
U.P.B. Sci. Bull., Series A, Vol. 84, Iss. 1, 2022                                                  ISSN 1223-7027 

APPLICATIONS OF A PERTURBED LINEAR VARIATIONAL 
PRINCIPLE VIA P-LAPLACIAN 

Irina MEGHEA1 

In this paper, starting from Ghossoub-Maurey linear principle, an existence 
result is obtained and another one on existence and uniqueness for a certain 
minimization problem involving the p-Laplacian. This is a generalization of a namely 
result due to Brezis and Nierenberg which is followed by some applications to 
problems evolved from modeling of some phenomena of real world. The novelty of 
this work consists in obtaining the above cited generalization and the proposal of 
appropriate applications. 

 

Keywords: Ghossoub-Maurey linear principle, minimization problem, Dirichlet 
problem, p-Laplacian. 

1. Introduction 

This work is based on a perturbed variational principle. In the frame of 
Variational Calculus, the elementary proposition 
 “If  ϕ : X → R, X a real normed space, has in x0 a local minimum point 
(hence in particular a global minimum point) and it is Gâteaux differentiable at x0, 
then wϕ′ (x 0) = 0” (x0 is critical point) 
is called variational principle ([1]; w comes from weak). 
 This is the reason why the neighbour propositions, for instance those in 
which X is replaced by a metric space, or in which the statement “ wϕ′ (x0) = 0” is 

replaced by “ ε≤ϕ′ ε)(w x , ε > 0 any“ etc., are called variational principles 
(perturbed). The adjective “perturbed” is imposed by the fact that not the function 
ϕ is minimized, but a function of the form ϕ + ε ε−⋅ x)(  (Ekeland, [1]), or of 

more general form ϕ + ε∑
∞

=

⋅µ
1n

2
nn ),(d v (Borwein - Preiss, [2]), or of even more 

general form ϕ + f  (Deville - Godefroy - Zizler, [3]),  f  having some given 
properties (the second term is the perturbation function). 
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The Ekeland principle is a perturbed variational principle discovered in 
1972 ([1]) and nowadays, after more than 30 years, it was proved to be the 
foundation of the modern Variational Calculus (see, for instance, the minimax 
theorems in Banach spaces or in the Finsler manifolds, in which the key step of 
demonstration is made by the application of the Ekeland principle). As referring to 
the applications, these are numerous and diverse: the geometry of Banach spaces, 
nonlinear analysis, differential equations and partial differential equations, global 
analysis, probabilistic analysis, differential geometry, fixed point theorems, 
nonlinear semigroups, dynamical systems, optimization, mathematical program-
ming, optimal control. 
 We cannot close this part of Introduction without the confession of Ekeland 
([4]): 
 “The grandfather of these all is the celebrated 1961 theorem of Bishop and 
Phelps that the set of continuous linear functionals on a Banach space E, which 
attain their maximum on a prescribed non void closed convex bounded subset X ⊂ 
E, is norm-dense in E*”. 

This Bishop-Phelps theorem can be found in [5]. 
A special kind of perturbed variational principle is Ghossoub-Maurey linear 

principle being one of the Ghossoub-Maurey theorems which can be found in [6]. 
In this paper, we apply this result to generalize at p-Laplacian a minimization 
problem from [7]. The author gave in [8] another generalization to p-pseudo-
Laplacian of the same minimization problem from [7]. 

As regarding the p-Laplacian, its huge importance is topical and we can see 
this fact in [9], [10] and many other recent works. Problems involving p-Laplace 
operator are subject of intensive studies as they illustrate very well many of 
phenomena that occur in nonlinear analysis. Among their applications are singular 
and nonsingular boundary value problems which appear in various branches of 
mathematical physics. They arise as a model example in the fluid dynamics [11], 
[12], glaciology [13]; stellar dynamics [14]; in the theory of electrostatic fields [15]; 
in the more general context in quantum physics ([16], [17]); in the nonlinear 
elasticity theory as a basic model ([18], [19]); and many others (see e.g. [20]). The 
partial derivatives equations (PDEs) involving p-Laplacian are considered in 
differential geometry in the study of critical points for p-harmonic maps between 
Riemannian manifolds ([21], [22]) and the eigenvalue problems for p-Laplacian on 
Riemannian manifolds serve for estimations of the diameter of the manifolds [23]. 
Eigenvalue problems involving p-Laplacian are applied in functional analysis to 
derive sharp Poincaré and Writinger type inequalities ([24], [25]), Sobolev 
embeddings and isoperimetric inequalities ([26]), [27], [20]). Geometric properties 
of p-harmonic functions play significant role in the theory of Carnot-Carathéodory 
groups like Heisenberg group (see e.g. [28]) and in the analysis on metric spaces 
(see [29], [30] and references therein). 
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2. About Ghossoub-Maurey linear principle 

