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THE ONSET OF TRIPLE-DIFFUSIVE CONVECTION IN A
WALTERS’ (MODEL B') NANOFLUID LAYER SATURATING
A POROUS MEDIUM

Gian C. RANA'", Ramesh CHAND? and Veena SHARMA?

The onset of triple-diffusive convection in a viscoelastic nanofluid layer
heated from below and salted from above and below in porous medium is studied.
Walters’ (model B') fluid model is used to express the rheological behavior of
viscoelastic nanofluid. For porous medium, Darcy model is employed. In the
governing equations, the effects of thermophoresis and Brownian diffusion
parameters are also introduced through Buongiorno model. The dispersion relation
describing for the effect of various parameters is derived by applying linear stability
analysis and normal modes analysis method. The effects of solute-Rayleigh number,
analogous solute-Rayleigh number, medium porosity, thermo-nanofluid Lewis
number, modified diffusivity ratio and nanoparticle Rayleigh number on the stability
of stationary convection are presented graphically. The necessary conditions for the
existence of oscillatory modes are obtained analytically.

Keywords: Walters’ (model B'), triple-diffusive, nanofluid, nanoparticles,
Rayleigh number, viscosity, viscoelasticity.
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1. Introduction

Triple-diffusive convection is a mixing process of more than two fluid
components which diffuse at different rates and has relevance in different areas
such as geophysics, soil sciences, food processing, oil reservoir modeling,
oceanography, limnology and engineering, among others. The examples of such
multiple diffusive convection fluid systems include the solidification of molten
alloys, geothermally heated lakes and sea water etc. The problems of triple-
diffusive convection fluid in which the density depends on three independently
diffusing agencies with different diffusivities have been studied by Griffiths [3],
Lopez et al. [6], Pearlstein et al. [9], Rionero [17] and Kango et al. [5]. They
found that small concentrations of a third component with a smaller diffusivity
can have a significant effect upon the nature of diffusive instabilities.
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The problems of Walters’ (model B') fluid under a considerable amount of
different hydrodynamic and hydromagnetic assumptions has been studied by
Sharma and Rana [18], Gupta and Aggarwal [4], Rana and Kumar [12], Rana and
Kango [11], Rana and Sharma [10]. Shivkumara et al. [20] studied the effect of
thermal modulation on the onset of thermal convection in Walters’ B viscoelastic
fluid in a porous medium while Rana et al. [13] studied the thermosolutal
convection in compressible Walters’ (model B') fluid permeated with suspended
particles in a Brinkman porous medium

In recent years, study of nanofluids attracts many researchers as the nanofluids
finds applications in several industries such as the automotive, pharmaceutical and
energy supply industries. A considerable number of convection problems in a
horizontal layer saturated by a nanofluid have been studied by Choi [2],
Buongiorno [1], Tzou [21-22], Nield and Kuznetsov [7-8], Sheu [19], Yadav et
al. [23], Rana et al. [14-15], Rana and Chand [16] etc.

In the present paper, triple-diffusive convection in a viscoelastic nanofluid
layer saturating a porous medium heated from below and salted from above
and below by salt S"and S™ respectively is studied by using the idea of Rionero
[17] which include two additional parameters, namely, a viscoelasticity
parameter F and solute Rayleigh number Rs". The effects of solute-Rayleigh
number, analogous solute-Rayleigh number, medium porosity, thermo-
nanofluid Lewis number, modified diffusivity ratio and nanoparticle Rayleigh
number on the stability of stationary convection are presented graphically. The
necessary conditions for the existence of oscillatory modes are obtained
analytically. The work presented in this paper has not been published as yet.

