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THE ONSET OF TRIPLE-DIFFUSIVE CONVECTION IN A 

WALTERS’ (MODEL B') NANOFLUID LAYER SATURATING 

A POROUS MEDIUM 

 

Gian C. RANA1,*, Ramesh CHAND2 and Veena SHARMA3 

The onset of triple-diffusive convection in a viscoelastic nanofluid layer 

heated from below and salted from above and below in porous medium is studied. 

Walters’ (model B') fluid model is used to express the rheological behavior of 

viscoelastic nanofluid. For porous medium, Darcy model is employed. In the 

governing equations, the effects of thermophoresis and Brownian diffusion 

parameters are also introduced through Buongiorno model. The dispersion relation 

describing for the effect of various parameters is derived by applying linear stability 

analysis and normal modes analysis method. The effects of solute-Rayleigh number, 

analogous solute-Rayleigh number, medium porosity, thermo-nanofluid Lewis 

number, modified diffusivity ratio and nanoparticle Rayleigh number on the stability 

of stationary convection are presented graphically. The necessary conditions for the 

existence of oscillatory modes are obtained analytically.  

 

Keywords: Walters’ (model B'), triple-diffusive, nanofluid, nanoparticles, 

Rayleigh number, viscosity, viscoelasticity. 
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1. Introduction 

Triple-diffusive convection is a mixing process of more than two fluid 

components which diffuse at different rates and has relevance in different areas 

such as geophysics, soil sciences, food processing, oil reservoir modeling, 

oceanography, limnology and engineering, among others. The examples of such 

multiple diffusive convection fluid systems include the solidification of molten 

alloys, geothermally heated lakes and sea water etc. The problems of triple-

diffusive convection fluid in which the density depends on three independently 

diffusing agencies with different diffusivities have been studied by Griffiths [3], 

Lopez et al. [6], Pearlstein et al. [9], Rionero [17] and  Kango et al. [5]. They 

found that small concentrations of a third component with a smaller diffusivity 

can have a significant effect upon the nature of diffusive instabilities.  
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The problems of Walters’ (model B') fluid under a considerable amount of 

different hydrodynamic and hydromagnetic assumptions has been studied by 

Sharma and Rana [18], Gupta and Aggarwal [4], Rana and Kumar [12], Rana and 

Kango [11], Rana and Sharma [10]. Shivkumara et al. [20] studied the effect of 

thermal modulation on the onset of thermal convection in Walters’ B viscoelastic 

fluid in a porous medium while Rana et al. [13] studied the thermosolutal 

convection in compressible Walters’ (model B') fluid permeated with suspended 

particles in a Brinkman porous medium 

In recent years, study of nanofluids attracts many researchers as the nanofluids 

finds applications in several industries such as the automotive, pharmaceutical and 

energy supply industries. A considerable number of convection problems in a 

horizontal layer saturated by a nanofluid have been studied by Choi [2],  

Buongiorno [1], Tzou [21-22], Nield and Kuznetsov [7-8],  Sheu [19], Yadav et 

al. [23], Rana et al. [14-15], Rana and Chand [16] etc.  

In the present paper, triple-diffusive convection in a  viscoelastic nanofluid 

layer saturating a porous medium heated from below and salted from above 

and below by salt S' and S''  respectively is studied by using the idea of Rionero 

[17] which include two additional parameters, namely, a viscoelasticity 

parameter F and solute Rayleigh number Rs". The effects of solute-Rayleigh 

number, analogous solute-Rayleigh number, medium porosity, thermo-

nanofluid Lewis number, modified diffusivity ratio and nanoparticle Rayleigh 

number on the stability of stationary convection are presented graphically. The 

necessary conditions for the existence of oscillatory modes are obtained 

analytically. The work presented in this paper has not been published as yet. 

