

VALIDATION OF A METHOD FOR DETERMINATION OF ANTIMONY IN DRINKING WATER BY ICP-OES

Luiza CAPRA¹, Mihaela MANOLACHE², Ion ION^{3*}, Alina Catrinel ION⁴

The method for the determination of Sb in drinking water, now recognized at European and international level is at the moment not validated, so there are no information about its performances. The purpose of this study is to characterize the proposed method for determining Sb, according to SR EN ISO 11885/2009 in a laboratory that meets quality management system, and to demonstrate its suitability for water quality control in accordance with EU Directive 1998/83/EC si law 311/2004. Relevant performance parameters were evaluated: linearity 0.9992, limit of detection 1.13 $\mu\text{g L}^{-1}$, limit of quantification 3.38 $\mu\text{g L}^{-1}$, precision (repeatability) 0.55 $\mu\text{g L}^{-1}$, accuracy 0.31 $\mu\text{g L}^{-1}$, recovery 103% and measurement uncertainty 1.7 $\mu\text{g L}^{-1}$. The studied method can be successfully applied for the quality control of drinking water.

Keywords: antimony, drinking water, validation, ICP-OES

1. Introduction

The toxicity of antimony and its compounds has been of increased concern worldwide [1]. Exposure to antimony and its compounds causes irritation of the respiratory tract, leading to pneumoconiosis, and can induce other health problems [2]. The International Agency for Research on Cancer has classified Sb₂O₃ as possibly carcinogenic to humans (Group 2B) [3]. Long exposures at concentrations higher than 9 mg/m³ cause irritation of eyes, skin and lungs. Exposure at less higher concentrations of 2 mg/m³ can cause problems of lungs, heart and stomach [3, 4].

Antimony is toxic even at low concentration levels. It comes from both natural processes and human activity. Its content in rivers is typically lower than 1 $\mu\text{g L}^{-1}$ and does not usually exceed 0.5 $\mu\text{g L}^{-1}$ in drinking water. Sb concentration has considerably increased in water systems over the last decades. It

¹ PhD student, Faculty of Applied Chemistry and Material Science, University POLITEHNICA, of Bucharest, and Chem., National Research & Development Institute for Chemistry & Petrochemistry ICECHIM, Bucharest, Romania, e-mail: luizacapra@yahoo.com

² Eng., National Research & Development Institute for Chemistry & Petrochemistry ICECHIM, Bucharest, Romania, e-mail: manol_mihaela@yahoo.com

^{3*} Prof., Faculty of Applied Chemistry and Material Science, University POLITEHNICA, of Bucharest, Romania, corresponding author: i_ion2000@yahoo.com

⁴ Prof., Faculty of Applied Chemistry and Material Science, University POLITEHNICA, of Bucharest, Romania, e-mail: ac_ion@yahoo.com

is mainly related to copper ore processing industry and coal and municipal waste combustion [5].

According to Law no. 311/2004, drinking water is defined as any water in its natural state, or after treatment, used for drinking, food preparation, or other domestic purposes, regardless of its origin and whether it is supplied through distribution networks, tanks or distributed in bottles or in other containers [6].

Bottled water is considered an important element in the human diet and plays a major role for the intake of a number of nutritional and toxic trace elements [7].

Therefore, regulations were developed by international, national and non-governmental organizations to define the quality of water that is safe and acceptable to consumers [8].

The World Health Organization (WHO) [9] establishes as maximum admissible concentration of antimony in drinking waters $20 \mu\text{g L}^{-1}$ and the United States Environmental Protection Agency (EPA) [10], $6 \mu\text{g L}^{-1}$. Due to acute and chronic toxic effects, its concentration are regulated in drinking water in the United States, Canada, Europe and Japan in the range of values $2 - 6 \mu\text{g L}^{-1}$ [5]. EU Directive 2009/54/EC, Natural mineral water [11] and EU Directive 1998/83/EC, Drinking water [12] establishes as maximum admissible concentration of antimony in drinking waters a value of $5 \mu\text{g L}^{-1}$.

