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FURTHER RESULTS ON DISTANCE-BALANCED GRAPHS

M. Tavakoli!, F. Rahbarnia?, A. R. Ashrafi3

Distance-balanced graphs are graphs in which for every edge e = uv
the number of vertices closer to u than to v is equal to the number of vertices
closer to v than to u. In this paper, we study this property under some graph
operations. Also, we obtain lower and upper bounds on some topological indices
of distance-balanced graphs.
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1. Introduction

The distance d(u,v) between the vertices u and v of a graph G is equal to
the length of a shortest path that connects u and v. For an edge e = ab of G, let

n%(e) be the number of vertices closer to a than to b. In other words, nG(e) =

a
{u € V(G)|d(u,a) < d(u,b)}|. In addition, let n§ (e) be the number of vertices with
equal distances to a and b, i. e., n§(ab) = |[{u € V(G)|d(u,a) = d(u,b)}|. A graph
G is said to be distance-balanced, if n$(e) = nf(e), for each edge e = ab € E(G),
see [1, 7, 17] for details. These graphs first studied by Handa [6] who considered
distance-balanced partial cubes. In [9], Jerebi¢, Klavzar and Rall studied distance-
balanced graphs in the framework of various kinds of graph products.

The Wiener index, W, is the first distance-based graph invariant to be used
in chemistry [18]. For a graph G, it is equal to the count of all shortest distances
in G. In other words, W(G) = %Z{%U}QV(G) d(u,v). Suppose f = ab and g = wv
are arbitrary edges of G. Define d¢(u,ab) = Min{d(u,a),d(u,b)} and D(f,g) =
Min{de(u, f),de(v, f)} = Min{dc(b, g),de(a, g)}. The edge Wiener index of a graph
G is given by W.(G) = %Z{e,f}gE(G) D(e, f), see [11, 21] for details.

Following Yan et al. [19], the graph R(G) is obtained from G by adding a new
vertex corresponding to each edge of GG, then joining each new vertex to the end
vertices of the corresponding edge.

The disjunction GV H of graphs G and H is the graph with vertex set V(G) x
V(H) such that (up,v1) is adjacent to (ug,v2) whenever ujus € E(G) or vive €
E(H), see [10]. A regular graph is a graph where each vertex has the same number
of neighbors. A regular graph with vertices of degree k is called a k—regular graph
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or regular graph of degree k. The eccentricity of a vertex v is the greatest geodesic
distance between v and any other vertex. The diameter of a graph is the maximum
eccentricity of any vertex in the graph. The diameter of the graph G is denoted by
diam(G). A graph G is called nontrivial if |[V(G)| > 1. Our other notations are
standard and taken mainly form [3, 8, 15, 16, 20].

2. Main Results

All graphs considered here are finite and simple. In this section, we study the
conditions under which some graph operations produce a distance-balanced graph.

Proposition 2.1. Let G be a nontrivial connected graph. Then R(G) is distance-
balanced if and only if G is a path with |V (G)| = 2.

Proof. Let G be a path with |V(G)| = 2. Then it is clear that R(G) is distance-
balanced. Conversely, we assume that R(G) is a distance-balanced graph, where
|[V(G)| > 2. Then, there exists an edge e = uv of G such that degg(u) > 1 or
degi(v) > 1. Without loss of generality, we my assume that u is the end vertex of
e with degg(u) > 1. Also, we assume that x is a new vertex corresponding to edge
e of G. Then, nf(G)(xu) = 1 and ni@ (xu) > 1. Thus nf© (xu) # ny R(@) (zu).
Therefore R(G), |V (G)| > 2, is not a distance-balanced graph and hence G is a path
with |[V(G)| = 2. O

In what follows, t(e), e € E(G), denotes the number of triangles containing
edge e.

Proposition 2.2. Let G and H be arbitrary, nontrivial and connected graphs. Then
G V H is distance-balanced if and only if G and H are reqular graphs.

