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APPLICATIONS OF A PERTURBED LINEAR VARIATIONAL
PRINCIPLE VIA P-LAPLACIAN

Irina MEGHEA'

In this paper, starting from Ghossoub-Maurey linear principle, an existence
result is obtained and another one on existence and uniqueness for a certain
minimization problem involving the p-Laplacian. This is a generalization of a namely
result due to Brezis and Nierenberg which is followed by some applications to
problems evolved from modeling of some phenomena of real world. The novelty of
this work consists in obtaining the above cited generalization and the proposal of
appropriate applications.

Keywords: Ghossoub-Maurey linear principle, minimization problem, Dirichlet
problem, p-Laplacian.

1. Introduction

This work is based on a perturbed variational principle. In the frame of
Variational Calculus, the elementary proposition

“If ¢:X —> R, X areal normed space, has in xo a local minimum point
(hence in particular a global minimum point) and it is Gdteaux differentiable at Xo,

then (P:N (x0) =07 (xo1s critical point)
is called variational principle ([1]; w comes from weak).
This is the reason why the neighbour propositions, for instance those in

which X is replaced by a metric space, or in which the statement “ 0 (x0) =07 1s

replaced by

(P’W(Xg)” <&, ¢ > 0any“ etc., are called variational principles
(perturbed). The adjective “perturbed” is imposed by the fact that not the function
¢ is minimized, but a function of the form ¢ + 8||(')—X8|| (Ekeland, [1]), or of

o]

more general form ¢ + ¢ Z“nd(' 9Vn)2 (Borwein - Preiss, [2]), or of even more
n=1

general form ¢ + f (Deville - Godefroy - Zizler, [3]), f having some given

properties (the second term is the perturbation function).
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The Ekeland principle is a perturbed variational principle discovered in
1972 ([1]) and nowadays, after more than 30 years, it was proved to be the
foundation of the modern Variational Calculus (see, for instance, the minimax
theorems in Banach spaces or in the Finsler manifolds, in which the key step of
demonstration is made by the application of the Ekeland principle). As referring to
the applications, these are numerous and diverse: the geometry of Banach spaces,
nonlinear analysis, differential equations and partial differential equations, global
analysis, probabilistic analysis, differential geometry, fixed point theorems,
nonlinear semigroups, dynamical systems, optimization, mathematical program-
ming, optimal control.

We cannot close this part of Introduction without the confession of Ekeland
([4]):

“The grandfather of these all is the celebrated 1961 theorem of Bishop and
Phelps that the set of continuous linear functionals on a Banach space E, which
attain their maximum on a prescribed non void closed convex bounded subset X —
E, is norm-dense in E™".

This Bishop-Phelps theorem can be found in [5].

A special kind of perturbed variational principle is Ghossoub-Maurey linear
principle being one of the Ghossoub-Maurey theorems which can be found in [6].
In this paper, we apply this result to generalize at p-Laplacian a minimization
problem from [7]. The author gave in [8] another generalization to p-pseudo-
Laplacian of the same minimization problem from [7].

As regarding the p-Laplacian, its huge importance is topical and we can see
this fact in [9], [10] and many other recent works. Problems involving p-Laplace
operator are subject of intensive studies as they illustrate very well many of
phenomena that occur in nonlinear analysis. Among their applications are singular
and nonsingular boundary value problems which appear in various branches of
mathematical physics. They arise as a model example in the fluid dynamics [11],
[12], glaciology [13]; stellar dynamics [14]; in the theory of electrostatic fields [15];
in the more general context in quantum physics ([16], [17]); in the nonlinear
elasticity theory as a basic model ([18], [19]); and many others (see e.g. [20]). The
partial derivatives equations (PDEs) involving p-Laplacian are considered in
differential geometry in the study of critical points for p-harmonic maps between
Riemannian manifolds ([21], [22]) and the eigenvalue problems for p-Laplacian on
Riemannian manifolds serve for estimations of the diameter of the manifolds [23].
Eigenvalue problems involving p-Laplacian are applied in functional analysis to
derive sharp Poincaré and Writinger type inequalities ([24], [25]), Sobolev
embeddings and isoperimetric inequalities ([26]), [27], [20]). Geometric properties
of p-harmonic functions play significant role in the theory of Carnot-Carathéodory
groups like Heisenberg group (see e.g. [28]) and in the analysis on metric spaces
(see [29], [30] and references therein).
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2. About Ghossoub-Maurey linear principle

In this section, we present the Ghoussoub-Maurey linear principle and
highlight some results from which it is obtained together with some auxiliary
theorems and propositions with necessary comments.