2. Mathematical model

Consider an infinite horizontal layer of Walters’ (model B') viscoelastic
nanofluid of thickness d, bounded by the planes z = 0 and z = d heated from
below and salted from above and below by salt S' and S respectively as shown in
figure 1. The layer is acted upon by a gravity force g = (0, 0, -g) aligned in the z
direction. The temperature T, concentrations C', C" and the volumetric fraction of
nanoparticles ¢ at the lower (upper) boundary is assumed to take constant values

To, C,, C, and @o(T1, C,, C, and ¢1), respectively.
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nanofluid layer
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Heated from below and soluted from
below by salt S’ and above by salt S

Fig. 1: Schematic sketch of the problem

The basic governing equations of Walters’ (model B') viscoelastic
nanofluid (Kango et al. [5], Boungiorno [1], Nield and Kuznetsov [8] and Rana
and Chand [16]) in a triple-diffusive convection are

V.q=0, (1)

ﬁdﬂ: _ _1(ﬂ_ﬂ’§t]q+(¢pp +(1—(/)){,0f (1—/5’T (T —To)_ﬂc (C' _C(I))+ﬂc" (C” -C, ))})g'

¢ dt P k,

(2)

op 1 2 . Dr oo

—+—qQVp=D,Vp+—V-T. 3
at gq @ Y ¢ T, (3)

oT , D,
(pe). T +(pc), qVT =k V2T +&(pc) | DVO.VT + —LVT.VT
ot P T , )

0

where %z a+1(q -V) stands for convection derivative, p, i, 1, p,k,, K, q(u,
g 1

v, w), denote respectively, the density, viscosity, viscoelasticity, pressure,
medium permeability, effective thermal conductivity of porous medium, Darcy
velocity vector, Ds is the Brownian diffusion coefficient, Dr is the is the

thermophoretic diffusion coefficient, ¢ is the volume fraction of nanoparticles, pp is
the density of nano particles, pr is the density of base fluid, A, is the uniform

temperature gradient, s and g . , are uniform solute gradients, (pc), is the
heat capacity of fluid, (pc) ~is the effective heat capacity of porous
medium,(pc)p is heat capacity of nanoparticle material, kn is the effective
thermal conductivity of porous medium and we approximate the density of
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nanofluid by that of base fluid (i.e., p=p.) , (Boungiorno [1], Nield and

Kuznetsov [8], Sheu [19] and Rana and Chand [16]).
The conservation equations for solute concentrations are

oc’ . .
%+qVC =D, ViC'. (6)

where D, and D, are the solute diffusivities.

We assume that the temperature and volume fraction of the nanoparticles are
constant at the boundaries. Then the boundary conditions appropriate to the
problem (Nield and Kuznetsov [8]) are

. . " . O°w
w=0 T=T, o¢=¢,,C =C,,C =Co,az—2=0at z=0, @)
. L . o*w
w=0, T=T, C' =C,,C =Cl(p=(pl,az—2=0at z=1 )
We introduce non-dimensional variables as
2
(x*, y*,z*')z(x,y,zj’ (U*, v, W*’):(u v, Wjd . taz = _ pd*®
d Ko d nor,
((p (PO) T*_ (T_TO) C'*_ (CI_Cé) C"*_(C"_C;) —£

oF =5, == =7 v = =, O, =
((Pl (Po) (TO_Tl) (CO_Cl) (CO_Cl) f PC

There after dropping the dashes ( * ) for convenience.
Egs. (1)-(6) in non-dimensional form can be written as

vV.q=0, €)]
R.C R.C
ia—q:—Vp—(l—Fng—RméﬁRaTéZ—Rn(péZ— 6 ——=_¢, (10)
P ot ot Le Le
i lqv =1 gz, Nager (12)
Ln Ln
ﬂ+qVT V2T+NBV¢VT+N NBVTVT, (12)
ot Ln Ln
oC 1
— +gVC =—V?°C. 13
o Fa P (13)
oc 1 .
VC' =-——-V’C". 14
ot o Le (14)

where
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2 .
Pr= pd is the Darcy-Prandtl number, Le =1 s the thermosolutal Lewis
pok, D,
.y _ _ a; .
number, Le :D— is analogous thermosolutal Lewis number, Ln:D— IS
s’ B
. . k. d(T,-T .
the thermo-nanofluid Lewis number, Ra= pe/frkd(T, - T,) is the thermal-
MO
pefkd(C,-C;)