In Romania, the legislation governing maximum permissible concentration of Sb in drinking and mineral water is limited at $5 \mu\text{g L}^{-1}$, by Law No. 311/2004 Drinking water [6] and Government decision No. 532/2010, Natural mineral water [13].

Analytical methods capable to detect low concentrations are necessary for determining trace elements in drinking water (bottled mineral and tap water) [14].

Table 1

Methods of analysis of Sb in drinking water

No.	Matrix	Method	Limit of detection ($\mu\text{g L}^{-1}$)	Reference
1.	Drinking water	ICP-QMS	0.01	[14]
2.	Drinking water	HG-ICP-OES	1.3	[15]
3.	Mineral water	ICP-QMS	0.002	[16]

The purpose of this study is to characterize the proposed method for determining Sb, according to SR EN ISO 11885/2009 [17] in a laboratory that meets quality management system and to demonstrate its suitability for water quality control according to EU Directive 1998/83 / EC and law 311/2004. The literature shows no interlaboratory collaborative study to determine the performance of this method.

2. Experimental

2.1. Equipment

An inductively coupled plasma optical emission spectrometer with axial and radial viewing plasma configuration (ICP-OES, Perkin Elmer, USA, Model Optima 2100 DV) operating at a 40 MHz free-running ratio-frequency was utilized. The nebulisation system was equipped with a PEEK Mira Mist® nebulizer coupled to a Baffled Cyclonic spray chamber.

The radiation separator, equipped with an Echelle grating, had a spectral range of 165–800 nm and a resolution of 0.009 nm at 200 nm.

2.2 Reagents

The reagents used were standard solution Quality Control Standard 21, of 100 mg/L concentration, by Perkin Elmer. Ultrapure water with a resistivity of 18.2 MΩ cm, produced by a EASY pure RoDi, Barnstead, USA, was employed for the preparation of all standard solutions.

2.3 Procedure

Plasma view mode is axial and spectral line was found at $\lambda=206,836$ nm. For the determination of Sb in drinking water the calibration curve was obtained by diluting the stock of 100 mg L⁻¹, Quality Control Standard 21, for preparing calibration standard solutions of: 2; 5; 10; 20; 30 μ g L⁻¹. The solutions were analyzed automatically and the calibration curve was obtained. The drinking water samples were injected and analyzed in the same manner as the standard solutions, then there were processed the results. The operating conditions are shown in Table 2.

Table 2

Operating Conditions for Optima 2100 DV ICP-OES

No.	Parameter	Value
1.	Plasma viewing mode	<i>Axial</i>
2.	RF incident power	1.25 kW
3.	Nebulizer argon flow rate	0.75 mL/min
4.	Plasma argon flow rate	15 mL/min
5.	Auxiliary argon flow rate	1.5 mL/min
6.	The flow rate of the peristaltic pump	1.5 mL/min
7.	Total time for analysis	cca. 110 sec

The relevant performance parameters for this method were studied:

- linearity;
- limit of detection, limit of quantification;
- precision (repeatability);
- accuracy;
- recovery;

- measurement uncertainty.

3. Results and Discussion

3.1 Linearity

In this study, linearity was evaluated from the regression function of calibration using five standards in the $2 - 30 \mu\text{g L}^{-1}$ concentration range, using a stock standard solution Quality Control Standard 21, 100 mg L^{-1} (Perkin Elmer, USA).