Definition. Let X be real normed space and C, D with C < D nonempty
subsets of X . C is strict w-H; set in D resp. strict w'-Hs set in D if

pvc= k., )

n=l

dist (Kn, C) > 0, Kn convex and weakly compact resp. *-weakly compact.

For instance,

Proposition 1 Any nonempty closed set C of a separable reflexive space X,
C# X, is strict w-Hs set in X.

In particular, if ¢ : X — (— o, + ] is [. s. c. and proper, then the epigraph
of ¢ in X x Riis strict w-Hs set in X x R.

Let X be reflexive space and C, D subsets of X*, C < D. Set

M, D):={xeX:3Ee CsothatJx(§)>Jx(m) Vn € D},

otherwise expressed, M (C, D) is the set of x from X for which Jx is upper bounded
on D and the least upper bound is attained at a point of C, J the Hahn imbedding of
X in X, So, X being reflexive, J is an isomorphism of vector spaces which
preserves the norms.

In the following, to abridge writing, sometimes X designates Jx.

Retain that if C is *-weakly compact, M (C, D) is closed.

Notations. Bx (xo, r) = the closed ball centred in xo of radius » in the normed
space X.

Bx=Bx(0,1).

E = the closure of the subset £ from X~ for the *-weak topology.

Pass to the auxiliary propositions.

Proposition 2 Let X be reflexive space, D c X" and K c D, K convex
*-weakly compact. If

Bx (x, o) c M(K, D),

then, for any € > 0,

€
B(D, Jx, &) K+EBX* .

In particular, when C < D c conv *C, we have
dist (K, C)=0.
Proposition 3 Let X be reflexive space, C < X * nonempty and U c X
nonempty open having the property
sup Jx (C) <+ o0 Vx € U.
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Then Jx, for any x from U, is upper bounded on conv *C and attains its least upper
bound.
Proof. Set D : =conv “C. We have
sup Jx (C) = sup Jx (D) (2)
[Eeconv(C=EE=ME+ME,EG,LeChMth=1, M, 0220=Jx ()=

M e (E1) + o Jx(Ea) <supJx (C): & € D= T & € conv C, & n—my & =5 £ ()
— &(x), En(x) < sup Jx (C) Vn > 1, hence §(x) < sup Jx (O)]
and so (3) sup Jx (D) <+ o Vx € U, the first assertion is proved.
Pass to the second assertion. Fix x from U, 3 € > 0 with x + €&z € U Vz in Bx. Then
sup J(x + €z)(D) = sup (Jx + &Jz)(D) <+ o Vz € Bx ((3)),

consequently, using once again (3),

sup Jz (D) <+ o Vz € Bx, 4)
which implies (5) sup Jz (D) <+ oo V z € X [for z any fixed, z # 0 replace in (4) z

by ﬁ , Jv (§) = E(»)]. Replacing z by — z in (5) one finds (6) inf Jz (D) > — o Vz

€ X. But X is reflexive, hence (5) and (6) express that D is weakly bounded,
consequently D is even bounded. D being also *-weak closed, it is *-weak compact
([47], pp. 144), hence the conclusion by applying Weierstrass theorem. [J

Remark. The proposition 3 is Lemma 2.7 from [6], Ch. 2. The proof of this
one cannot be considered here being not correct. For this reason, the author gave in
this place the approipriate demonstration.

Proposition 4 Let X be reflexive space, C < X" nonempty and U nonempty
open from X so that

sup Jx (C) <+ o0 Vx € U.

If C is strict w*-Hs set in D: =conv C, then the set V : = {x € U: Jx attains
sup Jx (D) in C} includes a set of Gs type’ dense in U.

Proposition 5 Let X be reflexive space, C subset of X' separable,
D : =conv C and U nonempty open subset of X so that sup Jx (C) < +w Vx € U,
Suppose that M(C, D) includes a dense and of Gs type subset of U.

Then, for any K < D *-weakly compact with K N C = & and for any € > 0,
the set G(K, €) : = {x € U: 3r>0s0 that E*(D, Ix, r) " K= and diam E*(D, Jx,
1) < g} is open and dense in U.

Theorem. Let X be reflexive space, C separable subset of X" which is strict
w*-Hs set in D : = conv C and U open subset of X so that sup Jx (C) <+ oo Vx €
U. Then

(D) The set {x € U: Jx strongly exposes D from above at a point of C} is of
Gs type and dense in U,

2 A set of G5 type means a set which is a countable intersection of open sets. A set of Fs type means
a set which is a countable union of closed sets.
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(D) If ¢ : C > (— o, + ] is proper lower semicontinuous and ¢ + JX is, VX
from X, bounded from below on C, then the set {x € X: ¢ + Jx strongly exposes C
from below} is of Gs type and dense in X ([6]).