Darcy Rayleigh Number, Rs = is the solute Rayleigh

ubD,,

S

pg/3_kd(C; -C;)

Number, Rs = is the analogous solute Rayleigh Number,
,uDSU
+pll- k,d
R, = (pp(po p( (po))g - is the basic density Rayleigh number,
o
P —PAP: - 9o JOK,d
Rn:( . X - 0)g - the nanoparticle  Rayleigh  number,
(od;
— 8 -
NA:—DT(TO T) s the modified diffusivity ratio, Ny = (pe), (0~ 00)
DeT, (¢’1 — % ) (pC )f

!

the modified particle- density ratio and F = £ is the viscoelasticity parameter.
y7i

In the spirit of the Oberbeck-Boussinesq approximation, Eq. (12) was linearized
by neglecting a term proportional to the product of ¢and T.

The dimensionless boundary conditions are

_ . . 0'w 3 3
w=0, T=1,C =1C :1,6—220, (P—O at z=0, (15)
Z
. . 0'w
w=0,T=0,C'=0C =025 =0 ¢=1 atz=1 (16)
yA

To study the stability of the system, we superimposed infinitesimal perturbations
on the basic state, which are of the form

q(u,v,w)=0+q"(uv,w), T=@1-2)+T",C, =(1-z)+C",C, =(1-z)+C",

p=7+¢", p=p,+p".
Using Eg. (17) into Egs. (9) — (14), linearizing the resulting equations by
neglecting nonlinear terms that are product of prime quantities and dropping the
primes () for convenience, the following equations are obtained

(17)
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V-q=0, (18)
1 aq o i ~ R.C'_ R.C
——==-Vp-|1-F—= [g+R_,Té,—Rnpé, - —=>—¢6 ——> ¢, 19
Pr ot p( ]qDZ R T e (19)
9 Lw=Lvr, e Nayer (20)
o ¢ Ln Ln
o —veraNe (6T 6(/)j 2NNy o1 1)
ot Ln\oz oz Ln oz
€ _w="1tye, (22)
ot Le
€ _w="1Lvec (23)
ot Le
Boundary conditions for Egs. (30) - (35) are
w=0, T=0,C OC—OZW—O(p 0 at z=0, (24)

2
w=0, T=0,C =0,C =0,% W
0z

=0, =0 atz=1 (25)

The parameter Rm is not involved in Egs. (30)-(35) it is just a measure of the basic
static pressure gradient.

The eight unknown’s u, v, w, p, T, C', C" and ¢ can be reduced to five by
operating Eqg. (19) with e,.curl curl, which yields

10, Rs Rs’

a 2 2 2 2 2
~V*w=—1-F— [V*W+R, V3T —RnV%p-—V:C' ——-V2C', (26
Pr ot ( 8’[) boH " e Le (26)

0

where V2, = a—2+§. is the two-dimensional Laplace operator on the horizontal
X

plane and ¢ =€, .curlqis the z-component of vorticity.

3. Normal modes analysis

We express the disturbances into normal modes of the form
W, T,C,C", 0]= W(2), 6(2), T(2), A(z), (2 )lexplilx +imy +at), (27)
where | mare the wave numbers in the x and y direction, respectively, and @ is the
growth rate of the disturbances.
Substituting Eg. (32) into Egs. (31) and (19) - (23), we obtain the following eigen
value problem

Rs jop RS j2p g (28)

2 t1-oF (D?-a? W +a’R,0—a’Rnd—
Pr Le’ Le
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W +(i,(D2 —az)—a)jl“= 0, (29)
Le
W +[i,,(D2 —az)—w]A =0, (30)
Le
w2+ Nep_ 2NaNe 52 Jlo_Nepg=g (31)
Ln Ln Ln
1 N 1
“W-—A(D?-a?-| —(D?-a’)-w|®=0, 32
& Ln( )® (Ln( ) mj (32)
W=0 DW=0,[=0,A=0,0=0,0=0at z=0,1 , (33)

d ) . . i
where D= d—and a = I>+ m? is the dimensionless horizontal wave number.
z

4. Linear stability analysis and dispersion relation

Considering solutions W, ®, I', A and @ of the form

W =Wsin(zz), T =T, sin(2z), A = A, sin(m2), © = Oysin (wz), & = dysin (z2). (34
which satisfy the boundary conditions of Eq. (33) .

