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In the first part of this work, we derive some new applications of a version of 

Mazur-Orlicz theorem, in concrete spaces of absolutely integrable functions and 

respectively continuous functions of several real variables. The second part is devoted 

to inverse problems related to the Markov moment problem. A geometric approach of 

approximating the solutions of a system with infinitely many equations involving 

transcendent functions, with infinitely many unknowns, is briefly discussed. 
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1. Introduction 

The version of Mazur - Orlicz theorem that we have in mind in this work gives a 

necessary and sufficient condition for the existence of a linear positive operator 𝐹 

from an order vector space 𝑋 into an order complete vector lattice 𝑌, such that 

𝐹(𝑥𝑗) ≥ 𝑦𝑗 , 𝑗 ∈ 𝐽, 𝐹(𝑥) ≤ 𝑃(𝑥), 𝑥 ∈ 𝑋, where {𝑥𝑗}
𝑗∈𝐽

⊂ 𝑋, {𝑦𝑗}
𝑗∈𝐽

⊂ 𝑌 are given 

families, 𝑃: 𝑋 → 𝑌 being a sublinear operator [1]. The relation  𝐹(𝑥) ≤ 𝑃(𝑥), 𝑥 ∈
𝑋 usually controls the norm of the solution 𝐹. Recent results on this subject have 

been published in [2] and have been submitted in [4]. The first aim of this work is 

to prove some new application of Mazur – Orlicz theorem to concrete spaces 𝑋, 
namely to 𝑋 = 𝐿𝑝, 1 ≤ 𝑝 < ∞. The second purpose of this work is to solve an 

inverse problem related to a Markov moment problem (see the Abstract). From this 

point of view, one continues the study started in [3], [13]. An existence result for 

the solution of a Markov moment problem [1] is applied. For similar existence 

problems based on Hahn – Banach theorem and its generalizations see [2] - [9], 

[13]. For operator valued moment problems see [9] – [12]. For the construction of 

some solutions see [9], [13], [3]. The purpose of the second part of this work is to 

approximate the solution of a system with infinitely many equations involving 

transcendent functions, with infinitely many unknowns, starting from the moments 

of a solution of a Markov moment problem. Our solution is not unique. This is 
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another way of solving similar problems to those treated in literature by some other 

methods [14]. Recall that another important problem in the theory of moments is 

the uniqueness of the solution [15] - [18]. The background of this work is contained 

in some chapters from [19] – [22]. The rest of the paper is organized as follows. 

Section 2 is devoted to some applications of Mazur – Orlicz theorem. In Section 3, 

inverse problems related to the Markov moment problem are discussed. The 

conclusions are mentioned in Section 4. 

2. Applications of Mazur – Orlicz theorem 

We start by recalling the general abstract form of Mazur – Orlicz theorem, 

in the order vector spaces setting. 

Theorem 2.1. (Theorem 5 [1]). Let 𝑿   be an ordered vector space, 𝒀 an order 

complete vector lattice, {𝒙𝒋}
𝒋∈𝑱

, {𝒚𝒋}
𝒋∈𝑱

 arbitrary families in 𝑿, respectively in 

𝒀 and 𝑷: 𝑿 → 𝒀 a sublinear operator. The following statements are equivalent 

 

(a) ∃𝐹 ∈ 𝐿(𝑋, 𝑌) such that 𝐹(𝑥𝑗) ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≥ 0 ∀𝑥 ∈ 𝑋+, 

 

 𝐹(𝑥) ≤ 𝑃(𝑥), ∀𝑥 ∈ 𝑋; 
 

(b) for any finite subset 𝐽0 ⊂ 𝐽 and any {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ, 𝜆𝑗 ≥ 0 ∀𝑗 ∈ 𝐽0, we have 

 

∑ 𝜆𝑗

𝑗∈𝐽0

𝑥𝑗 ≤ 𝑥 ∈ 𝑋 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

𝑦𝑗 ≤ 𝑃(𝑥). 

 

Some new applications of this general result are deduced in the sequel. 