Proof. (I). According to the hypothesis, D \ C = UKn, K, convex

n=1
*-weakly compact, dist (K., D) > 0. M(C, D) includes a subset of Gs type dense in
U (Proposition 4), but then, for each n from N, the set Vs : = G(Ki1U K> U ... U Ky,

o . y N, .
;) is open and dense in U (Proposition 5), consequently | |Vn is dense in U
n=1

o0

(relativized Baire theorem) and it remains only to observe that ﬂ Vi={xe X:Jx

n=l
strongly exposes D from above at a point of C}.
(II). C x R, separable subset of X* x R, is a strict w*-Hs set in D x R and
then, ¢ being 1. s. c., the epigraph epi ¢ in C x R (nonempty set, ¢ is proper) is a
strict w*-Hs set in D x R and hence also in conv *epi ¢. W:= {(x, a):x € X, a <
0} is open in X x R and sup (Jx, a)(epi @) <+ o0 V(x, o) € W [(Jx, o), continuous
linear functional, acts on C x R by the rule (Jx, a)(&, &) = Jx(§) + aA]. Indeed, Jx(&)

+ oA < Jx(E) + ap(§), 3 a in R so that J g (&) + 9(§) 2 a V& € C (the hypothesis),

hence Jx(&) + ap(&) < aa V& € C. Show that for each € > 0 3y with |[yo|| < 2¢ and
¢ + Jyo strongly exposes C from below, which is enough to validate (II). Apply (1),
3 (xe, ag) in W so that
I(xe, ) = (0, —D)[[ < & (7)
((0,-1) € W) and (Jx¢, 0¢) strongly exposes epi ¢ from above in a point (&o, Ao).
Then V(&, 1) from epi ¢ with & # &y we have
Jxe (Eo) + agho> Jxg (§) + 0,

X,
consequently taking yo: = a—s we have in particular
€

P(S0) + 0 (%) <0(E) TS0 (8) VE € C\ {&f,
&o 1s a strict global minimum point for ¢ + Jyo . Moreover, as it can suppose € <l,

[beel
| o

we have |jyol| = < 2¢g, because, via (73), ||x¢|| < € and |o + 1< €, hence o €

49

el
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Finally, let (§ 4 )n>1 be a minimizing sequence for ¢ +.Jyo on C, then (§n, ¢(&
n))n=1 18 maximizing sequence for (Jx;, o) which strongly exposes epi ¢ in (&, Ao),
which imposes En— £o. O

Pass to the linear perturbed variational principle.

Definition. Let X be a real normed space, f: X — (— o, + ], C nonempty
subset of X and xo € C. fstrongly exposes C from below in Xo, when

1° f(x0) = inf f(C) <+o0

and

2°xme CVn21, f(xn) > f(x0) = xn—>x0.

In the same manner define

f strongly exposes C from above in Xo .

Ghoussoub-Maurey linear principle. Let X be reflexive separable space
and ¢: X — (— oo, + o] lower semicontinuous and proper.

(D If ¢ is bounded from below on the closed bounded nonempty subset C,
the set

{& € X": @ + E strongly exposes C from below}
is of Gs type and everywhere dense.
() If, for any & from X", ¢ + & is bounded from below, the set
(& € X": ¢ + & strongly exposes X from below}
is of Gs type and everywhere dense.

Ghoussoub-Maurey linear principle devolves from the above theorem,
which is more general and from the above auxiliary propositions.

Proof. (I). Set Y : = X~ a separable reflexive space ([31], pp.162). Then
Y = X (identification via the Hahn imbedding, X is reflexive). C is separable and
strict w*-Hj set in Y~ (Proposition 1, the weak and *-weak topologies coincide) and

hence also in D: =conv C (X\ C = UK“ with the properties from (1), take the
n=1

intersection with D). Apply (II) from the above Theorem transcribed with Y
replaced by X, this is correctas ¢ + &, & € X =Y, is bounded from below (|&(x)|
< /||| llx]| and C is bounded).