Substituting Eq. (35) into Egs. (28) — (32), integrating each equation from z = 0 to

z = 1, and performing some integration by parts, we obtain the following matrix

equation

2pe 2pe" ]
© 1-wF 97 —a’R, a'Rs a'Rs a?Rn
Pr Le Le o
2 W
1 0 B PR 0 0 °
Le Iy
2 A, |=0,
1 0 0 | =+ 0 0
Le 0,
2
1 (9 +2a)) 0 0 0 o
LN 2
i £ Ln Ln ]

(35)
where J% = 72 + a? is the total wave number.

The linear homogeneous system of equations (35) has a non-trivial solution if and
only if
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2 ' 2
D 1eF 32 —aR, &R aRs a?Rn
Pr Le Le
JZ
1 0 —(—.+wj 0 0
Le
2 =0
1 0 0 —(J—..mj 0
Le
1 ~(12+o) 0 0 0
2 2
Lo (2,
& Ln Ln

which gives

2 ' " 2 2
RD=J—2[£+1—ij.(a)+J2)+(a)+J2{ B Zj—(‘”” )L”+fNaJ Rn
a2\ Pr ole +37 ole +] (oln+3%)¢
. (36)

Eq. (36) is the required dispersion relation accounting for the effect of Prandtl
number, Darcy number, thermo-solutal Lewis number, analogous thermo-solutal
Lewis number, thermo-nanofluid Lewis number, solute Rayleigh Number,
analogous solute Rayleigh Number, nanoparticle Rayleigh number, medium
porosity and modified diffusivity ratio on the onset of triple diffusive convection
in a layer of nanofluid.

To examine the stability of the system, the real part of wis set to zero and

we take @ = 1w, in Eq. (36), then we obtain

2 4 2 ' 4 2 " 4 2 2
RD=J—2[J2+F—ijw5+J + o Le'z Rs 4 I Lean.._J (Ln4+gN,;)+2a)i Ln viga
a Pr)t 3t helle” J+olLe (0 +0’n’Je
(37)
where
2 2 2 2(y o ‘ 2(y o 121 -1n—
a=d [, 20 R (Le 12 ne e 1) re L= un
a’\" Pr Pr) J'ielle 1+ olle Q¢+’ n’ )
(38)

As Rp is a physical quantity it must be real. Thus it follows from Eg. (38) that
either w, =0 (exchange of stability, steady state) orA=0 (@, # 0, overstability

or oscillatory onset).
5. Stationary convection

For stationary convection, putting @ = 0 in equation (36), we obtain
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2 2)2
(Ra), :M+ Rs +Rs’ -(ﬂ+ NAjRn. (39)
a £
Eq. (39) is identical to that obtained by Nield and Kuznetsov [8], Sheu
[19], Rana et al. [14-15] and Rana and Chand [16].
In the absence of the solute gradient parameter Rs", Eq. (39) reduces to
2 2 \?
(Ra), =(”;—Za)+ Rs'—(%+ NA]Rn, (40)

Equation (40) is same as the results derived by Nield and Kuznetsov [8], Sheu
[19], Rana et al. [14-15] and Rana and Chand [16]. The critical cell size at the
onset of instability is obtained by minimizing Ra with respect to a. Thus, the
critical cell size must satisfy

=
08 Jama, (41)

Equation (41) which gives a,=x. (42)
And the corresponding critical thermal Rayleigh number (Ra), on the onset of
stationary convection is given by

(Ra),=47° +Rs +Rs’ -(ﬂ + NAjRn. (43)
&

It is noted that if Rn is positive then Ra is minimized by a stationary convection.
The result given in equation (61) is a good agreement with the result derived by
Sheu [19] and Rana and Chand [16].