In this section, we present the Ghoussoub-Maurey linear principle and 
highlight some results from which it is obtained together with some auxiliary 
theorems and propositions with necessary comments. 
  Definition. Let X be real normed space and C, D with C ⊂ D nonempty 
subsets of X *. C is strict w-Hδ set in D resp. strict w*-Hδ set in D if 

                                                   D \ C =
∞

=1n
nK ,          (1) 

dist (Kn , C) > 0, Kn convex and weakly compact resp. ∗-weakly compact. 
  For instance, 
  Proposition 1 Any nonempty closed set C of a separable reflexive space X, 
C ≠ X, is strict w-Hδ set in X. 
  In particular, if φ : X → (− ∞, + ∞] is l. s. c. and proper, then the epigraph 
of φ in X × R is strict w-Hδ set in X × R. 
  Let X be reflexive space and C, D subsets of X *, C ⊂ D. Set 

M (C, D) : = {x ∈ X : ∃ ξ ∈ C so that Jx (ξ) ≥ Jx (η) ∀ η ∈ D}, 
otherwise expressed, M (C, D) is the set of x from X for which Jx is upper bounded 
on D and the least upper bound is attained at a point of C, J the Hahn imbedding of 
X in X **. So, X being reflexive, J is an isomorphism of vector spaces which 
preserves the norms. 
  In the following, to abridge writing, sometimes x designates Jx. 
  Retain that if C is *-weakly compact, M (C, D) is closed. 
  Notations. BX (x0 , r) ≡ the closed ball centred in x0 of radius r in the normed 
space X. 
  BX ≡ BX (0,1). 
  𝐸𝐸

∗
≡ the closure of the subset E from X * for the *-weak topology. 

  Pass to the auxiliary propositions. 
  Proposition 2 Let X be reflexive space, D ⊂ X * and K ⊂ D, K convex 
*-weakly compact. If  

BX (x, α) ⊂ M(K, D), 
then, for any ε > 0, 

B(D, Jx, ε) ⊂ K + α
ε

BX* . 

In particular, when  C ⊂ D ⊂ conv ∗C, we have 
dist (K, C) = 0. 

  Proposition 3 Let X be reflexive space, C ⊂ X * nonempty and U ⊂ X 
nonempty open having the property 

sup Jx (C) < + ∞ ∀x ∈ U. 
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Then Jx, for any x from U, is upper bounded on conv ∗C and attains its least upper 
bound. 
  Proof.  Set D : = conv ∗C. We have 
                                                 sup Jx (C) = sup Jx (D)           (2) 
[ξ ∈ conv C ⇒ ξ = λ1 ξ1 + λ2 ξ2 , ξ1 , ξ2 ∈ C, λ1 + λ2 = 1, λ1 , λ2 ≥ 0 ⇒ Jx (ξ) = 
λ1 Jx (ξ1) + λ2 Jx(ξ2) ≤ sup Jx (C); ξ ∈ D ⇒ ∃ ξn ∈ conv C, ξ n 

 ∗-weak 
�⎯⎯⎯⎯⎯⎯� ξ ⇒ ξ n (x) 

