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APPLICATION OF THE SECOND-KIND CHEBYSHEV

POLYNOMIALS FOR THE NONLINEAR AGE-STRUCTURED

POPULATION MODELS

S. NEMATI', Y. ORDOKHANI?, I. MOHAMMADI?

In this paper, we will introduce a method to find a numerical solution of
nonlinear age-structured population model using second-kind Chebyshev
polynomials. This method convert the nonlinear age-structured population models to
an equivalent differential equation. We introduce two variable second-kind
Chebyshev polynomials and their basic properties. These properties will be used to
reduce the obtained differential equation to the solution of a system of nonlinear
algebraic equations. Numerical examples show the accuracy and applicability of
our method.
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1. Introduction

Partial differential equations with integral condition serve as models in
many branches of physics and technology. There are many papers that deal with
the numerical solution of partial differential equations with integral condition (see
for example [2, 3, 4, 5,6, 7, 9, 10, 11, 12, 13, 19, 20, 21, 22]). The present work
focuses on the numerical solution of the nonlinear age-structured population

models using second-kind Chebyshev polynomials.
In this paper, we consider the following partial differential equation
ap(att'x) ; 8p;t,x) = —[d,(x)+d,(X)P(t)] p(t,Xx),0<t,0 < x< A,
X
with conditions

p(0,x)= py(x), 0<x< A,
p(1,0)= ['[b,(5)-b,(s)P(1)] p(tis)ds,  O<t,
P(t)= jOAp(t,s)ds, 0<t,
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where t and x denote time and age, respectively, P(t) denotes the total
population number at time t, p(t,x) is the age-specific density of individuals of

age x at time t, which means that J'Map(t,s)ds gives the number of individuals

that have age between a and a+ Aa at time t, d,(x) is the natural death rate
(without considering competition), d,(Xx)P(t) is the increase of death rate
considering competition, b,(x) is the natural fertility rate (without considering
competition), b,(x)P(t) is the decrease of fertility rate considering competition

and A is the maximum age that an individual of the population may reach.

Several numerical methods were proposed for solving the nonlinear age-
structured population models. The authors of [8] presented a reproducing kernel
method. In [1] forward difference schemes were proposed based on the Runge-
Kutta method. A spline algorithm was introduced for solving age-structured
population model in [14]. Kim and Park [15] developed an upwind scheme for
this problem. The authors of [17] presented a discontinuous Galerkin method.
Xiuying Li [23] used the variational iteration method for the nonlinear age-
structured population models and Yousefi et al. [24] used Bernstein polynomials
to find the approximate solution of the nonlinear age-structured population
models.

Orthogonal functions have been used to solve various problems. The main
characteristic of this technique is that it reduces problem to the solution of a
system of algebraic equations. In the present paper, the numerical solution of
problem (1)—(4) is computed by using two variable shifted second kind
Chebyshev orthogonal polynomials.

The paper is organized as follows: In Section 2, basic properties of two
variable second kind Chebyshev polynomials are presented and operational
matrices of these polynomials are introduced. In Section 3, we give an
approximate solution for problem (1)-(4). Numerical examples are given in
Section 4 to illustrate the accuracy of our method. Finally, concluding remarks are
given in Section 5.

2. Properties of two variable second kind Chebyshev polynomials

2.1. Definition and function approximation

Two variable second kind Chebyshev polynomials are defined on
[0,T]x[0,A] as

vy (£X)= U (-1, (Sx-1)
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here U; and U; are the well-known second kind Chebyshev polynomials

respectively of order i and j, which are defined on the interval [-1,1] and can

be determined with the aid of a recursive formula [18].
Shifted second kind Chebyshev polynomials on the interval [0,b] are

defined by:
4(1)= Ui(%t—l), i=012,..

and some of the main properties of these polynomials are as follows:
b

[ (tyt=1npqr "2 )
’ 0, n=2k+1,
[, (t')dt'= Z(nb+1) (-0 405 (D+ 5 4a(DL 42(=0,  (6)
[n/2]
A= 2 (0= 20 (0), )
$,(0)= (-1 (n+1) ©®)
m+n—{m-n|
¢m(t)¢n(t): Z ¢m+n—2k(t)' (9)

k=0
A function h(t,x) defined over [0,T] x[0,A] can be approximated using
the two variable second kind Chebyshev functions as

h(t’ X) ~ hm,n (t’ X) = iicijl//ij (t’ X) = CTl//(t’ X)’ (10)
where o
; = ﬂlz_?_ALTLAa)(t,x)h(t,x)z//ij(t,x)dxdt, (11)

— T
C =1[Cp+Co1s-+-1Con+C10sCipre-++Cinsev-1Crmo 1Crmiv-+-:Cn 1+ (12)

w(t,X)= [Woo (82X W (1,X)e e iWon (6,5 ) g (6, X), 07 (8, (6] T
(13)

and we have o(t,x) = Jl—(th—l)le—(%x—l)z.