The equation of the calibration curve is presented in Fig. 1. Linearity was assessed from the correlation coefficients of calibration curves and it was considered acceptable when $r \geq 0.997$. [18]

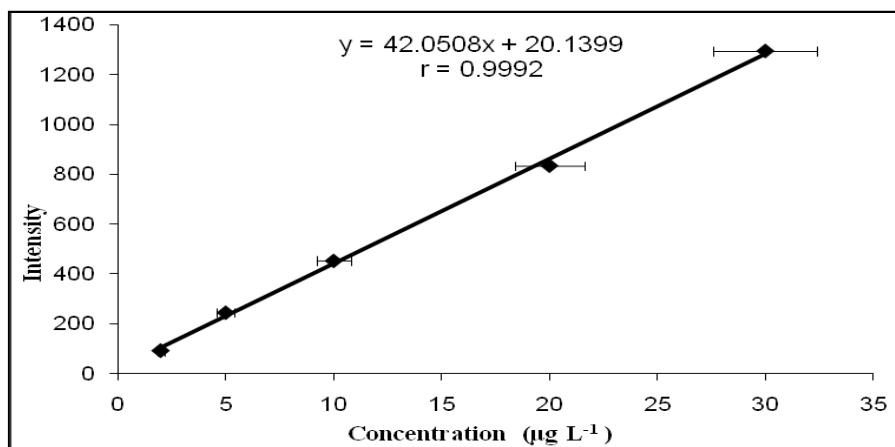


Fig. 1. Calibration curve in the concentration range of $2 \mu\text{g L}^{-1}$ to $30 \mu\text{g L}^{-1}$ Sb

3.2 Limit of detection (*LoD*) and quantification (*LoQ*)

Limit of detection (*LoD*) is the smallest amount of concentration of analyte in the sample that can be reliably distinguished from zero, while *LoQ* (limit of quantification) is the smallest amount and concentration of an analyte in the sample that can be determined with an established fidelity [17].

For determination of *LoD* and *LoQ*, ten measurements of a standard solution with the lowest concentration of the calibration curve, $2 \mu\text{g L}^{-1}$ were performed [6] and it was determined the standard deviation (s_r) of the set of measurements.

The method detection limit and quantification was determined with formulas [17]:

$$(LoD = 3 \times s_r) \quad (1)$$

$$(LoQ = 3 \times LoD) \quad (2)$$

The maximum admissible concentration (CMA) for Sb in drinking water according to Law 311 of 28 June 2004 [6] is $5 \mu\text{g L}^{-1}$.

The results of LoD and LoQ are presented in Table 3 and meet the imposed acceptance criteria, according with the same law.

Table 3

Obtained values for detection and quantification limits in drinking water measurements and acceptance criteria

Average ($\mu\text{g L}^{-1}$)	s_r ($\mu\text{g L}^{-1}$)	LoD ($\mu\text{g L}^{-1}$)		LoQ ($\mu\text{g L}^{-1}$)	
		experi- mental	criterion LoD = 25% CMA	experi- mental	criterion LoQ = 75% CMA
2.16	0.38	1.14	1.25	3.42	3.75

3.3 Precision (Repeatability)

Experimental data for method repeatability was obtained by analyzing 10 samples of drinking water with concentrations closed to CMA in such conditions - same method, same analyst, same equipment, same day.

To demonstrate precision (repeatability), evaluation criteria are imposed by law 331 of 28 June 2004 [6]. The results and evaluation criteria are presented in Table 4, and meet the acceptance criteria.

Table 4

Repeatability Sb data for drinking water and acceptance criteria

Average value ($\mu\text{g L}^{-1}$)	CMA ($\mu\text{g L}^{-1}$)	Standard deviation ($\mu\text{g L}^{-1}$)		Relative standard deviation, RSD (%)	
		measured	criterion of precision = 25% CMA	measured	criterion
11.1	5	0.55	1.25	4.98	10

3.4 Accuracy

In this paper accuracy was determined as difference (δ) between the average concentrations for the eight standard solutions of $10 \mu\text{g L}^{-1}$ concentration, closed to CMA, prepared by dilution from stock solutions, Quality Control Standard 21, 100 mg L^{-1} , (Perkin Elmer, USA), and the theoretical value of the Sb reference material ($10 \mu\text{g L}^{-1}$).

The results, $\delta = 0.31 \mu\text{g L}^{-1}$, meet the acceptance criteria according to Law 311 of 28 June 2004 [6], $\delta \leq 1.25 \mu\text{g L}^{-1}$: accuracy = 25% CMA.

