7], Lemma 2). Suppose p > 1 and sequences (a;) and (z;) are nonnegative,
and that (z;) is decreasing and tends to zero. If A, = > a;, Ag =0 and B, = Y | a;x;,
then

(i) B — BY | > (A2 — AP _)aP for all n;

(id) if Doy a;z; is convergent, then

oo p o0
(Z aixi> > Z AL (a7, — 2 4)-
=1 n=1

Theorem 4.1. Let p > 1 and (vy,), (wy,) be non-negative sequences, and that - | v, = cc.
Also let A = (an,k) be a matriz operator from l,(v) into l,(w, A) such that anr > aniik
foralln k. If Vi, =30 ok and Sp =i wi (O p_1(aik — aiv1,))” then

[Az]lpw,a = Lll2|p,0,
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for all non-negative decreasing sequence x € l,(v), where
S,
v

3

LP = inf

—
3

This constant is the best possible.

Proof. Let x be in [,(v) such that 1 > zo > --- > 0 and ||z||,» = 1. The condition

3>°°° v, = oo implies that lim,, ,o 2, = 0. Applying Lemma 4.1 and Able’s identity, we

n=1
have

[e’e) e’} P
Aellnn = S u (z<>)

n=1 k=1
e} e} i p
> (ke — i) | (@ —a%,)
= Wn, Gn,k An41,k xz,; -TZ+1
n=1 i=1 \k=1

oo o0
= Zsi(xf - fo) > LP Z Vi (xf - fo) = Lp”ng,w
i=1 i=1
So [|Az|]} ,, o = LP||z|l5 ,. To show that the above constant is the best possible, we take
ry =1y ==z, =1,and xy = 0 for all k > n+1, then [|z[]} , =V}, and [|Az[]? ,, » = Sh,
which finishes the proof of the theorem. O

The problem of finding lower bound for the Copson matrix operator for certain weights
is solved in the following.

Theorem 4.2. Letp > 1 and (v,), (wy,) be non-negative sequences, and thaty > | v, = co.
If C is the Copson operator, then

chllp,w’A > Lz

p,U»
for all non-negative decreasing sequence x, where
I R

LP = inf ne
in A

In particular

(i) if Vi, = nPT and w,, = n* for all n, then LP = ﬁ;
(i) if v, = 1 and w, = nP for alln, then L = 1;

(1) if v, = wy, for all n, then L = 0.

Proof. With the notation of Theorem 4.1, S, = >, _,; & which completes the proof of the
first part. If w, = n?? and V,, = n?! then

1\P 2\P . n\P 1
oy WG G,
0

The remaining of the proof is obvious. |
Write ¢, = > ooy wi(@in — @it1,0)P, since s, = S, — S,_1 we have the following
statement.

Proposition 4.1. If v, w and A satisfy the conditions of Theorem 4.1, and

Qn,k — On+1,k Z Gn,k+1 — An+1,k+1,

forn,k=1,2,---, then
tn
L? > inf[n? — (n — 1)P]—.
n W,



The norms and the lower bounds for matrix operators on weighted difference sequence spaces 159

Proof. See Proposition 1 of [7]. O
Finally, we compute the lower bound of Hilbert operator from [,(w) into I,(A, w).

Theorem 4.3. Suppose that w, = n% and v, = np% for all n, where 0 < p+a <1 and
p>1. If H is the Hilbert operator, then

[H[lpw,a > Ll|z|p0,

for all non-negative decreasing sequence x, where

> 1
LP = .
; (i + 1)P(i 4 2)P

Proof. We have

np~1

L? > inf[n? — (n— 1)p]t—" > inf

n Un Un

t, = inf p2rto—1 Z Wi (R — Rig1,n)?
i=1
i 1
= infn?~! , .
HAD DY Es R IR

Nowlet B, ={i e N : (k—1)n<i<kn}fork=1,2---. For i € E}, we have
(Z> (i +n)P(E+n+1)P < En?P (k4 1)P(k + 2)?,
n

SO

1 n
2 (5)" G+ n)P(i+n+1)p = ken?(k 4+ 1)P(k + 2)P"

i€EEL \n

Hence

> 1
P > .
- kzzl kx(k + 1)P(k +2)P

Since ||e1|lp» =1 and

= 1
[Hel) wa = )
pyw,A ; n®*(n+ 1)P(n+ 2)P
and also L = inf ¢ () “fﬂi‘ll‘::’A < Hh"lzlll“li’y’:ﬁ, which concludes the proof. O
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