(IT). The epigraph epi ¢ of ¢ in X x R is strict w-Hs set in X x R (Proposition
1). In the following use the proof for Theorem, assertion (II), begining from (7), epi
¢ is that considered above. [

Corollary. Let X be reflexive space, C a subset of X * separable bounded
strict w*-Hs set in D: =conv C and ¢ : X — (— o, + ] bounded from below L.s.c.
proper. For any € > 0 there exists xo in X with |[Xo|| < € and & in C so that

17 (¢ + Jx0)(80) < (¢ +Jx0)(§) VE € C\ {&o},
2° Any minimizing sequence from C for ¢ + Jxo converges to & ([6]).
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Proof. Cbounded implies ¢ + Jx bounded from below Vx € X, consequently
II, Theorem can intercede to obtain 1° and 2°. O

3. Application of Ghossoub-Maurey linear principle in a minimization
problem

We imply Ghoussoub-Maurey linear principle in a minimization problem
of the form [7]:

.1
Cr: = min{ — [lu [P, [, Fadx: u € WP @), [lul-= 1}, (8)
p
: | . ON N\l Ou :
where € is an open set of C' class in RY, N> 3, |[u [, ,= ||uHLp(Q) +>° . 1s
= Hilr )
1
| N || 5y P P
a norm on W,? (Q) which is equivalent to the norm u— | || u ”ip(g) +) ~
=il o)

and it is equivalent to the norm u— |||Vl ||, ,fe W-'¥ (Q), with % + pl =1,is

L’ (Q)

«_ 2N .
the dual of (Wol’p Q) |- lhp)2 = N2 ~ the critical exponent for the Sobolev
imbedding.
Let Q be an open bounded set of C! class in RN, N > 3. Consider the problem
—Au(x) = f(x,u(x)) on Q ’ )
u(x) =0 on 0Q
where f: Q x R — R is a Carathéodory function with the growth condition
|/ (x, )| < cfs| P+ b(x), (10)
2N ' 1,1
c>0,2<p Sm, belL? (Q),;+F=l.

The functional ¢: W,* () - R,
1
o) =— |lu|f, - [ F(x,u(x))dx (11)
p Q
with
F(x,s): = J' (b de
0

is of C' - Fréchet class and its critical points are the weak solutions of (9).
Let A1 be the first eigenvalue of —A, in Wol’p (Q) with homogeneous
boundary conditions. We have
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lullf,
[iQ) 15,
is the Rayleigh - Ritz quotient and i : Wol’p (Q) —> LP(Q).
And now we can give an answer for (8).

Proposition 6. Let be the above assumptions fulfilled and furthermore the
growth condition

A1 = inf { D u e WP (Q)\ {0}} (12)

F(x, s) < 1 % a(x)s, (13)

0<ci<MhMando e Lq'(Q)forsomeZSqﬁNz?2

is verified.
Then the following assertions hold.:
1° The set of functions h from W~ (Q), having the property:

the functional gn: Wy*(Q) — R,
1
on () ~ [ [y = Jo[F (o, uC)) + h(u(x))]dx

has an attained minimum in only one point,

includes a Gs set everywhere dense,

2° The set of functions h from W ="' (Q), having the property:
—Apu = f(x, u)+h(u) in Q

u=0 on 0Q
includes a Gs set everywhere dense,

3° Moreover, if s — f(X, 8) is increasing, then the set of functions h from
W~ (Q), having the property:
—Apu = f(x, u)+h(u) in Q

u=0 on 0Q
includes a Gs set everywhere dense.

Clarification. This result is a generalization for p-Laplacian of the theorem
2.13 from [6] where the problem is proposed with Laplace operator in Hg(Q) and
H(Q).

Proof. It is sufficient to justify 1°. For each /& from W~'*'(Q), consider the
functional &y, defined on W, (Q),

() = [ ) d
Q

the problem { has solutions,

the problem { has a unique solution,

Observe that o=@ + &n (see (11)). Consequently, according to (II) of Ghoussoub-
Maurey linear principle, if we show that ¢n is bounded from below for any /4 from
W~ (Q) (this is enough, representation Riesz theorem), then 1° is proved. But,

taking into account the Sobolev imbedding and (13), we have Vu e W})l’p (Q),



Applications of a perturbed variational principle via p-Laplacian 149

(¢ +&)(w) =% el — fiy FCru(x))da — [y h(u(x))dox 2 %nunf’,p—
|, FO6uC))d| = lly-sor ], > %nuui’,p— [ F (ran())| dx -
Q

1 c
p_ 21 p_ — =
I Allw—vorlfu] 4, = pllulll,p i, = Kllullp = [1Rlly=verllul |,

(052 " = o] - i (1~ 2) =]
| (1 = 32) 1l = K = Whlly-sorl] = lalhol > (1 = 52) 1wl £, = 7,