The percentage recovery for drinking water, according to SR EN ISO 11885: 2009 [17] is in range between 92% \div 104%.

In our study, the percent recovery of 103 %, calculated as the ratio of the average of 8 measurements of the standards and their declared values meet the acceptance criteria.

3.5. Uncertainty

The significant uncertainty sources affecting the measured concentration identified are presented in Table 5.

Table 5

Uncertainty budget

Components $u(x)$	Sources	Value	U.M.	Standard uncertainty	Relativ standard deviation
$u(c)$	Calibration curve	11.09	$\mu\text{g L}^{-1}$	0.57	0.0515
$u(\text{Rep})$	Repeatability	11.09	$\mu\text{g L}^{-1}$	0.55	0.0495
$u(\delta)$	Accuracy	10.31	$\mu\text{g L}^{-1}$	0.31	0.0208
$u(P)$	Standard purity	1	-	0.0029	0.0029

The uncertainty of determining antimony concentration based on the calibration curve, u_c is determined by formula [19]:

$$u_{(c)} = \frac{S}{B_1} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{(c_o - c_{med})^2}{S_{xx}}} \quad (3)$$

$$\text{where: } S_{xx} = \sum_{j=1}^n (c_j - c_{med})^2 \quad (4)$$

$$\text{and } S = \sqrt{\left[\frac{\sum_{j=1}^n [A_j - (B_0 + B_1 \times c_j)]^2}{n-2} \right]}^2 \quad (5)$$

in which:

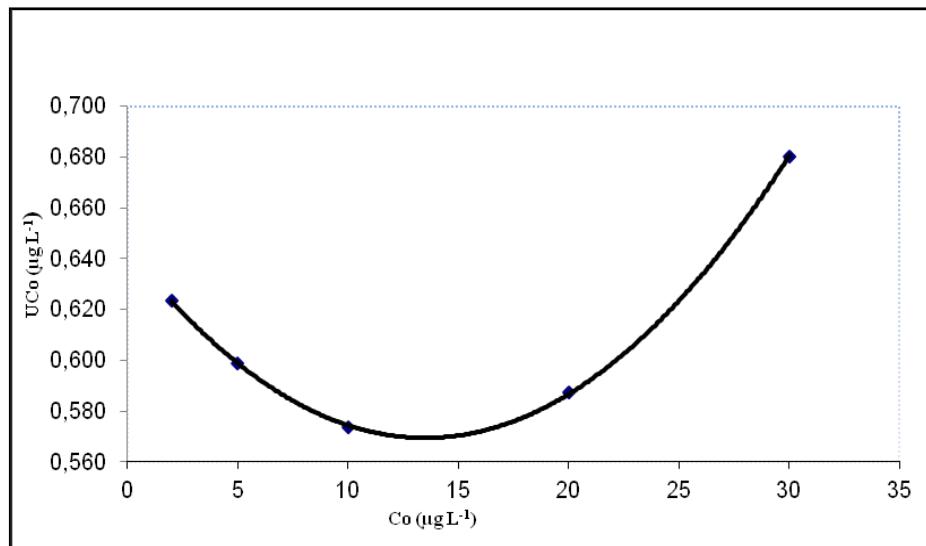
S = residual standard deviation

B_1 = slope calibration

B_0 = intercept

p = number of measurements performed to determine c_0

n = number of standards used for calibration


c_0 = Sb concentration of standard solution j

c_{med} = the average value of standard solutions used for calibration

j = index for the number of standard solutions for calibration

A_j = j^{th} measurement of the intensity of the i^{th} calibration standard

c_j = concentration of the j^{th} calibration standard

Fig. 2. Dependence u_c of concentration

Uncertainties associated to each component were calculated according to the uncertainty propagations rules [19] is:

$$u_c = c \times \sqrt{\left(\frac{u(c)}{c}\right)^2 + \left(\frac{u(\text{Re } p)}{\text{Re } p}\right)^2 + \left(\frac{u(\delta)}{\delta}\right)^2 + \left(\frac{u(P)}{P}\right)^2} \quad (6)$$

Composed uncertainty (u_c) of the method for antimony analysis at a concentration levels (c) of $11.1 \mu\text{g L}^{-1}$, is expressed as a standard deviation having the value $u_c = 0.8 \mu\text{g L}^{-1}$.