→ ξ(x), ξ n (x) ≤ sup Jx (C) ∀n ≥ 1, hence ξ(x) ≤ sup Jx (C)] 
and so (3) sup Jx (D) < + ∞ ∀x ∈ U, the first assertion is proved. 
Pass to the second assertion. Fix x from U, ∃ ε > 0 with x + εz ∈ U ∀z in BX. Then  

sup J(x + εz)(D) = sup (Jx + εJz)(D) < + ∞ ∀z ∈ BX ((3)), 
consequently, using once again (3), 
                                                  sup Jz (D) < + ∞ ∀z ∈ BX ,           (4) 
which implies (5) sup Jz (D) < + ∞ ∀ z ∈ X [for z any fixed, z ≠ 0 replace in (4) z 

by |||| z
z

, Jy (ξ) = ξ(y)]. Replacing z by – z in (5) one finds (6) inf Jz (D) > − ∞ ∀z 

∈ X. But X is reflexive, hence (5) and (6) express that D is weakly bounded, 
consequently D is even bounded. D being also *-weak closed, it is *-weak compact 
([47], pp. 144), hence the conclusion by applying Weierstrass theorem. � 
  Remark. The proposition 3 is Lemma 2.7 from [6], Ch. 2. The proof of this 
one cannot be considered here being not correct. For this reason, the author gave in 
this place the approipriate demonstration. 
  Proposition 4 Let X be reflexive space, C ⊂ X* nonempty and U nonempty 
open from X so that 

sup Jx (C) < + ∞ ∀x ∈ U. 
  If C is strict w*-Hδ set in D: = conv∗C, then the set V : = {x ∈ U : Jx attains 
sup Jx (D) in C} includes a set of Gδ type2 dense in U. 
  Proposition 5 Let X be reflexive space, C subset of X* separable, 
D : = conv∗C and U nonempty open subset of  X so that sup Jx (C) < +∞ ∀x ∈ U. 
Suppose that M(C, D) includes a dense and of  Gδ type subset of  U. 
  Then, for any K ⊂ D *-weakly compact with K ∩ C = ∅ and for any ε > 0, 
the set G(K, ε) : = {x ∈ U : ∃ r > 0 so that 𝐵𝐵

∗
(D, Jx, r) ∩ K = ∅ and diam 𝐵𝐵

∗
(D, Jx, 

r) < ε} is open and dense in U. 
  Theorem. Let X be reflexive space, C separable subset of  X * which is strict 
w*-Hδ set in D : = conv∗C and U open subset of  X so that sup Jx (C) < + ∞ ∀x ∈ 
U. Then 
  (I) The set {x ∈ U : Jx strongly exposes D from above at a point of  C} is of  
Gδ type and dense in U; 

 
2 A set of Gδ type means a set which is a countable intersection of open sets. A set of Fδ type means 
a set which is a countable union of closed sets. 
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  (II) If φ : C → (− ∞, + ∞] is proper lower semicontinuous and φ + Jx is, ∀x 
from X, bounded from below on C, then the set {x ∈ X : φ + Jx strongly exposes C 
from below} is of  Gδ type and dense in X ([6]). 

  Proof. (I). According to the hypothesis, D \ C = 
∞

=1n
nK , Kn convex 

*-weakly compact, dist (Kn , D) > 0. M(C, D) includes a subset of Gδ type dense in 
U (Proposition 4), but then, for each n from N, the set Vn : = G(K1 ∪ K2 ∪ ... ∪ Kn, 

n
1

)  is open and dense in U (Proposition 5), consequently 
∞

=1n
nV  is dense in U 

(relativized Baire theorem) and it remains only to observe that 
∞

=1n
nV = {x ∈ X : Jx 

strongly exposes D from above at a point of C}. 
  (II). C × R, separable subset of X * × R, is a strict w*-Hδ set in D × R and 
then, φ being l. s. c., the epigraph epi φ in C × R (nonempty set, φ is proper) is a 
strict w*-Hδ set in D × R and hence also in conv ∗epi φ. W : = {(x, α) : x ∈ X, α < 
0} is open in X × R and sup (Jx, α)(epi φ) < + ∞ ∀(x, α) ∈ W [(Jx, α), continuous 
linear functional, acts on C × R by the rule (Jx, α)(ξ, λ) = Jx(ξ) + αλ]. Indeed, Jx(ξ) 