In order to calculate the integral part of (11) we transform the intervals
[0,T] and [0,A] into the interval [-1,1] by means of the transformations

t'= Et—1, X'= Ex—l,
T A

and then use the second kind Gauss-Chebyshev quadrature formula [18].
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2.2. Operational matrices

In this section, we give some operational matrices of the two variable
second kind Chebyshev functions that will be used to solve the problem (1)-(4)
numerically.

The derivation of the vector w(t,x) defined by (13) with respect to t can

be obtained using equation (7) as:

AN < My (t.x), (14)
where M is the operational matrix of derivation with respect to t and is an

(m+21)(n+1)x(m+1)(n+1) matrix as

O O O O 0 O]
I O O O O O
v O 2l O O O O
Tl O 31 O O O
M, M, M, M, -~ ml O

where M, M,, M, and M, are I, O, 31 and O, forodd m and O, 21, O
and 41, for even m, respectively and | and O are the identity and zero matrix of

order n+1, respectively.
Also, the operational matrix of integration with respect to t can be

approximately obtained using equation (6) as

t
[ 0de = Py, (15)
where
I L o o0 o 0 o)
‘73| o i o o 0 o)
1 -1 1
Tl I =1 O =1 O 0 0
P:E 3 6 6
ey o =% o % 0 o)
4. . 8. 8.
(-1) I O O O O - -1
| m+1 2(m+1)

Analogously, we write
[y & x)dx = Qu(t.x) (16)
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where Q is the operational matrix of integration with respect to x as

Q 0O O - 0
O Q1 O .- 0O
O 0O O - Qf
such that
1 % 0 0 O 0 0T
=3 0 L 0 0 0 0
4 4
1 -1 1
= — 0 =0 0 0
Q1: 3 6
-1 0 -1 0 1 0 0
4 8 8
D" 9 0 00 ... =1 o
| n+1 2(n+1) |
Moreover, using equation (5) we obtain
A
joy/(t,x)dxzwy/(t,x), (17)
where W isan (m+1)(n+1)x(m+1)(n+1) matrix and is given by
W, O O - O
O w O o]
W=l0 0 W, o
O 0 O W,
and
A 0 0 - O]
0 0O
A
Wy=13
a 0 0 0
B 00 0]

where « and £ are respectively A and 0, forodd n and 0 and il for even
n n+

n.
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The following property of the product of two vectors (t,x) and ' (t,X)
will also be used. Let

w(t, )y (t,X)C =~ Cy(t,X), (18)

where C is defined by (13) and C isthe product operational matrix of dimension
(m+1)(n+1)x(m+1)(n+1) and is obtained using equation (9) as:

C=[c'’], i,j=012...,m,
where
i+j-i—j|

2
(i) =
chir= Z Cijak
k:max{Of%T}
in which, [ x| is the smallest integer not less than x and
h+l—h—I|

2
[Cs]hl = Z Cs(h+|—2k)1 h,l = 0,1,...,n.

k=max{0/ h+;n 13

For example with m=1 and n= 2, we have

Coo Cos Coz Cio Ci Ci»
Cor  Coo +Co2 Co1 Ciy Cyo+Cpp Ciy
6 — Coz Co Coo +Co2  C1» Ci Cjo +Cpp .
Cio Ciy Ci» Coo Co Co2
Ciy Gy +Cpp Cyy Cor  Coo +Co2 Cos
| Co Ciy Cio +Ci Cpp Co Coo * Coz |

3. Numerical solution of the nonlinear age-structured population
model

In this section, we introduce a numerical method for the solution of the
nonlinear age-structured population model using the two variable second kind
Chebyshev functions.