 

Theorem 2.2. Let 𝑋 be a Banach lattice, 𝑌 an order complete Banach lattice, 

{𝜑𝑗}
𝑗∈𝐽

⊂ 𝑋+, {𝑦𝑗}
𝑗∈𝐽

⊂ 𝑌, 𝐺 a linear positive bounded operator from 𝑋 into 𝑌,  

𝛼 a positive number. The following statements are equivalent 

 

(a) there exists a linear positive bounded operator 𝐹 ∈ 𝐵+(𝑋, 𝑌), such that 

 

𝐹(𝜑𝑗) ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≤ 𝛼𝐺(|𝑥|), ∀𝑥 ∈ 𝑋, ‖𝐹‖ ≤ 𝛼‖𝐺‖; 

 

(b) 𝑦𝑗 ≤ 𝛼𝐺(𝜑𝑗), ∀𝑗 ∈ 𝐽. 
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Proof. (a)⇒(b) is obvious, because of 𝑦𝑗 ≤ 𝐹(𝜑𝑗) ≤ 𝛼𝐺(|𝜑𝑗|) = 𝛼𝐺(𝜑𝑗), ∀𝑗 ∈ 𝐽. 

For the converse, we apply Theorem 2.1, (b)⇒(a). Let 𝐽0 ⊂ 𝐽 be a finite subset, 

{𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ+, 𝑥 ∈ 𝑋, such that ∑ 𝜆𝑗𝑗∈𝐽0
𝜑𝑗 ≤ 𝑥. Then using (b) and the fact that the 

scalars 𝜆𝑗 are nonnegative, as well as the positivity of 𝐺, we derive 

 

∑ 𝜆𝑗𝑦𝑗 ≤ α 

𝑗∈𝐽0

∑ 𝜆𝑗𝐺(𝜑𝑗) = 𝛼𝐺 (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

)

𝑗∈𝐽0

≤ 𝛼𝐺(𝑥) ≤ 𝛼𝐺(|𝑥|) =: 𝑃(𝑥). 

 

Application of Theorem 2.1 leads to the existence of a linear positive operator 𝐹 

from 𝑋 into 𝑌 such that  

 

𝐹(𝜑𝑗) ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≤ 𝛼𝐺(|𝑥|), ∀𝑥 ∈ 𝑋. 

 

From the last relation, also using the fact that the norms on 𝑋 and 𝑌 are solid 

(|𝑢| ≤ |𝑣| ⇒ ‖𝑢‖ ≤ ‖𝑣‖), we deduce  

 
|𝐹(𝑥)| ≤ 𝛼𝐺(|𝑥|) ⇒ ‖𝐹(𝑥)‖ ≤ 𝛼‖𝐺‖‖|𝑥|‖ = 𝛼‖𝐺‖‖𝑥‖, ∀𝑥 ∈ 𝑋. 

 

It follows that ‖𝐹‖ ≤ 𝛼‖𝐺‖. This concludes the proof.                                  □ 
 
Corollary 2.1. Let 𝑀 be a measure space, 𝜇 a positive measure on 𝑀, 𝜇(𝑀) <
∞, 𝑋 = 𝐿𝜇

𝑝 (𝑀), 1 ≤ 𝑝 < ∞, 𝑔 ≥ 0 an element of 𝐿𝜇
𝑞 (𝑀), where 𝑞 ∈ (1, ∞] is the 

conjugate of 𝑝 (1 𝑝⁄ + 1 𝑞 = 1⁄ ), 𝛼 a positive number. Let {𝜑𝑗}
𝑗∈𝐽

, {𝑦𝑗}
𝑗∈𝐽

 be as 

in Theorem 2.2, where 𝑌 = ℝ.  The following statements are equivalent 

(a) there exists  ℎ ∈ 𝐿𝜇
𝑞 (𝑀), 0 ≤ ℎ ≤ 𝛼𝑔 a.e., ∫ ℎ𝜑𝑗𝑑𝜇

𝑀
≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽; 

(b)𝑦𝑗 ≤ 𝛼 ∫ 𝑔𝜑𝑗𝑑𝜇, ∀𝑗 ∈ 𝐽
𝑀

. 

Proof.  One applies Theorem 2.2 for 𝐺(𝜓) = ∫ 𝑔
𝑀

𝜓𝑑𝜇, 𝜓 ∈ 𝑋, 𝑌 = ℝ, as well as 

the representation of linear positive continuous functionals on 𝐿𝑝 spaces by 
means of nonnegative elements from 𝐿𝑞 spaces. In order to prove (b)⇒(a), 

from the preceding results it follows that there exists ℎ ∈ (𝐿𝜇
𝑞 (𝑀))

+
such that 

∫ ℎ𝜑𝑗𝑀
𝑑𝜇 ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽 and  

 

∫ ℎ𝜓𝑑𝜇 ≤ 𝛼 ∫ 𝑔𝜓𝑑𝜇

𝑀𝑀
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for all nonnegative functions 𝜓 ∈ 𝐿𝜇