+ αλ ≤ Jx(ξ) + αφ(ξ), ∃ a in R so that J α
x (ξ) + φ(ξ) ≥ a ∀ξ ∈ C (the hypothesis), 

hence Jx(ξ) + αφ(ξ) ≤ αa ∀ξ ∈ C. Show that for each ε > 0 ∃ y0 with ||y0|| ≤ 2ε and 
φ + Jy0 strongly exposes C from below, which is enough to validate (II). Apply (I), 
∃ (xε , αε) in W so that 
                                               ||(xε , αε) − (0, −1)|| ≤ ε           (7) 
((0, −1) ∈ W !) and (Jxε , αε) strongly exposes epi φ from above in a point (ξ0 , λ0). 
Then ∀(ξ, λ) from epi φ with ξ ≠ ξ0 we have 

Jxε (ξ0) + αε λ0 > Jxε (ξ) + αε λ , 

consequently taking  y0 : =
ε

ε
α
x

 we have in particular 

φ(ξ 0) + Jy0 (ξ0) < φ(ξ) + Jy0 (ξ) ∀ξ ∈ C \ {ξ0}, 
ξ0 is a strict global minimum point for φ + Jy0 . Moreover, as it can suppose ε < 2

1 , 

we have ||y0|| = || ε

ε
α
x

≤ 2ε, because, via (73), ||xε || ≤ ε and |αε + 1|≤ ε, hence αε ∈ 







 −− 2

1,2
3

. 
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  Finally, let (ξ n )n≥1 be a minimizing sequence for φ + Jy0 on C, then (ξ n , φ(ξ 

n))n≥1 is maximizing sequence for (Jxε , αε) which strongly exposes epi φ in (ξ0 , λ0), 
which imposes ξ n → ξ 0 . � 
  Pass to the linear perturbed variational principle. 
  Definition. Let X  be a real normed space,  f : X → (− ∞, + ∞], C nonempty 
subset of  X and x0 ∈ C.  f strongly exposes C from below in x0 , when 
  1○  f (x0) = inf  f (C) < + ∞ 

and 
  2○ xn ∈ C ∀n ≥ 1,  f (xn) →  f (x0) ⇒ xn → x0 . 
  In the same manner define 
  f strongly exposes C from above in x0 . 
  Ghoussoub-Maurey linear principle. Let X be reflexive separable space 
and φ: X → (− ∞, + ∞] lower semicontinuous and proper. 
  (I) If φ is bounded from below on the closed bounded nonempty subset C, 
the set 

{ξ ∈ X 
*
 : φ + ξ strongly exposes C from below} 

is of  Gδ  type and everywhere dense. 
  (II) If, for any ξ from X *, φ + ξ is bounded from below, the set 

{ξ ∈ X *
 : φ + ξ strongly exposes X from below} 

is of Gδ type and everywhere dense. 
  Ghoussoub-Maurey linear principle devolves from the above theorem, 
which is more general and from the above auxiliary propositions. 
  Proof. (I). Set Y : = X *, a separable reflexive space ([31], pp.162). Then 
Y * = X (identification via the Hahn imbedding, X is reflexive). C is separable and 
strict w*-Hδ set in Y * (Proposition 1, the weak and *-weak topologies coincide) and 

hence also in D : = conv∗C (X \ C = 
∞

=1n
nK  with the properties from (1), take the 

intersection with D). Apply (II) from the above Theorem transcribed with Y 
replaced by X, this is correct as φ + ξ , ξ ∈ X * = Y **, is bounded from below (|ξ(x)| 
≤ ||ξ|| ||x|| and C is bounded). 
  (II). The epigraph epi φ of φ in X × R is strict w-Hδ set in X × R (Proposition 
1). In the following use the proof for Theorem, assertion (II), begining from (7), epi 

φ is that considered above. � 
  Corollary. Let X be reflexive space, C a subset of X * separable bounded 
strict w*-Hδ set in D : = conv∗C and φ : X → (− ∞, + ∞] bounded from below l.s.c. 
proper. For any ε > 0 there exists x0 in X with ||x0|| ≤ ε and ξ 0 in C so that 
  1○ (φ + Jx0)(ξ0) < (φ + Jx0)(ξ) ∀ξ ∈ C \ {ξ 0}, 
  2○ Any minimizing sequence from C for φ + Jx0 converges to ξ 0 ([6]). 
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Proof. C bounded implies φ + Jx bounded from below ∀x ∈ X, consequently 
II, Theorem can intercede to obtain 1○ and 2○. � 

