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APPLICATION OF THE SECOND-KIND CHEBYSHEV 
POLYNOMIALS FOR THE NONLINEAR AGE-STRUCTURED 

POPULATION MODELS 

S. NEMATI1, Y. ORDOKHANI2, I. MOHAMMADI3 

In this paper, we will introduce a method to find a numerical solution of 
nonlinear age-structured population model using second-kind Chebyshev 
polynomials. This method convert the nonlinear age-structured population models to 
an equivalent differential equation. We introduce two variable second-kind 
Chebyshev polynomials and their basic properties. These properties will be used to 
reduce the obtained differential equation to the solution of a system of nonlinear 
algebraic equations. Numerical examples show the accuracy and applicability of 
our method.   

Keywords: Nonlinear age-structured population model, Second-kind Chebyshev 
polynomials, Operational matrix, Partial differential equations. 

1. Introduction 

Partial differential equations with integral condition serve as models in 
many branches of physics and technology. There are many papers that deal with 
the numerical solution of partial differential equations with integral condition (see 
for example [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 19, 20, 21, 22]). The present work 
focuses on the numerical solution of the nonlinear age-structured population 
models using second-kind Chebyshev polynomials. 

In this paper, we consider the following partial differential equation 
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where t  and x  denote time and age, respectively, )( tP  denotes the total 
population number at time t , ),( xtp  is the age-specific density of individuals of 

age x  at time t , which means that dsstp
aa

a
),(∫

Δ+
 gives the number of individuals 

that have age between a  and aa Δ+  at time t , )(1 xd  is the natural death rate 
(without considering competition), )()(2 tPxd  is the increase of death rate 
considering competition, )(1 xb  is the natural fertility rate (without considering 
competition), )()(2 tPxb  is the decrease of fertility rate considering competition 
and A  is the maximum age that an individual of the population may reach. 

Several numerical methods were proposed for solving the nonlinear age-
structured population models. The authors of [8] presented a reproducing kernel 
method. In [1] forward difference schemes were proposed based on the Runge–
Kutta method. A spline algorithm was introduced for solving age-structured 
population model in [14]. Kim and Park [15] developed an upwind scheme for 
this problem. The authors of [17] presented a discontinuous Galerkin method. 
Xiuying Li [23] used the variational iteration method for the nonlinear age-
structured population models and Yousefi et al. [24] used Bernstein polynomials 
to find the approximate solution of the nonlinear age-structured population 
models. 

Orthogonal functions have been used to solve various problems. The main 
characteristic of this technique is that it reduces problem to the solution of a 
system of algebraic equations. In the present paper, the numerical solution of 
problem (1)–(4) is computed by using two variable shifted second kind 
Chebyshev orthogonal polynomials. 

The paper is organized as follows: In Section 2, basic properties of two 
variable second kind Chebyshev polynomials are presented and operational 
matrices of these polynomials are introduced. In Section 3, we give an 
approximate solution for problem (1)-(4). Numerical examples are given in 
Section 4 to illustrate the accuracy of our method. Finally, concluding remarks are 
given in Section 5. 

2. Properties of two variable second kind Chebyshev polynomials 

2.1. Definition and function approximation 

Two variable second kind Chebyshev polynomials are defined on 
][0,][0, AT ×  as  
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here iU  and jU  are the well-known second kind Chebyshev polynomials 
respectively of order i  and j , which are defined on the interval 1,1][ −  and can 
be determined with the aid of a recursive formula [18]. 

Shifted second kind Chebyshev polynomials on the interval ][0,b  are 
defined by:  
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and some of the main properties of these polynomials are as follows:  
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A function ),( xth  defined over ][0,][0, AT ×  can be approximated using 
the two variable second kind Chebyshev functions as  
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and we have .1)2(11)2(1=),( 22 −−−− x
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In order to calculate the integral part of (11) we transform the intervals 
][0,T  and ][0, A  into the interval 1,1][ −  by means of the transformations  

 1,2=1,2= −′−′ x
A

xt
T

t  

and then use the second kind Gauss-Chebyshev quadrature formula [18].  
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2.2. Operational matrices 
 
In this section, we give some operational matrices of the two variable 

second kind Chebyshev functions that will be used to solve the problem (1)–(4) 
numerically. 