Proof. We first assume that G and H are regular graphs. It is clear that, the
diameter of GV H is equal to 2. Therefore, for every edge e = (a,z)(b,y) € E(GVH),
we have:

Gy (€) = degavi ((a,2)) — t(e),nG (€) = degaun (b, y)) — t(e).

On the other hand, it follows from the structure of G V H that for each
vertex (a,b) € V(G V H), degovu((a,b)) = |V(H)|dega(a) + |V(G)|degn (b) —
degc(a)degp (b). Since G and H are regular graphs, for every (a,x)(b,y) € E(GVH),
we have n(GVI{ (e) = ngvyl){ (e) and thus G V H is distance-balanced. Conversely, as-

sume that G vV H is distance-balanced. It is clear that, for x € V(H) and every

ab € E(G), e = (a,z)(b,z) € E(GV H). Since GV H is distance-balanced this

implies that n(G If (e) = n(Gb\fyf){ (e). On the other hand, it follows from the structure

of GV H that

nGH () = degav((a,2)) — t(e) = |V (H)|dege (a)

) -
+|V(G)|degn (z) — dege(a)degr (x) — t(e),
nGull(e) = degavu((b, 7)) — t(e) = |V (H)|dega(b)
+|V(G)|degn (z) — dega(b)degr () — t(e).
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The two above equations imply degg(a) = dega(b). Since G is connected
this implies that G is r-regular for some r. In a similar way we can see that H is
k-regular, for some k. O

Suppose G and H are graphs with disjoint vertex sets. Following Doslic [4],
for given vertices y € V(G) and z € V(H) a splice of G and H by vertices y and
z, (G - H)(y; z), is defined by identifying the vertices y and z in the union of G
and H. Similarly, a link of G and H by vertices y and z is defined as the graph
(G ~ H)(y; z) obtained by joining y and z by an edge in the union of these graphs.

Proposition 2.3. Suppose G and H are rooted graphs with respect to the rooted
vertices of a and b, respectively. The graph (G - H)(a;b) is distance-balanced if and
only if for each e = wv € E(G) and f = zy € E(H) the following conditions are
satisfied:

G o [VUDI=1if d,a) < d(u,a)
¢(e) n(e) {0 AR )
’I’LH _ nH — ’V(G” -1 Zf d(yv b) < d($> b)

Proof. In the graph (G-H)(a;b), we put r = a = b. We partition edges of (G-H)(a;b)
into the following two subsets:
A = {e=w € E(G.H)|d(v,r) < d(u,r)},
B = {e=wve E(G.H)|d(v,r)=d(u,r)}.
We first assume that (G - H)(a;b) is distance-balanced. Suppose e = uv is an

arbitrary edge of G. Then e € A or e € B and not both. If e € A then by our
hypothe51s nGH(e) = nGH(e). On the other hand, by definition of splice, nG " (e) =

nS(e) + |V(H )]—1andnGH() ()Thusn(e)—n()—HV( )]—1and
so nG(e) — nG(e) = |V(H)| — 1. Next we assume that e € B. Again by our
hypothesis, nGH (e) = nGH (e) and by definition of splice we have, nG# (e) = nG(e)

and n&H (e) = nG(e). This implies that nC(e) = nG(e). Therefore, the equation (1)
is satlsﬁed. In a similar way we can see that, for every edge e of H the equation (2)
is satisfied.

Conversely, suppose that Eqgs. (1,2) are satisfied and e = uv € A is arbitrary.
Then e € E(G) or e € E(H) and not both. If e € E(G) then nGH(e) = nG(e)
and nG He) = f(e) +|V(H)| — 1. This implies that nG He) — n& H(e) = ng(e) —
(n$ (e )HV( )| = 1). Since n$(e) —nS(e) = |V(H )|—1 ”GH( ) ngH(e) =0,
as desired Suppose that e € E(H) Then n& H(e) nf(e) and nGH (e) = nfl(e) +
V(G)| — 1, so nGH(e ) nGH(e) = nf(e ) (nfl(e) + |V(G)| — 1). But by the
hypothesis, nH( ) —nll(e) = |V(G)| -1, so an( ) —nGH(e) = 0. We now assume
that e € B is arbitrary. If e € E(G) then by n&" H(e) =n&(e) and nGH (e) = nG(e)
we have nGH(e) — nGH(e) = nC(e) —nG(e) = 0. If e € E(H) then by nG-H (e) =
nfl(e) and nGH(e) = n!l(e) we have nGH(e) nf (e) = nfl(e) —nll(e) = 0.
Therefore, for every edge e = uv € B, n{H(e) = nSH(e) and for every edge