Since the elastico-viscous parameter F is not present in equation (39), it
may be concluded that in the stationary case (w=0) Walters’ (model B')
viscoelastic fluid behaves like an ordinary Newtonian fluid. According to the
definition of nanoparticle Rayleigh number Rn corresponds to negative value of

Rn for heavy nanoparticle p, > p. In such cases, values of modified diffusivity

ratio Na are also negative according to the definition of Na. In the following
discussion, we take the values of Rn and Na negative. Also in Eq. (43) the particle
increment parameter Ng does not appear and the diffusivity ratio parameter Na
appears only in association with the nanoparticle Rayleigh number Rn. This
implies that the nanofluid cross-diffusion terms approach to be dominated by the
regular cross-diffusion term.

Now to study the effect of solute Rayleigh number (Rs'), analogous solute
Rayleigh number (Rs"), medium porosity (&), thermo-nanofluid Lewis number
(Ln), diffusivity ratio (N,) and nanoparticle Rayleigh number (Rn) on the
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. . . . Ra Ra
stationary convection, we examine the behaviour of o .)5, o(Ra),

oRs oRs’
a(Ra)s 16(Ra)s , a(Ra)s and a(Ra)s analytically.
oLn o¢ ON , Rn
From Eq. (39), we obtain % =+], (44)
S

which is positive, therefore, solute Rayleigh number (Rs’) inhibits the onset of
triple-diffusive stationary convection implying thereby solute Rayleigh number
(Rs") has stabilizing effect on the system which is an agreement with the results
derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and Rana and
Chand [16].

1300
1200 - Rs'= 600
Rs"=500,Ln =300, =0.9,

R 1100 Ns=-5.Rn=-0.1 |
< 1000 - Rs’=400//
&

900 -

800 - R“-"r:m/’/’//

700

2 4 6 8 10

{—

Fig.2. Variation of stationary thermal Rayleigh number (Ra)s with the wave number a for

different values of solute Rayleigh number ( RS')

In Fig. 2, the stationary thermal Rayleigh number (Ra)S is plotted against
dimensionless wave number a different values of solute Rayleigh number (Rs’) as
shown. This shows that as Rs’ increases, the stationary thermal Rayleigh number
(Ra), also increases. Thus, solute Rayleigh number (Rs’) has stabilizing effect

on stationary convection which is in good agreement with the result obtained
analytically from Eq. (44).

L R
It is evident from Eq. (39) that % =+1, (45)
S

which is positive, therefore, analogous solute Rayleigh number (Rs") inhibits the
onset of triple-diffusive stationary convection implying thereby solute Rayleigh
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number (Rs") has stabilizing effect on the system which is an agreement with the
results derived by Kango et al. [5].

1000

900 |  Rs"=3500

Rs'=300,Ln=200,2=0.9,
N, =-5.Rn=-0.1

800 -

700 A

(Ra),—

Fig.3. Variation of stationary thermal Rayleigh number (Ra)s with the wave number a for

different values of analogous solute Rayleigh number ( Rs’ ).

In Fig. 3, the stationary thermal Rayleigh number (Ra)S is plotted against

dimensionless wave number a different values of solute Rayleigh number (Rs")
as shown. This shows that as Rs' increases, the thermal Rayleigh number (Ra),

also increases. Thus, solute Rayleigh number (Rs’) has stabilizing effect on
stationary convection which is in good agreement with the result obtained
analytically from Eq. (45).
From Eq. (39), we obtain

o(Ra), _ _Rn. (46)

oLn £

implying thereby thermo-nanofluid Lewis number (Ln) inhibits the onset of
triple-diffusive stationary convection. Thus, thermo-nanofluid Lewis number
(Ln) has stabilizing effect on the system if Rn < 0 (i.e.,, bottom heavy
arrangement) which is a good agreement with the results derived by Nield and
Kuznetsov [8], Sheu [19], Rana et al. [14-15] and Rana and Chand [16].