As shown in Fig. 3 the largest contribution to the measurement uncertainty comes from the linear regression equation, followed by the uncertainty of repeatability and accuracy. Pure stock standard solutions used in preparing the standard have insignificant contribution.

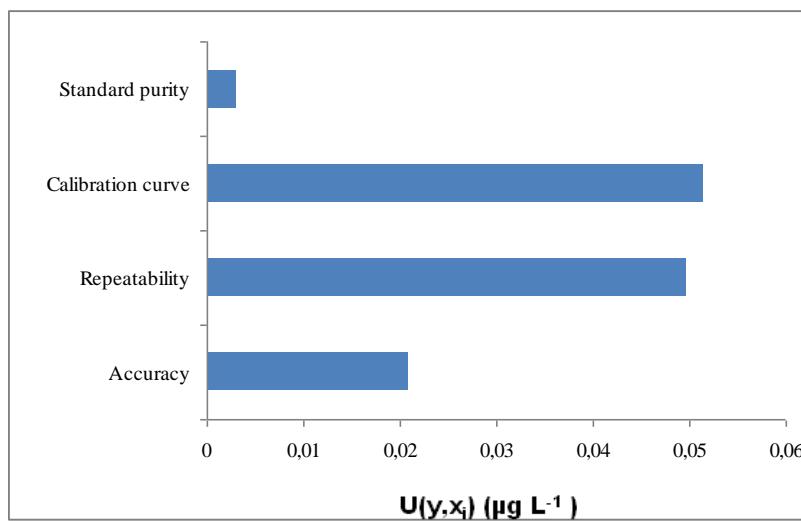


Fig. 3. The share of components on the budget uncertainties

For an average concentration of $11.1 \mu\text{g L}^{-1}$ and a coverage factor $k = 2$, corresponding to a confidence level of 95% the expanded uncertainty of the method is $1.7 \mu\text{g L}^{-1}$.

Based on results obtained from ICP-OES method validation „in house” (Table 6), it was observed that all acceptance criteria are meet.

Table 6
Results from validation of ICP-OES method to determine Sb in drinking water

Parameter	Value	Unit
Liniarity, r	0.9992	-
LoD	1.14	$\mu\text{g L}^{-1}$
LoQ	3.42	$\mu\text{g L}^{-1}$
Repeatability	0.55	$\mu\text{g L}^{-1}$
RSD	4.98	%
Accuracy	0,31	$\mu\text{g L}^{-1}$
Recovery	103	%
Extended uncertainty, ($k=2$, $P=95\%$), [19]	1.7	$\mu\text{g L}^{-1}$

4. Conclusions

The method has provided good validation parameters for linearity, the value of the correlation coefficient $r \geq 0.9992$, the limit of detection $1.14 \mu\text{g L}^{-1}$ and the limit of quantification $3.42 \mu\text{g L}^{-1}$. Repeatability value obtained was $0.55 \mu\text{g L}^{-1}$, the accuracy value also was of $+ 0.31 \mu\text{g L}^{-1}$ and the recovery value obtain

was 103%. The extended uncertainty value was $1.7 \mu\text{g L}^{-1}$ with a confidence level of 95% ($k=2$).

In the absence of interlaboratory collaborative results for determining method performance, the composed uncertainty provides a reasonable estimation of the reproducibility.

In conclusion, the method can be successfully applied for quality control of drinking water as regulated by law 311/2004 [6] si EU Directive 1998/83/EC [12].