3. Application of Ghossoub-Maurey linear principle in a minimization 
problem 

  We imply Ghoussoub-Maurey linear principle in a minimization problem 
of the form [7]: 

         Cf : = min{ 1
p

p
1,p|| ||u − ∫ 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑Ω : u ∈ 1,p

0W (Ω), ||u||2* = 1},        (8) 

where Ω is an open set of C1 class in RN, N ≥ 3, 1,p|| ||u = ||u pL ( )
||

Ω
+

p

N

i 1 i L ( )

u
x= Ω

∂
∂∑ is 

a norm on 
1,p
0W (Ω) which is equivalent to the norm u→ p

p

1
p pN

p
L ( ) i 1 i L ( )

|| || uu
xΩ

= Ω

 ∂ +
 ∂ 

∑  

and it is equivalent to the norm u → || |∇u| pL ( )
||

Ω
, f ∈ W −

1,p′ (Ω), with  
1
𝑝𝑝

+ 1
𝑝𝑝′

= 1, is 

the dual of ( 1,p
0W (Ω), || ⋅ ||1,p), 2 * = 2

2
−N
N

 − the critical exponent for the Sobolev 

imbedding. 
  Let Ω be an open bounded set of C1 class in RN, N ≥ 3. Consider the problem 

       p ( ) ( , ( )) on 

( ) 0 on 

u x f x u x

u x

−∆ = Ω


= ∂Ω
,           (9) 

where  f : Ω × R → R is a Carathéodory function with the growth condition                                                 
         | f (x, s)| ≤ c|s| p−1 + b(x),         (10) 

c > 0, 2 ≤ p ≤ 2
2
−N
N , b ∈ L p′ (Ω), p

1 + '
1
p =1. 

The functional ϕ: 1,p
0W (Ω) → R, 

                                         ϕ(u) =
1
p

p
1,p|| ||u − ( , ( ))F x u x dx

Ω
∫          (11) 

with 

F(x, s) : = ∫
s

0

),( dttxf , 

is of C1 - Fréchet class and its critical points are the weak solutions of (9). 
  Let λ1 be the first eigenvalue of –Δp in 1,p

0W (Ω) with homogeneous 
boundary conditions. We have 
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             λ1 = inf {
p
1,p
p
0,p

|| ||
| ( ) |

u
i u

:  u ∈ 1,p
0 ( )W Ω \ {0}}       (12) 

is the Rayleigh - Ritz quotient and i : 
1,p
0W (Ω) → Lp(Ω). 

  And now we can give an answer for (8). 
  Proposition 6. Let be the above assumptions fulfilled and furthermore the 
growth condition 
                                                 F(x, s) ≤ c1 

𝑠𝑠p

p
+ α(x)s,         (13) 

0 < c1 < λ1 and α ∈ Lq′ (Ω) for some 2 ≤ q ≤ 2
2
−N
N  is verified. 

  Then the following assertions hold: 
  1○ The set of functions h from W −

1,p′ (Ω), having the property: 
the functional φh : 1,p

0 ( )W Ω  → R, 

φh (u) = 1
p

p
1,p|| ||u − ∫ �𝐹𝐹�𝑥𝑥, 𝑢𝑢(𝑥𝑥)� + ℎ�𝑢𝑢(𝑥𝑥)��𝑑𝑑𝑑𝑑Ω  

has an attained minimum in only one point, 
includes a Gδ set everywhere dense; 
  2○ The set of functions h from W −

1,p′ (Ω), having the property: 

the problem �−Δpu = f(x, u)+h(u) in Ω
u = 0 on ∂Ω

  has solutions, 

includes a Gδ set everywhere dense; 
  3○ Moreover, if  s → f (x, s) is increasing, then the set of  functions h  from 
W −

1,p′ (Ω), having the property: 

the problem �−Δpu = f(x, u)+h(u) in Ω
u = 0 on ∂Ω

  has a unique solution, 

includes a Gδ set everywhere dense. 
  Clarification. This result is a generalization for p-Laplacian of the theorem 
2.13 from [6] where the problem is proposed with Laplace operator in 𝐻𝐻01(Ω) and 
H −

1 (Ω). 
  Proof. It is sufficient to justify 1○. For each h from W −

1,p′ (Ω), consider the 
functional ξ h defined on 1,p

0 ( )W Ω , 

ξ h (u) = ∫
Ω

dxxuh ))(( . 