. C . )
r € R, and hence the conclusion because 1 _k_1> 0. For other justifications,
1

P
o FGou(x))dx < [, <c1 Ok a(x)u(x)> dax = i), +f e (Yux)dx <
%llu“}”pvL llofo.q']24]]g Sﬁllu”f’ﬁ K]|ul|1p (see g and properties of Sobolev spaces,
for instance, in [32]; A1 from (12)). th(u(x))dx < |[hllw-2prllullyp (Riesz
representation theorem). O

4. Applications in modeling of some real phenomena

In this section, we involve the result from the above section in the
demonstration of the existence and uniqueness of the solutions of some
mathematical physics problems issued from modeling real phenomena.

To illustrate our results, we can apply these, for instance, for the problem
which appears in astrophysics [14] in relation to Matukuma equations (developed
in 1930 to describe the dynamics of a globular cluster of stars); as well as in
physical phenomena related to equilibria of anisotropic continuous media. As the
model, we can consider the radial solution of the nonlinear eigenvalue problem
([33D):

{—diV(|VW(x)|p_2VW(x)) = A|Vw(x)|P?w(x) a.e.in B
w = 0onadB
with B an arbitrary ball.

The conditions from Proposition 6 proven in the previous Section 3, can be
con brio fulfilled for the above problem and for a bit complicated data imposing
some small additional conditions if it is necessary.

Consider also as an example of application of the result from the last section
the connection between tug-of-war games in game theory (replacing the role of
Brownian motion) and equations involving o or p-Laplacian. This gives a way to a
deterministic game interpretation using the equations with p-Laplacian ([34]).

Minimization principles form one of the most wide-ranging means of
formulating mathematical models governing the equilibrium configurations of
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physical systems. Minimization problems that can be analyzed by the calculus of
variations serve to characterize the equilibrium configurations of almost all
continuous physical systems, ranging through elasticity, solid and fluid mechanics,
electro-magnetism, gravitation, quantum mechanics, string theory, and many, many
others. Many geometrical configurations, such as minimal surfaces, can be
conveniently formulated as optimization problems. Moreover, numerical
approximations to the equilibrium solutions of such boundary value problems are
based on a nonlinear finite element approach that reduces the infinite-dimensional
minimization problem to a finite-dimensional problem ([35]).

We can discuss also on the interesting quasilinear elliptic problem:

—Apu + V(x)uP?u = h(u), x € Q,
u=0o0n0Q,

where Q is an open set of C! class in RN, which is a model for describing the
stationary state of reaction-diffusion equations in population dynamics, as also
plasma physics, condensed matter physics and in cosmology. The existence of
solution of this last equation has been studied extensively on RN by modern
variational methods under various hypotheses on the singular potential /" and the
nonlinearity 4 ([9]).

To highlight the application of Proposition 6 to prove the existence and the
uniqueness of the solution of the above problem, let us re-write the equation of this
one:

—Apu=f(x,u)+ h(u) a.e.onQ,
where f'(x, s) = —V(|x|)|s|2s. Observe that 7 fulfills the growth condition (Section 3,

S
(10)) and F(x, s) : = Jf (x,1)dt fulfills the conditions of the cited proposition. The
0

first assertion of Proposition 6 suggests that one can obtain a solution of the
mathematical physics equation by using a numerical approach. The assertions 2°
and 3° specify the existence and existence together with the uniqueness respectively
in relation with properties of 4 and an additional property of f for the uniqueness.

5. Conclusion

This paper starts with a theoretical part related to Ghoussoub-Maurey linear
principle. The series of results to obtain this perturbed linear variational principle
is presented here in order to highlight the improvement of one of the propositions
from this sequence and to show the basis of this construction.

The novelty of this work consists in obtaining a generalization of a
minimization problem from the Laplacian to p-Laplacian by using Ghoussoub-
Maurey linear principle. In the third section, it is also proved the existence and the
uniqueness of the solution of a kind of Dirichlet problem involving the p-Laplacian.
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In the fourth section, we propose some applications of the theorem from the
previous section in the demonstration of the existence and the uniqueness of the
solution of some problems of mathematical physics with p-Laplacian issued from
modeling of real phenomena such as astrophysics, equilibria of anisotropic
continuous media, game theory, solid and fluid mechanics, and others. The solution
(existence and uniqueness) for a problem describing the stationary state of reaction-
diffusion equations in population dynamics, as also plasma physics is developed by
using the proposition obtained in this paper by using Ghoussoub-Maurrey linear
principle.
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