Integrating both sides of (1) with respect to x yields

Lx%dw p(t,X) = p(1,0)= ~['d,(s)p(t,s)ds - ['d,(s)P(t)p(t,5)ds, (19)

therefore, we have

O | O COMNOLOL S 20)
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Differentiating both sides of (20) with respect to t and integrating the
result in t yields:

p(t,x)—p(0,x)=
{ p(t',0) - j(ap(t PS) g (s)p(t's)+d,(s)P(E)p(t! s))ds} dt. (21)

Let us define

J.o ot’

Po(t,x)= 1xp(0,x),
b, (t,x)=1xb,(x),
b,(t,x)=1xb,(x), (22)
d,(t',x)=1xd,(x),
d,(t',x)=1xd,(x).
We approximate the functions in (22) and p(t,x) using the method
mentioned in Section 2 as

Po (6, X) = Cowr(t, X), (23)
p(t,x) = CTy(t, x), (24)
b, (t,X) = B/ w(t, X), (25)
b, (t,X) = B, (t, X), (26)
d, (t,x) =~ Dy (t', %), (27)
d, (t,x) = Dy (t,x), (28)

where C, C,, B,, B,, D, and D, are (m+1)(n+1)x1 vectors so that C is the
unknown vector and the other vectors are known. Using (23) - (28) and applying

(2) - (4) and (14) - (18) we obtain

PO = ['pt,9)ds ~CT [y (t,5)ds = CWy/(t,%),
i< (bt oy = Iot %(J.OA[bl(t',S)—bz(t’,S)( [ pcses | p(t’,s)dsjdt’
D (Bfl//(t $)— By (t',s)y (' s)W C}// (t' s)C}
U (BIw(t',s)- BIAp(t,s)p" (¥ S)C}dt'

U (B/C - BIAC (1’ s)}

= (BJC - BTAC)WJ (w(t',x))dt’
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= (B/C - BIAC WM [yt x)at
= (B CWMP — B; ACWMP )y/(t,x), (29)
[ 2P o= 2 lermvte b

= J'ti[CTMQt//(t’,x)]dt’

0 ﬁt'
- jotcTMQMy/(t',x)dt'
= C"MQMPy (t,x), (30)
E%[Lx(dl(t',s)p(t',sndz(t',s)P(t')p(t',S))dS]dt’
= (D] CQMP + D] ACQMP )y (t,x). (31)

Substituting (23), (24) and (29) - (31) into (21) we obtain
CT —C] —BJCWMP + B ACWMP +C"MQMP + D] CQMP + D ACQMP = 0,
which form a system of (m+1)(n+1) nonlinear equations and can be solved for
the elements of C using the well-known Newton’s iterative method.

4. Numerical examples

In this section, some examples are given to demonstrate the applicability
and accuracy of our method.

Example 1. As the first example, we consider the nonlinear age-
structured population model such that [24]

ap(a‘t’x)+ap‘atx’x)=—(11X+P(t))p(t,x), 0<t, 0<x<A,
p(0,x)=5(1-x)e ™, 0<x<A,
o(t,0)= 5P(t), O<t,

P(t)= [ p(ts)ds, 0<t,

where A= 5+2\/§ and A= oo and has the exact solution
A
tx)=5(1-x)e*—— |
P(tx)=5(1=x) 1+(A-1e™

We solved the problem by the presented method on intervals
[0,1] x[0,50] and [0,1] x[0,100] and the numerical results for the absolute error

are reported for some points in Tables 1 and 2. Note that our results are more
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accurate than the numerical results obtained by the method described in [24], for
the same example.

Table 1
Numerical results for Example 1 on [0,1] x [0,50] .
(x,t) m=3n=3| m=3n=6 | m=5n=10
(0,0) 5.0006 x10° | 5.0020x10° | 5.0031x10°
(0.1,5) 2.6457x10™* | 4.1539x10°° | 8.1220x10°
(0.2,10) 5.5558 x107° | 9.5689 x10°° | 2.7703x10°°
(0.3,15) 45484%x107° | 4.7293x10°° | 4.1162x10°
(0.4,20) 6.7508 x10™° | 4.3631x107° | 9.2406 x10°°
(0.5,25) 3.9826 x107° | 3.2274x10°° | 1.1944x10°°
(0.6,30) 8.2494x10°° | 3.7353x10°° | 6.0614x10°°
(0.7,35) 4.7405x107° | 2.8539x107° | 1.6998x 107
(0.8,40) 4.8328x107° | 3.2378x107° | 6.4385x10°°
(0.9,45) 1.8294x10°° | 6.0936 x107° | 7.7630x10°°
(1,50) 1.8177x107 | 2.6386 x10™* | 6.4436 x10™°
Table 2
Numerical results for Example 1 on [0,1] x [0,100] .
(x,t) m=3n=3 | m=3n=6 m=5n=10
(0,0) 5.0012x10° | 5.0042x10° | 5.0066 x 10°
(0.1,10) 5.4191x10™ | 7.6811x107° | 1.8137 x10™
(0.220) | 1.1245%x107 | 2.0059 x10™ | 5.9163x107°
(0.3,30) | 9.4468x107° | 9.9891x10~° | 8.7517 x10°°
(0.4,40) 1.3912x 107 | 9.1301x107° | 1.9614x10°°
(0.550) | 8.1788x10™° | 6.7952x10™° | 2.5331x10°°
(0.6,60) | 1.7277 x10™° | 7.8237x10™° | 1.2847 x10°°
(0.7,70) 0.7802x107° | 6.0001x107° | 3.6017 x10°°
(0.8,80) | 9.9517x107° | 6.7812x10™° | 1.3638 x10°°
(0.9,90) | 3.7848x107° | 1.2782x10™* | 1.6440x10°°
(1,100) 3.7456 x10™ | 5.5330x107* | 1.3644 x10™