2. Mathematical model 

Consider an infinite horizontal layer of Walters’ (model B') viscoelastic 

nanofluid of thickness d, bounded by the planes z = 0 and z = d heated from 

below and salted from above and below by salt S' and S''  respectively as shown in 

figure 1. The layer is acted upon by a gravity force g = (0, 0, -g) aligned in the z 

direction. The temperature T, concentrations C', C'' and the volumetric fraction of 

nanoparticles φ at the lower (upper) boundary is assumed to take constant values 

T0, 
'

0C , ''

0C  and φ0 (T1, 
'

1C , ''

1C  and φ1), respectively. 
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g = g(0,0,-g)
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Fig. 1: Schematic sketch of the problem 

 

The basic governing equations of Walters’ (model B') viscoelastic 

nanofluid (Kango et al. [5], Boungiorno [1], Nield and Kuznetsov [8] and Rana 

and Chand [16]) in a triple-diffusive convection are    
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where ( )+



= q



1

tdt

d
 stands for convection derivative, mkkp ,,,,ρ, 1

' , q(u, 

v, w), denote respectively, the density,  viscosity, viscoelasticity, pressure, 

medium permeability, effective thermal conductivity of porous medium, Darcy 

velocity vector, DB is the Brownian diffusion coefficient, DT is the is the 

thermophoretic diffusion coefficient, φ is the volume fraction of nanoparticles, ρp is 

the density of nano particles, ρf  is the density of base fluid, T  is the uniform 

temperature gradient , 
'C

  and 
''C

  , are uniform solute gradients, 
fc)(  is the 

heat capacity of fluid, 
mc)(  is the effective heat capacity of porous 

medium,
pc)(  is heat capacity of nanoparticle material, km is the effective 

thermal conductivity of porous medium and we approximate the density of 
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nanofluid by that of base fluid (i.e., )f =  , (Boungiorno [1], Nield and 

Kuznetsov [8], Sheu [19] and Rana and Chand [16]).  

The conservation equations for solute concentrations are 

.. '2'
'

' CD=C+
t

C
S





q                                                               (5) 

.. ''2''
''

'' CD=C+
t
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S





q                                                              (6) 

where 'S
D  and ''S

D  are the solute diffusivities.  

We assume that the temperature and volume fraction of the nanoparticles are 

constant at the boundaries. Then the  boundary conditions appropriate to the 

problem (Nield and Kuznetsov [8])  are 
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We introduce non-dimensional variables as  

,
d

zy,x,
)z*,y*,(x*, 








= d,

κ

wv,u,
) w*,v*,(u*,

m








= ,

d

t
t*

2

f
= ,

μ

pd
p*

f

2


=

( )
( )

,
φφ

φφ
φ*

01

0

−

−
=

( )
( )

,
TT

TT
T*

10

0

−

−
=

( )
( )

,
C

C
*C'

'

1

'

0

'

0

'

C

C

−

−
=

( )
( )

,
C

C
*C"

''

1

''

0

''

0

''

C

C

−

−
=

c


 =f

 
There after dropping the dashes ( * ) for convenience. 

Eqs. (1)-(6) in non-dimensional form can be written as  
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where  
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the modified particle- density ratio and   F 
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=  is the viscoelasticity parameter. 

 
In the spirit of the Oberbeck-Boussinesq approximation, Eq. (12) was linearized 

by neglecting a term proportional to the product of φ and T. 

  The dimensionless boundary conditions are  
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To study the stability of the system, we superimposed infinitesimal perturbations 

on the basic state, which are of the form  
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Using Eq. (17) into Eqs. (9) – (14), linearizing the resulting equations by 

neglecting nonlinear terms that are product of prime quantities and dropping the 

primes ( • ) for convenience, the following equations are obtained  
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Boundary conditions for Eqs. (30) - (35) are  
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The parameter Rm is not involved in Eqs. (30)-(35) it is just a measure of the basic 

static pressure gradient.  

The eight unknown’s u, v, w, p, T, C', C'' and φ can be reduced to five by 

operating Eq. (19) with curl, .curlze which yields  
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  is the two-dimensional Laplace operator on the horizontal 

plane and  qcurlez .ˆ= is the z-component of vorticity. 

3. Normal modes analysis  

We express the disturbances into normal modes of the form  
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where l, m are the wave numbers in the x and y direction, respectively, and  is the 

growth rate of the disturbances. 