In Fig. 4, the stationary thermal Rayleigh number (Ra), is plotted against
dimensionless wave number a different values of thermo-nanofluid Lewis number
(Ln) as shown. This shows that as Ln increases, the thermal Rayleigh number
(Ra), also increases for bottom-heavy arrangements.
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940
920 Rs'=200,Rs"=500,2=0.9,
900 | Ny=-5.Rn=-0.1

880 |

860 -

Ln=900
840 -

8§20
800
780
760

(Ra)—

2 4 6 8 10

Fig.4. Variation of stationary thermal Rayleigh number (Ra)S with the wave number a for
different values of thermo-nanofluid Lewis number (Ln).

Thus, of thermo-nanofluid Lewis number (Ln) has stabilizing effect on
stationary convection which is in good agreement with the result obtained
analytically from Eq. (46).

From Eq. (39), we obtain
d(Ra), _ LnRn
oe g?

Thus, medium porosity (&) has destabilizing effect on the system if Rn < 0
(i.e., bottom heavy arrangement) which is a good agreement with the results
derived by Sheu [19], Rana et al. [14-15] and Rana and Chand [16]

(47)

980
960 | | R¥'=200.Rs"=500,Lu=300,
N, =-5,Rn=-01

940 A
920 A
900 A
830
860
840
820
800

(Ra),—

2 4 6 g 10

Fig.5. Variation of stationary thermal Rayleigh number (Ra)s with the wave number a for
different values of medium porosity (g).



The onset of triple diffusive convection in a Walters, (model B') nanofluid layer saturating... 215

In Fig. 5, the stationary thermal Rayleigh number (Ra), is plotted against
dimensionless wave number a different values of medium porosity (&) as shown.
This shows that as medium porosity (€) increases, the thermal Rayleigh number
(Ra)S decreases for bottom-heavy arrangements. Thus, medium porosity (€) has
destabilizing effect on stationary convection which is in good agreement with the
result obtained analytically from Eq. (47).

From Eq. (39), we obtain
d(Ra),
ON ,
implying thereby diffusivity ratio (N,) inhibits the onset of triple-diffusive
stationary convection. Thus, diffusivity ratio (N, ) has stabilizing effect on the

system if Rn < 0 (i.e., bottom heavy arrangement) which is a good agreement with
the results derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and
Rana and Chand [16].

= —Rn, (48)

850 1 Rs'=200,Rs"=500,.Ln=
300, e=09.N,=-5

790

770 T . T

2 4 6 8 10
—

Fig.6. Variation of stationary thermal Rayleigh number (Ra)s with the wave number a for

different values of diffusivity ratio (N , ).

In Fig. 6, the stationary thermal Rayleigh number (Ra), is plotted against
dimensionless wave number a different values of diffusivity ratio (N, ) as shown.
This shows that as Na increases slightly, the thermal Rayleigh number (Ra)S also

increases for bottom-heavy arrangements. Thus, diffusivity ratio (N,) has low

stabilizing effect on stationary convection which is in good agreement with the
result obtained analytically from Eq. (48).
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It is evident from Eq. (39) that

o(Ra), _ (Ln
R ( . + NA)’ (49)
which is negative implying thereby nanoparticle Rayleigh number (Rn) hastens
the triple-diffusive convection implying thereby nanoparticle Rayleigh number
(Rn) has destabilizing effect on the system which is a good agreement with the
results derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and
Rana and Chand [16]

1100
Yl — A Yall — & n=1
1050 4 Rs'=200,Rs _:!UU.LH 300,
£=09,N,=-5
1000 - Rn=-0.7
~ 950 +
é‘i’ 900 - /’fﬁ{
~ 850
800 - Rn=-0.1
750
700
2 4 6 8 10
a—

Fig.7. Variation of stationary thermal Rayleigh number (Ra)s with the wave number a for
different values of nanoparticle Rayleigh number ( Rn).