𝑝(𝑀). Now we choose 𝜓 = 𝜒𝐵, where 𝐵 is 

an arbitrary measurable subset of 𝑀.  Then the last relation can be rewritten 
as 

∫ (ℎ − 𝛼𝑔)

𝐵

𝑑𝜇 ≤ 0 

 

for all such subsets 𝐵. A straightforward application of Theorem 1.40 [21], leads to 

ℎ − 𝛼𝑔 ≤ 0 a.e. in 𝑀. Since (a)⇒(b) is obvious, this concludes the proof.                                                                                                           

□ 

 

Corollary 2.2. Let consider the measure space 𝑀 = ℝ+
𝑛 , 𝑛 ∈ {1,2 … },  endowed 

with the measure 𝑑𝜇 = 𝑒𝑥𝑝(− ∑ 𝑝𝑗𝑡𝑗
𝑛
𝑗=1 )𝑑𝑡1 ⋯ 𝑑𝑡𝑛, 𝑝𝑗 > 0, ∀𝑗 ∈ {1, … , 𝑛}, 𝛼 a 

positive number. The following statements are equivalent 

 

(a) there exists ℎ ∈ 𝐿𝜇
∞(ℝ+

𝑛 ), ∫ ℎ𝑡𝑗𝑑𝜇 ≥ 𝑦𝑗ℝ+
𝑛 , ∀𝑗 ∈ ℕ𝑛, 0 ≤ ℎ ≤ 𝛼 a.e.; 

 

(b) 𝑦𝑗 ≤ 𝛼
𝐽1!⋯𝐽𝑛!

𝑝1
𝑗1+1

⋯𝑝𝑛
𝑗𝑛+1  , ∀𝑗 = (𝑗1, … , 𝑗𝑛) ∈ ℕ𝑛. 

Proof.  One applies Corollary 2.1 to 𝑝 = 1, 𝑞 = ∞, 𝑔 = 1 a.e.  The notation 𝑡𝑗 is 

the multi – index notation 𝑡𝑗 = 𝑡1
𝑗1 ⋯ 𝑡𝑛

𝑗𝑛 . The conclusion follows via Fubini ’s 

theorem and Gamma function properties.                  □ 

 

Theorem 2.3. Let 𝑋 = 𝐿𝜇
𝑝(𝑀), 1 < 𝑝, 𝜇 ≥ 0, 𝜇(𝑀) < ∞, {𝜑𝑗}

𝑗∈𝐽
⊂ 𝑋, {𝑦𝑗}

𝑗∈𝐽
⊂

ℝ, 𝛼 > 0, 𝛼 ∈ ℝ, 𝑞 the conjugate of 𝑝. Consider the following statements 

 

(a) there exists  ℎ ∈ (𝐿𝜇
𝑞 (𝑀))

+
 such that  

∫ ℎ𝜑𝑗𝑑𝜇 ≥ 𝑦𝑗

𝑀

, ∀𝑗 ∈ 𝐽, ∫ ℎ𝜓𝑑𝜇 ≤ 𝛼‖𝜓‖𝑝(𝜇(𝑀))
1 𝑞⁄

, ∀

𝑀

𝜓 ∈ 𝑋; 

(b) we have 𝑦𝑗 ≤ 𝛼 ∫ 𝜑𝑗𝑀
𝑑𝜇, ∀𝑗 ∈ 𝐽. 

Then (b)⇒(a). 

Proof.  Let 𝐽0 ⊂ 𝐽 be a finite subset, {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ+. Hölder inequality and using also 

(b), lead to the following implications  
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∑ 𝜆𝑗𝜑𝑗 ≤ 𝜓 ⇒ ∫ (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

) 𝑑𝜇 ≤ ∫ 𝜓𝑑𝜇 ≤ ‖𝜓‖𝑝(𝜇(𝑀))
1 𝑞⁄

𝑀𝑀𝑗∈𝐽0

⇒ 

 

∑ 𝜆𝑗𝑦𝑗

𝑗∈𝐽0

≤ 𝛼 ∫ (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

) 𝑑𝜇 ≤ 𝛼

𝑀

‖𝜓‖𝑝(𝜇(𝑀))
1 𝑞⁄

=: 𝑃(𝜓). 