R E F E R E N C E S

- [1] *D. Amarasiriwardena, F.C. Wu*, "Antimony: emerging toxic contaminant in the environment", *Microchem. J.*, vol. **97**, 2011, pp. 1–3.
- [2] *S. Sundar, J. Chakravarty*, Antimony toxicity, *Int. J. Environ. Res. Public Health*, vol. **7**, 2010, pp. 4267–4277.
- [3] *** International Agency for Research on Cancer: Lyon, France, 1989. (Available online: <http://www.inchem.org/documents/iarcl47/47-11.html> (accessed on 18 August 2013)).
- [4] *Sergio L.C. Ferreira, Walter N.L. Dos Santos, Ivanice F. Dos Santos, Mario M.S. Junior, Laiana O.B. Silva, Uenderson A. Barbosa, Fernanda A. De Santana, Antonio F. De S. Queiroz D.*, "Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry", *Microchemical Journal*, vol. **114**, 2014, pp. 22–31.
- [5] *Magdalena Jabska-Czapla, Sebastian Szopa, Katarzyna Grygory Aleksandra Lyko, Rajmund Michalski*, "Development and validation of HPLC–ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pawniowice reservoir (Poland) water and bottom sediments variability study", *Talanta*, vol. **120**, 2014, pp. 475–483.
- [6] *** Law Nr. 311 of 28 June 2004 amending and supplementing Law no. 458/2002 on drinking water quality published in the Official Gazette of Romania
- [7] *Nkono, N.A., Asubiojo, O.I.*, "Trace elements in bottled and soft drinks in Nigeria - a preliminary study", *The Science of the Total Environment*, vol. **208**, 1997, pp. 161–163.
- [8] *Cneyt Guler*, "Evaluation of maximum contaminant levels in Turkish bottled drinking waters utilizing parameters reported on manufacturer's labeling and government-issued production licenses", *Journal of Food Composition and Analysis*, vol. **20**, 2007, pp. 262–272.
- [9] *** WHO, Library Cataloguing-in-publication Data Guidelines for Drinking-water Quality, 4th ed., 2011, Geneva.
- [10] *** <http://water.epa.gov/drink/contaminants/index.cfm#two> (accessed on 5 October- 2015)
- [11] *** EEC Directive 2009/54/EC, 2009. Exploitation and Marketing of Natural Mineral Waters. Official Journal of the European Union L164/45/ 26.06.2009.
- [12] ***EU Directive 98/83/EC, 1998. Council directive of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Union L 330 32 5.12.1998.
- [13] *** Government Decision no. 532 of 2 June 2010 amending and supplementing the technical rules of exploitation and marketing of natural mineral waters, approved by Government Decision no. 1020/2005, published in the Official Gazette no. 400/16 June 2010.

- [14]. *Manfred Birke, Clemens Reimann, Alecos Demetriades, Uwe Rauch, Hans Lorenz, Bodo Harazim, Wolfgang Glatte*, "Determination of major and trace elements in European bottled mineral water — Analytical methods", Journal of Geochemical Exploration vol. **107**, 2010, pp. 217–226
- [15]. *A. Tyburska, K. Jankowski, A. Ramsza, E. Reszke, M. Strzelec, A. Andrzejczuk*, "Feasibility study of the determination of selenium, antimony and arsenic in drinking and mineral water by ICP-OES using a dual-flow ultrasonic nebulizer and direct hydride generation", Journal of Analytical atomic Spectrometry. vol. **25**, 2010, pp. 210–214.
- [16]. *Marguí E., Sagué M., Queralt I., Hidalgo M.*, "Liquid phase microextraction strategies combined with total reflection X-ray spectrometry for the determination of low amounts of inorganic antimony species in waters", Anal. Chim. Acta, vol. **786**, 2013, pp. 8– 15
- [17]. ***SR EN ISO 11885/2009 - Water quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP -OES)
- [18]. *Ion Gh. Tanase, Alexandru Pana, Gabriel Lucian Radu. Mihaela Buleandra*, " Validarea metodelor analitice", Editura Printech, 2007.
- [19]. ***"Cuantificarea incertitudinii de masurare in masurarea analitica" Ghid Eurachem/CITAC, Editia a II-a, Editura Ars Docendi, 2002.