Substituting Eq. (32) into Eqs. (31) and (19) - (23), we obtain the following eigen 
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 is the dimensionless horizontal wave number. 

 4. Linear stability analysis and dispersion relation 

Considering solutions W, Θ, ,   and Ф of the form 
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which satisfy the boundary conditions of Eq. (33) . 

Substituting Eq. (35) into Eqs. (28) – (32), integrating each equation from z = 0 to 

z = 1, and performing some integration by parts, we obtain the following matrix 

equation 
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 Eq. (36) is the required dispersion relation accounting for the effect of Prandtl 

number, Darcy number, thermo-solutal Lewis number, analogous thermo-solutal 

Lewis number, thermo-nanofluid Lewis number, solute Rayleigh Number, 

analogous solute Rayleigh Number, nanoparticle Rayleigh number, medium 

porosity and modified diffusivity ratio on the onset of triple diffusive convection 

in a layer of nanofluid.  

To examine the stability of the system, the real part of  is set to zero and 

we take ii = in Eq. (36), then we obtain 
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As RD  is a physical quantity it must be real. Thus it follows from Eq. (38) that 

either 0=i  (exchange of stability, steady state) or 0=  ( 0i , overstability 

or oscillatory onset). 

5. Stationary convection  

For stationary convection, putting  = 0 in equation (36), we obtain 
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Eq. (39) is identical to that obtained by Nield and Kuznetsov [8], Sheu 

[19], Rana et al. [14-15] and Rana and Chand [16].  

In the absence of the solute gradient parameter Rs'', Eq. (39) reduces to 
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Equation (40) is same as the results derived by Nield and Kuznetsov [8], Sheu 

[19], Rana et al. [14-15] and Rana and Chand [16]. The critical cell size at the 

onset of instability is obtained by minimizing Ra  with respect to a. Thus, the 

critical cell size must satisfy 

0,=
a

Ra

c
a=a
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

                                                                          (41)

 

Equation (41) which gives  =ca .                                                              (42) 

And the corresponding critical thermal Rayleigh number ( )cRa  on the onset of 

stationary convection is given by 

( ) Rn.N
Ln

-RsRs4 A

'''2





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
+++


=Ra c                                       (43) 

It is noted that if Rn is positive then Ra is minimized by a stationary convection.  

The result given in equation (61) is a good agreement with the result derived by 

Sheu [19] and Rana and Chand [16]. 

Since the elastico-viscous parameter F is not present in equation (39), it 

may be concluded that in the stationary case ( 0= ) Walters’ (model B') 

viscoelastic fluid behaves like an ordinary Newtonian fluid. According to the 

definition of nanoparticle Rayleigh number Rn corresponds to negative value of 

Rn for heavy nanoparticle  p . In such cases, values of modified diffusivity 

ratio NA are also negative according to the definition of NA. In the following 

discussion, we take the values of Rn and NA negative. Also in Eq. (43) the particle 

increment parameter NB does not appear and the diffusivity ratio parameter NA 

appears only in association with the nanoparticle Rayleigh number Rn. This 

implies that the nanofluid cross-diffusion terms approach to be dominated by the 

regular cross-diffusion term. 

Now to study the effect of solute Rayleigh number ( 'Rs ), analogous solute 

Rayleigh number ( ''Rs ), medium porosity ( ), thermo-nanofluid Lewis number 

( Ln ), diffusivity ratio ( AN ) and nanoparticle Rayleigh number ( Rn ) on the 
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stationary convection, we examine the behaviour of  
( )
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From Eq. (39), we obtain 
( )

,1
'

+



=

Rs

Ra s      (44) 

which is positive, therefore, solute Rayleigh number ( 'Rs ) inhibits the onset of 

triple-diffusive stationary convection implying thereby solute Rayleigh number 

( 'Rs )  has stabilizing effect on the system which is an agreement with the results 

derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and Rana and 

Chand [16].  