Example 2. Consider the nonlinear age-structured population model

[8, 16, 23]
8p(t,x)+ap(t,x):

ot OX

—P(t)p(t,x), 0<t,

0<x<A,
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—X

e

p(0,x)= 0<x< A p(t,0) = P(t), 0<t,
A
P(t)= jo p(t,s)ds, 0<t,
where A= oo and the exact solution is p(t,x) = :eti N
e +

We approximate p(t,x) on intervals [0,1] x[0,20] and [0,1] x [0,100]

and present the absolute error for some points in Tables 3 and 4.

Numerical results for Example 2 on [0,1] x [0,20] .

(t,x) m=3n=3| m=3n=6|m=5n=10

(0,0) 2.8550x107" | 7.0906 x107? | 3.3142x10°°
(0.1,2) 3.1541x107% | 3.5338x107° | 3.7600x 107
(0.2,4) 2.2485x107? | 7.6334x107° | 6.8560x 107
(0.3,6) 5.5794x107% | 1.7086 x107 | 3.8607 x10™*
(0.4,8) 1.6298x1072 | 3.7663x107° | 1.2349x10™
(0.5,10) 1.1851x107% | 1.7733x107°% | 6.1912x10°°
(0.6,12) 1.1153x10* | 3.1816 x10° | 5.9603x10°°
(0.7,14) 1.1164x1072 | 1.8150x107° | 1.3415%x10™
(0.8,16) 1.2771x107% | 2.8152x107° | 1.6733x10™*
(0.9,18) 3.6156 x107° | 4.7402x107°| 2.0422x107*
(1,20) 4.6550x107% | 2.1177x1072| 1.4430x10°®

Numerical results for Example 2 on [0,1] x [0,100]

(t,x) m=3n=3| m=3n=6 | m=5n=10

(0,0) 4.7528 1071 | 4.1707 x107* | 3.7105x 107!
(0.1,10) 1.0664 x1072 | 1.5810x107° | 3.4392x107°
(0.2,20) 2.2299x107% | 3.9070x107° | 1.1415%x10°°
(0.3,30) 1.8486 x107% | 1.9381x107° | 1.6924 x10™*
(0.4,40) 2.7334x107° | 1.7799x107° | 3.7962x107*
(0.5,50) 1.6098 x107° | 1.3205x10°° | 4.9050x10™*
(0.6,60) 3.3667x10* | 1.5245x10°° | 2.4884x10°*
(0.7,70) 1.9204x107° | 1.1669x107° | 6.9773x10°°
(0.8,80) 1.9560x107° | 1.3214x10°° | 2.6424x10™*
(0.9,90) | 7.4213x10™* | 2.4888x 107 | 3.1856 x10~*
(1,100) 7.3595x10°° | 1.0775x107%| 2.6440x107°

Table 3

Table 4
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5. Conclusion

In this article we presented a numerical method to solve the nonlinear age-
structured population model numerically based on the second-kind Chebyshev
polynomials. The basic properties of these polynomials were employed to reduce
the problem to a set of nonlinear algebraic equations. The operational matrices of
the two variable second kind Chebyshev polynomials have many zeroes, hence,
make these polynomials computationally very attractive. Chebyshev coefficients
of the solution are found very easily by using the computer programs without any
computational effort and this process is very fast. Numerical examples show that
the new described method converges to the exact solution and has good results.
Example 1 shows that this method can be used when the mortality function is non-
integrable and discontinuous.
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