The derivation of the vector ),( xtψ  defined by (13) with respect to t  can 
be obtained using equation (7) as:  

 ),,(=),( xtM
t

xt ψψ
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where M  is the operational matrix of derivation with respect to t  and is an 
1)1)((1)1)(( ++×++ nmnm  matrix as  
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where 1M , 2M , 3M  and 4M  are I , O , I3  and O , for odd m  and O , I2 , O  
and I4 , for even m , respectively and I and O  are the identity and zero matrix of 
order 1+n , respectively. 

Also, the operational matrix of integration with respect to t  can be 
approximately obtained using equation (6) as  
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Analogously, we write  
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0

xtQxdxt
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where Q  is the operational matrix of integration with respect to x  as  
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Moreover, using equation (5) we obtain  
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where W  is an 1)1)((1)1)(( ++×++ nmnm  matrix and is given by  
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where α  and β  are respectively 
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The following property of the product of two vectors ),( xtψ  and ),( xtTψ  
will also be used. Let  

 ),,(~),(),( xtCCxtxt T ψψψ ≈                                           (18) 
where C  is defined by (13) and C~  is the product operational matrix of dimension 

1)1)((1)1)(( ++×++ nmnm  and is obtained using equation (9) as:  
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3. Numerical solution of the nonlinear age-structured population 
model 

In this section, we introduce a numerical method for the solution of the 
nonlinear age-structured population model using the two variable second kind 
Chebyshev functions. 

Integrating both sides of (1) with respect to x  yields  
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 Differentiating both sides of (20) with respect to t  and integrating the 
result in t  yields:  
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            We approximate the functions in (22) and ),( xtp  using the method 
mentioned in Section 2 as  
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Substituting (23), (24) and (29) - (31) into (21) we obtain  
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which form a system of 1)1)(( ++ nm  nonlinear equations and can be solved for 
the elements of C  using the well-known Newton’s iterative method.  
 

4.  Numerical examples 
 
In this section, some examples are given to demonstrate the applicability 

and accuracy of our method. 
 Example 1. As the first example, we consider the nonlinear age-

structured population model such that [24]  
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We solved the problem by the presented method on intervals 
[0,50][0,1] ×  and [0,100][0,1] ×  and the numerical results for the absolute error 

are reported for some points in Tables 1 and 2. Note that our results are more 
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accurate than the numerical results obtained by the method described in [24], for 
the same example.  

Table 1 
Numerical results for Example 1 on [0,50][0,1] × . 

 ),( tx           3=m  3=n    3=m  6=n   5=m  10=n  

(0,0)    0105.0006 ×   0105.0020×   0105.0031×   
(0.1,5)    4102.6457 −×  5104.1539 −×   5108.1220 −×   
(0.2,10)    5105.5558 −×   5109.5689 −×   5102.7703 −×   
(0.3,15)    5104.5484 −×   5104.7293 −×   6104.1162 −×   
(0.4,20)    5106.7508 −×   5104.3631 −×   6109.2406 −×  
(0.5,25)    5103.9826 −×   5103.2274 −×   5101.1944 −×   
(0.6,30)    6108.2494 −×   5103.7353 −×   6106.0614 −×   
(0.7,35)    5104.7405 −×   5102.8539 −×   6101.6998 −×   
(0.8,40)    5104.8328 −×   5103.2378 −×   6106.4385 −×   
(0.9,45)    5101.8294 −×   5106.0936 −×   6107.7630 −×   
(1,50)    4101.8177 −×   4102.6386 −×  5106.4436 −×   

 Table 2 
Numerical results for Example 1 on [0,100][0,1] × .             