 
Fig.2. Variation of stationary thermal Rayleigh number ( )sRa

 
 with the wave number a for 

different values of solute Rayleigh number (
'Rs ) 

In Fig. 2, the stationary thermal Rayleigh number ( )sRa   is plotted against 

dimensionless wave number a different values of solute Rayleigh number ( 'Rs ) as 

shown.  This shows that as 'Rs  increases, the stationary thermal Rayleigh number 

sRa)(   also increases. Thus, solute Rayleigh number ( 'Rs ) has stabilizing effect 

on stationary convection which is in good agreement with the result obtained 

analytically from Eq. (44).   

It is evident from Eq. (39) that 
( )

,1
''

+



=

Rs

Ra s           (45) 

which is positive, therefore, analogous solute Rayleigh number ( ''Rs ) inhibits the 

onset of triple-diffusive stationary convection implying thereby solute Rayleigh 
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number ( ''Rs )  has stabilizing effect on the system which is an agreement with the 

results derived by Kango et al. [5]. 

 
Fig.3. Variation of stationary thermal Rayleigh number ( )sRa

 
 with the wave number a for 

different values of analogous solute Rayleigh number (
''Rs ). 

 

In Fig. 3, the stationary thermal Rayleigh number ( )sRa   is plotted against 

dimensionless wave number a different values of solute Rayleigh number ( ''Rs ) 

as shown.  This shows that as 'Rs  increases, the thermal Rayleigh number sRa)(   

also increases. Thus, solute Rayleigh number ( ''Rs ) has stabilizing effect on 

stationary convection which is in good agreement with the result obtained 

analytically from Eq. (45).   

From Eq. (39), we obtain 

( )
,



Rn
=

Ln

Ra s −



      (46) 

implying thereby thermo-nanofluid Lewis number ( Ln ) inhibits the onset of 

triple-diffusive stationary convection. Thus, thermo-nanofluid Lewis number 

( Ln ) has stabilizing effect on the system if Rn < 0 (i.e., bottom heavy 

arrangement) which is a good agreement with the results derived by Nield and 

Kuznetsov [8], Sheu [19], Rana et al. [14-15] and Rana and Chand [16].  

In Fig. 4, the stationary thermal Rayleigh number ( )sRa   is plotted against 

dimensionless wave number a different values of thermo-nanofluid Lewis number 

( Ln ) as shown.  This shows that as Ln increases, the thermal Rayleigh number 

( )sRa   also increases for bottom-heavy arrangements. 



214                               G. C. Rana, Ramesh Chand, Veena Sharma 

 
Fig.4. Variation of stationary thermal Rayleigh number ( )sRa

 
 with the wave number a for 

different values of thermo-nanofluid Lewis number ( Ln ). 

 

Thus, of thermo-nanofluid Lewis number ( Ln ) has stabilizing effect on 

stationary convection which is in good agreement with the result obtained 

analytically from Eq. (46).   

From Eq. (39), we obtain 

( )
,

2

LnRn
=

Ra s




     (47) 

Thus, medium porosity () has destabilizing effect on the system if Rn < 0 

(i.e., bottom heavy arrangement) which is a good agreement with the results 

derived by Sheu [19], Rana et al. [14-15] and Rana and Chand [16] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Variation of stationary thermal Rayleigh number ( )sRa
 
 with the wave number a for 

different values of medium porosity (). 
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In Fig. 5, the stationary thermal Rayleigh number ( )sRa   is plotted against 

dimensionless wave number a different values of medium porosity () as shown.  

This shows that as medium porosity () increases, the thermal Rayleigh number 

( )sRa   decreases for bottom-heavy arrangements. Thus, medium porosity () has 

destabilizing effect on stationary convection which is in good agreement with the 

result obtained analytically from Eq. (47).   

From Eq. (39), we obtain 

( )
,Rn=

N

Ra

A

s −



      (48) 

implying thereby diffusivity ratio ( AN ) inhibits the onset of triple-diffusive 

stationary convection. Thus, diffusivity ratio ( AN ) has stabilizing effect on the 

system if Rn < 0 (i.e., bottom heavy arrangement) which is a good agreement with 

the results derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and 

Rana and Chand [16].  