 
Application of Theorem 2.1 and measure theory arguments [21, theorem 6.16, 
p. 122-124], yield the existence of ℎ ∈ 𝐿𝜇

𝑞 (𝑀) such that  

 

𝐹(𝜑𝑗) = ∫ ℎ𝜑𝑗𝑑𝜇 ≥ 𝑦𝑗

𝑀

, ∀𝑗 ∈ 𝐽, 𝐹(𝜓) = ∫ ℎ𝜓𝑑𝜇 ≤ 𝛼‖𝜓‖𝑝(𝜇(𝑀))
1 𝑞⁄

,

𝑀

 𝜓 ∈ 𝑋. 

 

Moreover, since 𝐹(𝜓) ≥ 0, ∀𝜓 ∈ 𝑋+, we have  

 

∫ ℎ𝜓𝑑𝜇 ≥ 0, ∀𝜓 ∈ 𝑋+.

𝑀

 

Taking 𝜓 = 𝜒𝐵 , where 𝐵 ⊂ 𝑀 is a measurable set such that 𝜇(𝐵) > 0, one obtains  

 

∫ ℎ𝑑𝜇 ≥ 0

𝐵

 

 

for all such subsets 𝐵. Application of theorem 1.40 [21] leads to ℎ ≥ 0 𝜇 − 𝑎. 𝑒. 

From the previous relations we also derive that ‖ℎ‖𝑞 ≤ 𝛼(𝜇(𝑀))
1 𝑞⁄

. This 

concludes the proof.                                                                 □ 

The following theorem represents an application of the general result stated in 

Theorem 2.1 to some other concrete spaces 𝑋, 𝑌. Let 𝐻 be an arbitrary Hilbert space, 

𝑛 ∈ ℕ, 𝑛 ≥ 1, 𝐴1, … , 𝐴𝑛 positive commuting self -  adjoint operators acting on 

𝐻, (𝐵𝑗)
𝑗∈ℕ𝑛 a sequence in 𝑌, where 𝑌 = 𝑌(𝐴1, … , 𝐴𝑛)  is defined by 

 

𝑌1 ≔ {𝑈 ∈ 𝒜(𝐻); 𝑈𝐴𝑗 = 𝐴𝑗𝑈, 𝑗 = 1, … , 𝑛}, 𝑌 ≔ {𝑉 ∈ 𝑌1; 𝑈𝑉 = 𝑉𝑈, ∀𝑈 ∈ 𝑌1}. 

 

Here 𝒜(𝐻) is the real vector space of all self – adjoint operators. One can prove 

that 𝑌 is an order complete Banach lattice with respect to the usual structures 
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induced by those defined on the real space of self – adjoint operators (see [19, p. 

303 - 305]), and a commutative real Banach algebra. Notice that the properties of 

𝑌 = 𝑌(𝐴1, … , 𝐴𝑛), where 𝐴1, … , 𝐴𝑛 are as mentioned above can be proved in a 

similar way to those of a 𝑌(𝐴), where 𝐴 is a self – adjoint operator. Actually, one 

repeats the proofs from [19, p. 303 – 305], but for several commuting self – adjoint 

operators. Then Y  endowed with the usual order relation on self - adjoint operators 

is an order - complete vector lattice and a commutative real Banach algebra [19]. 

Let also be 𝐵 the 𝐶∗-algebra generated by  𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑛), that is 𝐵  is the 

closure in 𝐵(𝐻) of expressions of the form  

 

𝑃(𝐴1, 𝐴2, … , 𝐴𝑛) = ∑ 𝑎𝑗𝐴1
𝑗1

𝑗∈𝐽
𝐽⊂ℕ𝑛,𝐽 𝑓𝑖𝑛𝑖𝑡𝑒

𝐴2
𝑗2 ⋯ 𝐴𝑛

𝑗𝑛 ,  𝑎𝑗 ∈ ℂ, 𝑗 = (𝑗1, … , 𝑗𝑛). 

We may uniquely construct the joint spectral measure 𝐸𝐴 of the commuting 𝐴 =
(𝐴1, 𝐴2, … , 𝐴𝑛) in 𝐵.  As it is known, the joint spectral measure 𝐸𝐴  is concentrated 

on the joint spectrum 𝛴𝐴 ≔ {𝛾(𝐴1), … , 𝛾(𝐴𝑛);  𝛾 ∈ Γ} ⊂ 𝜎𝐵(𝐴1)𝑥 ⋯ × 𝜎𝐵(𝐴𝑛) ⊂
ℝ𝑛 

 

Γ ≔ {𝛾: 𝐵 → ℂ; 𝛾 is a 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟}, 
 

Because for any set σ ∈ 𝐵𝑜𝑟(𝛴𝐴), we have 𝐸𝐴(σ)Ai = A𝐸𝐴i
 ,  𝑖 = 1,2, … , 𝑛, it 

results that 𝐸𝐴(σ) ⊂ 𝑌. Consequently, we have 

 

𝐸𝐴: 𝐵𝑜𝑟(𝛴𝐴) → 𝒜(𝐻). 
 