),( tx  3=m  3=n  3=m  6=n  5=m  10=n  

(0,0)  0105.0012×  0105.0042×  0105.0066 ×  
(0.1,10)  4105.4191 −× 5107.6811 −× 4101.8137 −×  
(0.2,20)  4101.1245 −× 4102.0059 −× 5105.9163 −×  
(0.3,30)  5109.4468 −× 5109.9891 −× 6108.7517 −×  
(0.4,40)  4101.3912 −× 5109.1301 −× 5101.9614 −×  
(0.5,50)  5108.1788 −× 5106.7952 −× 5102.5331 −×  
(0.6,60)  5101.7277 −× 5107.8237 −× 5101.2847 −×  
(0.7,70)  5109.7802 −× 5106.0001 −× 6103.6017 −×  
(0.8,80)  5109.9517 −× 5106.7812 −× 5101.3638 −×  
(0.9,90)  5103.7848 −× 4101.2782 −× 5101.6440 −×  
(1,100)    4103.7456 −×  4105.5330 −×  4101.3644 −×  

  
Example 2. Consider the nonlinear age-structured population model                

[8, 16, 23]  
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We approximate ),( xtp  on intervals [0,20][0,1] ×  and [0,100][0,1] ×  
and present the absolute error for some points in Tables 3 and 4.  

 Table 3 
Numerical results for Example 2 on [0,20][0,1] × .  

 ),( xt           3=m  3=n    3=m  6=n   5=m  10=n  

(0,0)    1102.8550 −×   2107.0906 −×   3103.3142 −×   
(0.1,2)    2103.1541 −×   3103.5338 −×   3103.7600 −×   
(0.2,4)    2102.2485 −×   3107.6334 −×   4106.8560 −×   
(0.3,6)    3105.5794 −×   3101.7086 −×   4103.8607 −×   
(0.4,8)    2101.6298 −×   3103.7663 −×   4101.2349 −×   
(0.5,10)    2101.1851 −×   3101.7733 −×   5106.1912 −×   
(0.6,12)    4101.1153 −×   3103.1816 −×   5105.9603 −×   
(0.7,14)    2101.1164 −×   3101.8150 −×   4101.3415 −×   
(0.8,16)    2101.2771 −×   3102.8152 −×   4101.6733 −×   
(0.9,18)    3103.6156 −×   3104.7402 −×   4102.0422 −×   
(1,20)    2104.6550 −×   2102.1177 −×   3101.4430 −×   

Table 4 
 Numerical results for Example 2 on [0,100][0,1] ×  

 ),( xt           3=m  3=n    3=m  6=n   5=m  10=n  

(0,0)    1104.7528 −×   1104.1707 −×   1103.7105 −×   
(0.1,10)    2101.0664 −×   3101.5810 −×   3103.4392 −×   
(0.2,20)    3102.2299 −×   3103.9070 −×   3101.1415 −×   
(0.3,30)    3101.8486 −×   3101.9381 −×   4101.6924 −×   
(0.4,40)    3102.7334 −×   3101.7799 −×   4103.7962 −×   
(0.5,50)    3101.6098 −×   3101.3205 −×   4104.9050 −×   
(0.6,60)    4103.3667 −×   3101.5245 −×   4102.4884 −×   
(0.7,70)    3101.9204 −×   3101.1669 −×   5106.9773 −×   
(0.8,80)    3101.9560 −×   3101.3214 −×   4102.6424 −×   
(0.9,90)    4107.4213 −×   3102.4888 −×   4103.1856 −×   
(1,100)    3107.3595 −×   2101.0775 −×   3102.6440 −×   
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5.  Conclusion 

In this article we presented a numerical method to solve the nonlinear age-
structured population model numerically based on the second-kind Chebyshev 
polynomials. The basic properties of these polynomials were employed to reduce 
the problem to a set of nonlinear algebraic equations. The operational matrices of 
the two variable second kind Chebyshev polynomials have many zeroes, hence, 
make these polynomials computationally very attractive. Chebyshev coefficients 
of the solution are found very easily by using the computer programs without any 
computational effort and this process is very fast. Numerical examples show that 
the new described method converges to the exact solution and has good results. 
Example 1 shows that this method can be used when the mortality function is non-
integrable and discontinuous. 
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