e=uv € E(G -H), nGH(e) = nGH(e). This completes the proof. O



80 M. Tavakoli, F. Rahbarnia, A. R. Ashrafi

Corollary 2.1. Suppose G1,Go,...,G, are connected rooted graphs with root ver-
tices r1, ..., Tn, respectively. Then

(G1G2 ..... Gn)(rl’fr2, 7TTL)

is distance-balanced if and only if for each i, 1 <i < n, and for each e = uv € E(G;)
the following system of equations are satisfied:

Gi(e) = 2=tz V(G = (n=1) if d(v,rs) < d(u, )
0 if d(v,r) = d(u,r,)

Proof. Induct on n. O

Proposition 2.4. Suppose G and H are rooted graphs with respect to the rooted
vertices of a and b, respectively. The graph (G ~ H)(a;b) is distance-balanced if
and only if |V(G)| = |V(H)| and for each e = uwv € E(G) and f = xy € E(H) the
following conditions are satisfied:

Gy — {|V<H>| if d(v,a) < d(u,a)
! d

_ V@I if dly,b) < d(w,0)
d (N =ny() = { (o) = dle. b

Proof. The proof is similar to Proposition 2.3 and so omitted. ]

Corollary 2.2. Suppose G1,Go,...,G, are connected rooted graphs with root ver-
tices ri, ..., Ty, respectively. Then (G1 ~ Gg ~ -+ ~ Gp)(r1;72;++ ;1r0) is distance-
balanced if and only if for each i, 1 < i < n, |V(G;)| = |[V(G1)| and for each
e =uv € E(G;) the following system of equations are satisfied:

Gi(e) _ Z?:l,j;éi ‘V(G])’ iof d(’U?Ti) < d(uv ri) )
0 if d(v,r;) = d(u,r;)

Proof. Induct on n. O

We denote the complete graph and the cycle of order n by K;, and C},, respec-
tively. The complement or inverse of a graph G is a graph G on the same vertices
such that two vertices of G are adjacent if and only if they are not adjacent in G.

Proposition 2.5. Let G be a distance-balanced graph and let e be an edge of G.
Then G + e is not distance-balanced.

Proof. Let G be a distance-balanced graph and let e be an edge of G. Set H = G +e.
Suppose H is distance-balanced graph. Then by Proposition 3.1 of [9], H — e is not
distance-balanced, which is a contradiction with the fact that G = H —e is distance-
balanced. O
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We now obtain lower and upper bounds for distance-balanced graphs under
some graph invariants. The Narumi-Katayama index was the first graph invariant
defined by the product of some graph theoretical quantities applicable in chemistry.
The Narumi-Katayama index of a graph G is given by NK(G) = HveV(G) deg(v),
[5, 13].

Proposition 2.6. Let G be a connected distance-balanced graph with n > 2 vertices.
Then

2" < NK(G) < (n—1)",
where the left equality holds if and only if G = C), and the right equality holds if and
only if G =2 K,,.

Proof. Since G is a connected distance-balanced graph with n > 2 vertices. Then
for every vertex v € V(G), we have 2 < deg(G) < n— 1. Thus 2" < NK(G) <
(n—1)". O

Proposition 2.7. Let G be a connected distance-balanced graph with n > 2 vertices
and G 2 K,,,C,,. Then

2" x 32 < NK(G) < (n—2)",
where the right equality holds if and only if G is a (n — 2)-regular graph.