Observe that φ h = φ + ξ h (see (11)). Consequently, according to (II) of Ghoussoub-
Maurey linear principle, if we show that φh is bounded from below for any h from 
W −

1,p′ (Ω) (this is enough, representation Riesz theorem), then 1○ is proved. But, 
taking into account the Sobolev imbedding and (13), we have ∀u ∈ 1,p

0 ( )W Ω , 
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(φ + ξh)(u) = 1
p

||u p
1,p||  − ∫ 𝐹𝐹(𝑥𝑥,𝑢𝑢(𝑥𝑥))𝑑𝑑𝑑𝑑Ω  − ∫ ℎ(𝑢𝑢(𝑥𝑥))𝑑𝑑𝑑𝑑Ω  ≥ 1

p
||u p

1,p|| − 

�∫ 𝐹𝐹(𝑥𝑥,𝑢𝑢(𝑥𝑥))𝑑𝑑𝑑𝑑Ω � − ‖ℎ‖𝑊𝑊−1,p′ ||u p
1,p||  ≥ 

1
p

||u p
1,p|| −

Ω
| ( , ( ))|F x u x dx∫ − 

‖ℎ‖𝑊𝑊−1,p′ ||u||1,p ≥ 1
p

||u p
1,p||  − 

𝑐𝑐1
𝑝𝑝𝜆𝜆1

||u p
1,p|| − K||u||1,p − ‖ℎ‖𝑊𝑊−1,p′ ||u||1,p = 

||u||1,p�
1
𝑝𝑝
�1 − 𝑐𝑐1

𝜆𝜆1
� ||𝑢𝑢||1,p

𝑝𝑝−1 − 𝐾𝐾 − ‖ℎ‖𝑊𝑊−1,p′|� = ||u||1,p�
1
𝑝𝑝
�1 − 𝑐𝑐1

𝜆𝜆1
� ||𝑢𝑢||1,p

𝑝𝑝−1 − 𝑟𝑟�, 

r ∈ R, and hence the conclusion because 1 −
1

1

λ
c > 0. For other justifications, 

|∫ 𝐹𝐹(𝑥𝑥, 𝑢𝑢(𝑥𝑥))𝑑𝑑𝑑𝑑Ω | ≤ ∫ �𝑐𝑐1
|𝑢𝑢(𝑥𝑥)|𝑝𝑝

𝑝𝑝
+ 𝛼𝛼(𝑥𝑥)𝑢𝑢(𝑥𝑥)�𝑑𝑑𝑑𝑑Ω  = 𝑐𝑐1

𝑝𝑝
||i(u) p

0,p|| +∫ 𝛼𝛼(𝑥𝑥)𝑢𝑢(𝑥𝑥)𝑑𝑑𝑑𝑑Ω  ≤ 
𝑐𝑐1
𝑝𝑝𝜆𝜆1

||u p
1,p|| + ||α||0,q′||u||q ≤

𝑐𝑐1
𝑝𝑝𝜆𝜆1

||u p
1,p|| + K||u||1,p (see q and properties of Sobolev spaces, 

for instance, in [32]; λ1 from (12)). ∫ ℎ(𝑢𝑢(𝑥𝑥))𝑑𝑑𝑑𝑑Ω  ≤ ‖ℎ‖𝑊𝑊−1,p′ ||u||1,p (Riesz 
representation theorem). � 

4. Applications in modeling of some real phenomena 

In this section, we involve the result from the above section in the 
demonstration of the existence and uniqueness of the solutions of some 
mathematical physics problems issued from modeling real phenomena. 