The spectral measure 𝐸𝐴 = 𝐸(𝐴1,…,𝐴𝑛): 𝐵𝑜𝑟(𝛴𝐴) → 𝒜(𝐻) is such that for any 

polynomial 𝑝 = 𝑝(𝑡1, 𝑡2, … , 𝑡𝑛), (𝑡1, 𝑡2, … , 𝑡𝑛) ∈  𝛴𝐴 of 𝑛 real variables, we have  

 

∫ 𝑝(𝑡1, … , 𝑡𝑛)

𝛴𝐴

𝑑𝐸(𝐴1,…,𝐴𝑛) = 𝑝(𝐴1, … , 𝐴𝑛) 

 

 Let denote by 𝜑𝑗, 𝑗 ∈ ℕ𝑛 the basic polynomials 𝜑𝑗(𝑡1, … , 𝑡𝑛) = 𝑡1
𝑗1 ⋯ 𝑡𝑛

𝑗𝑛 , 𝑗 =
(𝑗1, … , 𝑗𝑛) ∈ ℕ𝑛, 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝛴𝐴, 𝑋: = 𝐶(𝛴𝐴). 
Theorem 2.4. The following statements are equivalent 

 

(a) there exists a linear bounded positive operator 𝐹 ∈ 𝐵+(𝑋, 𝑌) such that  

 

𝐹(𝜑𝑗) ≥ 𝐵𝑗, 𝑗 ∈ ℕ𝑛, 𝐹(𝜑) ≤ ∫|𝜑|

𝛴𝐴

𝑑𝐸(𝐴1,…,𝐴𝑛), ∀𝜑 ∈ 𝑋, ‖𝐹‖ ≤ 1; 
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(b) 𝐵𝑗 ≤ 𝐴𝑗 ≔ 𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 , ∀𝑗 = (𝑗1, … , 𝑗𝑛) ∈ ℕ𝑛. 

Proof. The implication (a)⇒(b) is obvious: 

 

𝐵𝑗 ≤ 𝐹(𝜑𝑗) ≤ ∫ |𝜑𝑗|𝑑𝐸(𝐴1,…,𝐴𝑛)

𝛴𝐴

= ∫ 𝜑𝑗𝑑𝐸(𝐴1,…,𝐴𝑛)

𝛴𝐴

= 𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 , 

 

 𝑗 ∈ ℕ𝑛 (we have used the positivity of the operators 𝐴𝑘  which leads to |𝜑𝑗| = 𝜑𝑗 

on 𝛴𝐴). For the converse, one applies Theorem 2.1, (b)⇒(a), where ℕ𝑛 stands for 𝐽, 
𝜑𝑗 stands for 𝑥𝑗 and 𝐵𝑗 stands for 𝑦𝑗 , ∀𝑗 ∈ ℕ𝑛.  Let 𝐽0 and {𝜆𝑗}

𝑗∈𝐽0
be as mentioned 

at point (b) of Theorem 2.1. The following implications hold: 

 

∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

≤ 𝜑 ∈ 𝑋 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

∫ 𝜑𝑗𝑑𝐸(𝐴1,…,𝐴𝑛)

𝛴𝐴

= ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛

≤ ∫ 𝜑𝑑𝐸(𝐴1,…,𝐴𝑛)

𝛴𝐴

≤ ∫ |𝜑|

𝛴𝐴

𝑑𝐸(𝐴1,…,𝐴𝑛) =: 𝑃(𝜑). 