 

 
Fig.6. Variation of stationary thermal Rayleigh number ( )sRa

 
 with the wave number a for 

different values of diffusivity ratio ( AN ). 

 

In Fig. 6, the stationary thermal Rayleigh number ( )sRa   is plotted against 

dimensionless wave number a different values of diffusivity ratio ( AN ) as shown.  

This shows that as NA increases slightly, the thermal Rayleigh number ( )sRa   also 

increases for bottom-heavy arrangements. Thus, diffusivity ratio ( AN ) has low 

stabilizing effect on stationary convection which is in good agreement with the 

result obtained analytically from Eq. (48).   
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It is evident from Eq. (39) that   
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which is negative implying thereby nanoparticle Rayleigh number ( Rn ) hastens 

the triple-diffusive convection implying thereby nanoparticle Rayleigh number 

( Rn ) has destabilizing effect on the system which is a good agreement with the 

results derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and 

Rana and Chand [16] 

 

 
Fig.7. Variation of stationary thermal Rayleigh number ( )sRa

 
 with the wave number a for 

different values of nanoparticle Rayleigh number ( Rn ). 

 

In Fig. 7, the stationary thermal Rayleigh number ( )sRa   is plotted against 

dimensionless wave number a different values of nanoparticle Rayleigh number 

( Rn ) as shown.  This shows that as Rn increases, the thermal Rayleigh number 

( )sRa    decreases for bottom-heavy arrangements. Thus, nanoparticle Rayleigh 

number ( Rn ) has destabilizing effect on stationary convection which is in good 

agreement with the result obtained analytically from Eq. (49).   

It is evident from Eq. (39) that       

( )
,

2

RnLn
=

Rn

Ra s




          (50) 

which is negative implying thereby nanoparticle Rayleigh number ( Rn ) hastens 

the triple-diffusive convection implying thereby nanoparticle Rayleigh number 

( Rn ) has destabilizing effect on the system which is a good agreement with the 

results derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and 

Rana and Chand [16].  
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6. Oscillatory convection 

The oscillatory Rayleigh number [obtained by putting 0= in Eq. (37)] is given 

by 
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The condition 0,0 = i gives an expression for the frequency of oscillation 
2

i  as  
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We find the oscillatory neutral solution from Eq. (51) as follows: first find the 

roots for 2

i  of Eq. (45). If there are no positive roots, the oscillatory instability is 

not possible. If there are positive roots, the critical thermal Rayleigh number for 

oscillatory convection can be derived numerically by minimizing Eq. (44) with 

respect to wave number after substituting various values of physical parameters 

for 2

i  of Eq. (52) to determine their effects on the onset of oscillatory 



218                               G. C. Rana, Ramesh Chand, Veena Sharma 

convection. Since Ln is of order 32 1010 − , 101  AN  and so 

( ) 01 −− LnNA . Thus Eq. (51) does not admit positive value of 2

i  

if 1, ''' LeLe  . Hence the necessary conditions for the occurrence of oscillatory 

convection are 1, ''' LeLe .  

 

7. Conclusions 

The onset of triple-diffusive convection in a layer of viscoelastic Nanofluid 

heated from below and soluted from below and above has been investigated 

by using linear stability theory. The main conclusions are: 

• For the case of stationary convection, the viscoelastic nanofluid 

behaves like an ordinary nanofluid.  

• The solute Rayleigh number ( 'Rs ) and analogous solute Rayleigh 

number ( ''Rs ) have stabilizing effects on the onset of stationary 

convection for both top-heavy and bottom-heavy arrangements.  

• The thermo-nanofluid Lewis number ( Ln ) has stabilizing effect on the 

onset of stationary convection for bottom-heavy arrangements. 

• The medium porosity () has destabilizing effect on stationary 

convection. 

• The diffusivity ratio ( AN ) has very low stabilizing effect on the onset 

of stationary convection for bottom-heavy arrangements. 

• Nanoparticle Rayleigh number ( Rn ) has destabilizing effect on the 

onset of stationary convection. 

• Necessary conditions for the occurrence of oscillatory convection 

are 1, ''' LeLe .  
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