In Fig. 7, the stationary thermal Rayleigh number (Ra)S is plotted against

dimensionless wave number a different values of nanoparticle Rayleigh number
(Rn) as shown. This shows that as Rn increases, the thermal Rayleigh number
(Ra)S decreases for bottom-heavy arrangements. Thus, nanoparticle Rayleigh

number (Rn) has destabilizing effect on stationary convection which is in good
agreement with the result obtained analytically from Eq. (49).
It is evident from Eq. (39) that

d(Ra), _ RnLn

ORn g*

which is negative implying thereby nanoparticle Rayleigh number (Rn) hastens
the triple-diffusive convection implying thereby nanoparticle Rayleigh number
(Rn) has destabilizing effect on the system which is a good agreement with the
results derived by Nield and Kuznetsov [8], Sheu [19], Rana et al. [14-15] and
Rana and Chand [16].

: (50)
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6. Oscillatory convection

The oscillatory Rayleigh number [obtained by putting A=0in Eq. (37)] is given
by

2 4 2 ' 4 2 " 4 2 2
(RD)OSEJ—Z(J“F—A} Vro'le oo Irolle oo ) (Ln4+,sN,;)+2a) Ln”
a Pr) J'+o’Le I +olle (0 +e’n’ )
(51)

The condition A =0, #0gives an expression for the frequency of oscillation

o? as
a,(0f [ +a,(ef f a(0? )+ 8, =0, (52)

Where

8, = (7% + az)“[(;z2 ¥ a2)3(1+‘;—§;] ~(Le' -1)a%Rs ~(Le" ~1)Rs’ _(L=eN,-Ln), 2Lan],
&

2, q2) 2

- M[H%— FJ 2j(Le'2 tle? s 1n?)-(Le ~1fLe” + LnRs -
a

a, =(r%+a’ ’

(Le’ —1XLe'2 + an)Rs" (=N, -tn) I‘n)(Le'2 + Le"z)aLan
&

2 2\ 2 .
8, =(7° +az{(ﬂ+—2a)(1+‘;—— FJ ZJ(Le'zLe"2 +Ln?Le” + LnZLe"'z)]—(Le' ~1)LeRs
a r

1-eN, —Ln)

~(Le"~1)LeRs" - ( Le”*LeRn,

&

2 2 2
a, :M(1+J——FJZJLe'2Le"2Ln2.
a Pr

We find the oscillatory neutral solution from Eq. (51) as follows: first find the
roots for w’ of Eq. (45). If there are no positive roots, the oscillatory instability is
not possible. If there are positive roots, the critical thermal Rayleigh number for
oscillatory convection can be derived numerically by minimizing Eq. (44) with
respect to wave number after substituting various values of physical parameters

for @’ of Eq. (52) to determine their effects on the onset of oscillatory
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convection. Since Ln is of order 10°-10°, 1<N, <10 and so
(1-&N, —Ln)<0. Thus Eq. (51) does not admit positive value of
ifLe’,Le’ >1 . Hence the necessary conditions for the occurrence of oscillatory
convection are Le’,Le” >1.

7. Conclusions

The onset of triple-diffusive convection in a layer of viscoelastic Nanofluid
heated from below and soluted from below and above has been investigated
by using linear stability theory. The main conclusions are:

e For the case of stationary convection, the viscoelastic nanofluid
behaves like an ordinary nanofluid.

e The solute Rayleigh number (Rs’) and analogous solute Rayleigh
number (Rs') have stabilizing effects on the onset of stationary
convection for both top-heavy and bottom-heavy arrangements.

e The thermo-nanofluid Lewis number (Ln) has stabilizing effect on the
onset of stationary convection for bottom-heavy arrangements.

e The medium porosity (g) has destabilizing effect on stationary
convection.

e The diffusivity ratio (N, ) has very low stabilizing effect on the onset

of stationary convection for bottom-heavy arrangements.

e Nanoparticle Rayleigh number (Rn) has destabilizing effect on the
onset of stationary convection.

e Necessary conditions for the occurrence of oscillatory convection

arelLe,Le >1.
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