 

The positivity of the spectral measure 𝑑𝐸(𝐴1,…,𝐴𝑛)  has been used. On the other hand, 

the hypothesis (b), the fact that the scalars 𝜆𝑗 are nonnegative and the preceding 

evaluation yield 

 

𝜆𝑗𝐵𝑗 ≤ 𝜆𝑗𝐴𝑗  ∀𝑗 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

𝐵𝑗 ≤ ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴𝑗 = ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 ≤ 𝑃(𝜑), 

 

where 𝑃(𝜑) was defined above. Thus the implication at (b) Theorem 2.1 is 

accomplished. Application of the latter theorem leads to the existence of a “feasible 

solution” 𝐹 having the property mentioned at point (a) of the present theorem. The 

last property is a consequence of the preceding one, using the fact that the norm on 

𝑌 is solid. This concludes the proof.                                       □            

                                                                  
Remark.  If in Theorem 2.4. one additionally assumes that ‖𝐴𝑘‖ < 1, 𝑘 =
1,2, … , 𝑛, then for any self - adjoint operators satisfying (b) one has 
 

∑ 𝐵𝑗

𝑗∈ℕ𝑛

≤ ∏(𝐼 − 𝐴𝑘)−1.

𝑛

𝑘=1
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3. An inverse problem related to a Markov moment problem 
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We propose the following algorithm for approximating the solutions of the system 

of equations (1). 

Step 1. Find an approximation ℎ̃  of the solution h  in terms of the moments 

., n
j Njm   To this end, since    ,2 ALALh   

 ℎ has a Fourier expansion 

with respect to the Hilbert base  
0kj

j  associated following Gram-Schmidt 

procedure to the complete system of linearly independent polynomials   .
0kj

j  

The Fourier coefficients  jh ,  are given by: 
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where l  are given by the Gram-Schmidt procedure, so that we know h  in terms 

of the moments. Recall that there exists a subsequence of the sequence of Fourier 

partial sums, which converges pointwise to .h  This fact is a consequence of the 

remark that the partial sums of the Fourier series converge in an 𝐿2 − space. Then 
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one applies theorem 3.12 [21], p. 65. In the sequel we can write: ,
~
hh   where h

~
 

is a partial sum of the Fourier series of .h  Note that all these partial sums are 

polynomials, so that they are continuous.  

Step 2. Let h
~

 be a partial sum of the Fourier series with respect to the orthogonal 

polynomials   .
1kj

j  Using Schwarz inequality, and approximation of 

continuous functions ℎ̃ by simple functions: 
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where p  is large and qm  is suitable chosen for approximating .
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where 𝐷𝑝,𝑞 are open subsets approximating in measure the subsets

   






 


p

q
np

q
n

m
tth

m
tt

2

1
,...,

~

2
;,..., 11 , and whose cell decompositions may be 

written as below 

 

 

    .
2

1
,...,

~

2
;,...,

),[),[1,0

11

,,,,,,,,,1,,,1,







 



 

p

q
np

q
n

qpmnqpmnqpmqpmmqp
n

m
tth

m
tt

yxyxD 

 

 

The above arguments yield 
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For the one-dimensional case see [13], Remark 29. The conclusion is that we can 

determinate (approximate) the “unknowns” nkxy qpmkqpmk ,...,1,, ,,,,,,   by 

means of the cell decomposition of the open subsets qpD ,  associated to the known 

polynomial h
~

 (cf. [21, section 2.19]). The basic relations can be summarized as the 

system of equations (1), where jm  are given, qpc ,  are known from Step 1, and the 

unknowns 𝑥𝑘,𝑚,𝑝,𝑞 , 𝑦𝑘,𝑚,𝑝,𝑞 are determined in terms of the cell - decomposition of 

the suitable chosen open subsets 𝐷𝑝𝑞 , deduced from the known polynomial h
~

   (the 

measure 𝜈 is outer regular [21]).  The unknowns are the coordinates of the vertices 

of the cells (see. [21, section 2.19]).  Clearly, the solution is not unique. So, using 

the above notations, we have proved the following theorem. 

 

Theorem 3.1. An approximation for the solution of (1) is given by the coordinates 

𝑥𝑘,𝑚,𝑝𝑞, 𝑦𝑘,𝑚,𝑝𝑞, 𝑘 ∈ {1, … , 𝑛} of the vertices of the cells from the cell – 

decomposition of the open subsets 𝐷𝑝,𝑞 associated to the known polynomials ℎ̃. 

For a similar one dimensional problem, having a finite number of unknowns and 

solved by using other methods see [14]. 

 

4. Conclusions 

New characterizations for the existence of solutions of abstract and concrete 

Mazur – Orlicz problems are proved. In the second part of this work, a geometric 

method of approximating the solution of a system with infinitely many equations 

and unknowns is sketched. This is a general method. Similar problems can be 

solved using the same ideas and appropriate modifications. One uses a different 

method for related problems to those solved in the literature by some other methods.  
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