Proof. The left inequality is clear. On the other hand, there is not a connected
distance-balanced graph with n vertices that has k vertices of degree (n — 1), (0 <
k < n). Therefore, if G is a connected distance-balanced graph and G 2 K, then
for each v € V(G), deg(v) < (n —2). Also note that, every (n — 2)-regular graph is
a connected distance-balanced graph and this completes the proof. ]

Proposition 2.8. Let G be a connected distance-balanced graph with n wvertices.
Then

n(n—1) n./(n
S = _
s <W(G) < [2](<2> EG)]) + |E(G)],
where the left equality holds if and only if G =2 K.

Proof. 1t is clear that W(K,) < W(G). Let G be a connected distance-balanced
graph with n vertices. If, there are two vertices a and b of G such that d(a, b) = [§]+1
and a = ag,a1,ao, ..., a[s], apn)41 = b is the shortest path connecting a and b, then,
for the edge aa; of G, we have ng,(aay) > [5] + 1. Therefore, n,(aa1) < ng, (aar)
which is contradict by the fact that G is distance-balanced. Thus, diam(G) < [5].

2
This completes the proof. ]

Proposition 2.9. Let G be a connected distance-balanced graph with n vertices and
G 2 K. Then %2 < W(G) with equality if and only if G is a (n — 2)-regular graph.

Proof. The proof is similar to Proposition 2.7 and so it is omitted. g

Our calculations on graphs with a small number of vertices suggest the fol-
lowing conjecture:
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Conjecture 2.1. If G be a connected distance-balanced graph with n > 2 vertices.
Then

W(G) < W(Cy).

Suppose G is a graph. The first Zagreb index of G is defined as M;(G) =
ZUEV(G) deg®(v) and the second Zagreb of G is given by

E deg(u)deg(v),

weE(G)
see for details [2, 12, 14].

Proposition 2.10. Let G be a connected distance-balanced graph with n > 2 ver-
tices. Then

4n < Mi(G) < n(n — 1)
and the lower and upper bounds are attained if and only if G = C,, or G =& K,,
respectively.

Proof. Since G is a connected distance-balanced graph with n > 2 vertices, for every
vertex v € V(G), we have 2 < deg(G) < n — 1. Summing over all vertices, we get

44V (G Z deg?(u) < n(n —1)%
uGV(G)

which proves the result. ]

Proposition 2.11. Let G be a connected distance-balanced graph with n > 2 vertices
and G 2 K,,,C,,. Then

18 +4(n — 2) < My (G) < n(n —2)%,
where the right equality holds if and only if G is a (n — 2)-regular graph.

Proof. The proof is similar to Proposition 2.7 and so omitted. O

Proposition 2.12. Let G be a connected distance-balanced graph with n > 2 ver-
tices. Then
n(n —1)3

2 )
and the lower bound is attained if and only if G = C,,, for some n. Moreover, the
upper bound is attained if and only if G = K,.

dn < M2(G) <

Proof. Since G is a connected distance-balanced graph with n > 2 vertices, for every
vertex v € V(G), we have 2 < deg(G) < n—1and |V(G)| < |E(G)| < (5). Summing
over all edges, we get

4V (G Z deg(u)deg(v) <
quE(G)

n(n —1)3
2 )

which proves the result. [l
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Proposition 2.13. Let G be a connected distance-balanced graph with n vertices and
3

G 2 K,,. Then M3(G) < n("z_Q) , with equality if and only if G is a (n — 2)-regular

graph.

Proof. The proof is similar to the proof of Proposition 2.7. U

Proposition 2.14. Let G be a connected distance-balanced graph with n vertices.

Then

W.(6) < 51 (IB@IIEE)] +1) - Mi(@)).

Proof. Suppose G is a connected distance-balanced graph with n vertices. Then
diam(G) < [5] and hence mazs ep@{D(e, f)} < [5]. On the other hand, the

number of edge-pairs which have zero distance is equal to Y, (degévi)) and this
completes the proof. O

Corollary 2.3. Let G be a connected distance-balanced graph with n vertices. Then

1.n
W) < 5 EI(IB@IIEG)] +1) - 4n).
2°2
Proof. The proof follows from Propositions 2.10 and 2.14. O
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