To illustrate our results, we can apply these, for instance, for the problem 
which appears in astrophysics [14] in relation to Matukuma equations (developed 
in 1930’ to describe the dynamics of a globular cluster of stars); as well as in 
physical phenomena related to equilibria of anisotropic continuous media. As the 
model, we can consider the radial solution of the nonlinear eigenvalue problem 
([33]): 

�−div�|∇𝑤𝑤(𝑥𝑥)|p−2∇𝑤𝑤(𝑥𝑥)� = λ|∇𝑤𝑤(𝑥𝑥)|p−2𝑤𝑤(𝑥𝑥) a. e. in 𝐵𝐵
𝑤𝑤 = 0 on 𝜕𝜕𝜕𝜕

 

with B an arbitrary ball. 
 The conditions from Proposition 6 proven in the previous Section 3, can be 
con brio fulfilled for the above problem and for a bit complicated data imposing 
some small additional conditions if it is necessary. 
 Consider also as an example of application of the result from the last section 
the connection between tug-of-war games in game theory (replacing the role of 
Brownian motion) and equations involving ∞ or p-Laplacian. This gives a way to a 
deterministic game interpretation using the equations with p-Laplacian ([34]). 
 Minimization principles form one of the most wide-ranging means of 
formulating mathematical models governing the equilibrium configurations of 
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physical systems. Minimization problems that can be analyzed by the calculus of 
variations serve to characterize the equilibrium configurations of almost all 
continuous physical systems, ranging through elasticity, solid and fluid mechanics, 
electro-magnetism, gravitation, quantum mechanics, string theory, and many, many 
others. Many geometrical configurations, such as minimal surfaces, can be 
conveniently formulated as optimization problems. Moreover, numerical 
approximations to the equilibrium solutions of such boundary value problems are 
based on a nonlinear finite element approach that reduces the infinite-dimensional 
minimization problem to a finite-dimensional problem ([35]). 
 We can discuss also on the interesting quasilinear elliptic problem: 

− ∆p u + V(|x|)|u|p−2u = h(u), x ∈ Ω, 
u = 0 on ∂Ω, 

where Ω is an open set of C1 class in RN, which is a model for describing the 
stationary state of reaction-diffusion equations in population dynamics, as also 
plasma physics, condensed matter physics and in cosmology. The existence of 
solution of this last equation has been studied extensively on RN by modern 
variational methods under various hypotheses on the singular potential V and the 
nonlinearity h ([9]). 
 To highlight the application of Proposition 6 to prove the existence and the 
uniqueness of the solution of the above problem, let us re-write the equation of this 
one: 

− ∆p u = f (x, u) + h(u) a. e. on Ω, 
where f (x, s) = −V(|x|)|s|p−2s. Observe that f fulfills the growth condition (Section 3, 

(10)) and F(x, s) : = ∫
s

0

),( dttxf  fulfills the conditions of the cited proposition. The 

first assertion of Proposition 6 suggests that one can obtain a solution of the 
mathematical physics equation by using a numerical approach. The assertions 2o 
and 3o specify the existence and existence together with the uniqueness respectively 
in relation with properties of h and an additional property of  f  for the uniqueness. 

5. Conclusion 

This paper starts with a theoretical part related to Ghoussoub-Maurey linear 
principle. The series of results to obtain this perturbed linear variational principle 
is presented here in order to highlight the improvement of one of the propositions 
from this sequence and to show the basis of this construction. 

The novelty of this work consists in obtaining a generalization of a 
minimization problem from the Laplacian to p-Laplacian by using Ghoussoub-
Maurey linear principle. In the third section, it is also proved the existence and the 
uniqueness of the solution of a kind of Dirichlet problem involving the p-Laplacian. 
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In the fourth section, we propose some applications of the theorem from the 
previous section in the demonstration of the existence and the uniqueness of the 
solution of some problems of mathematical physics with p-Laplacian issued from 
modeling of real phenomena such as astrophysics, equilibria of anisotropic 
continuous media, game theory, solid and fluid mechanics, and others. The solution 
(existence and uniqueness) for a problem describing the stationary state of reaction-
diffusion equations in population dynamics, as also plasma physics is developed by 
using the proposition obtained in this paper by using Ghoussoub-Maurrey linear 
principle. 
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