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ON A CUBICAL SUBDIVISION OF THE SIMPLICIAL COMPLEX

Sarfraz Ahmad!, Muhammad Kamran Siddiqui?, Juan L.G. Guirao® and Muhammad Arfan Ali*

For a simplicial complez A we study a particular case of the subdivision AS"P
of A defined in [3]. We find the transformation maps sending the f- and h- vectors
of A to the f- and h- vectors of AS"P along with some properties of the corresponding
transformation matrices.
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1. Introduction

Motivated from [2] and [1], this article is about the study of the barycentric subdivision
A" of the cubical complex A€ associated to a simplicial compelx A. A cubical complex
is a union of unit cubes i.e. points, line segments, squares, cubes, and their n-dimensional
counterparts [5]. They are used analogously to simplicial complexes and CW complexes in
the computation of the homology of topological spaces.

A simplicial complex A on the ground set [n]={1,2,...,n} is a collection of subsets
of [n] such that if F € A and G C F then G € A. An element F of A is called a face
and inclusion wise maximal faces are called facets. The dimension of a face F is defined by
dim(F) = |F| — 1, where |F| is the cardinality of F. The dimension of a simplicial complex
A is defined as

dim A = max{dim(F') : F' € A}.
Let fi be the number of k-dimensional faces of A. We set f_1 = 1 corresponding to the
empty set ¢ € A. For a (d—1)-dimensional simplicial complex A, the vector (f_1, fo, f1,-- -,
fa—1) is called the f-vector of A. The h-vector (hg, h1, ..., hq) of A is defined by the relations

k .
fd—1
_ k— )
The h-vector of A plays an important role in studying the algebraic properties of the Stanley
Resiner ideal R/Ia associated to A. Here R = k[x1,...,x,] is the polynomial ring in n
variables over the field k and I is defined as

IA = (J)l‘l "'Z‘ir|{i1,...,ir} ¢ A)
For more details about algebraic applications we refer the reader to [4].
A n-dimensional polytope which is the convex hull of the n + 1 vertices is called a

n-simplex. For example a 3-simplex is a tetrahedron. We denote a n-simplex by o,. Each
k-dimensional face of a simplicial complex A is a k-simplex. Let F(A) = {F}, ..., F;} be set
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Fig. 1. 2-dimensional cubi-cal Fig. 2. 2-dimensional sub-
complex divided complex

of facets of A. Then we write A =< F,...,F; > and say A is generated by F(A). Thus
to define a subdivision of a simplicial complex A, it is enough to consider the subdivision of
its facets.

The subdivision A" studied in this article is a particular case of the subdivision
defined in [3]. We define the subdivision AP of a simplicial complex A by defining subdi-
visions of the facets of A generically realized as standard simplices. Let

on = {(z0,...,2,) € R"z; >0 for all i and zg + - +x, = 1}
be the geometric realization of a standard n-simplex. For j = 0,...,n we define
Cj = {(wo,...,2n) € oplr; > x; for all i}.

Clearly, C; is a polytope. For i = 0,...,n and ¢ # j, its facets are given by
{(z0,...,2n) € 0 | x; = 0} and {(z0,...,xn) € oy | x; > z;}. The vertices of C; are
ﬁ > ica i for subsets A C {0,...,n} where j € A. This identifies C; as a polytope combi-
natorially isomorphic to an n-dimensional cube. For B C {0,...,n} we have that ;.5 C;
is the face of the Cj}, which is given by setting the coordinates in B equal. Thus the C; are
cubical complex subdividing the simplex o, (see Figure 1).

Now we form the barycentric subdivision of this cubical complex. This defines a
simplicial complex subdividing o,,. One checks that this procedure applied to all facets of
A is compatible and defines a simplicial subdivision A*™® of A (see Figure 2). Note that
the cubical complex A€ is not a simplicial complex rather it is collection of hypercubes
the way we have simplicies in a simplicial complex. Thus an i-dimensional face F'¢ of A°
is an i-cube with dimension dim(F¢) = |F¢| — 1. The dimension of A€ is defined to be
max{dim(F) | F'° € A°}. We denote by ff the number of i-dimensional faces in A°. For
example in Figure 1, f§ =7, f{f =9 and f5 = 3.

We organize this manuscript as follows. The second section contains results related
to the f- and h-vectors transformations. Proposition 1 counts number of i-dimensional faces
of the cubical complex A€ while Theorem 1 provides relations to compute f;ub in term of
fi. Corollary 1 is the f-vector transformation sending the f-vector of A to the f-vector of
AS"P Proposition 2 deals with the h-vector transformation. In Section 3, we study some
properties of the transformation matrices obtained from transformation maps of Section
2. Proposition 2 states that the transformation matrices §4—1 and $4_1 are similar and
diagonizable. Proposition 3 gives some information about the eigen vectors of §4_1. The
main result of this section, Theorem 2, gives a nice formula to compute determinant of Fy_1.

2. The f- and h- vectors transformations

First we define some terminologies. Let o; be an i-simplex and of be its cubical
simplex consisting of ¢ + 1 number of i-cubes. These i-cubes share a common vertex. We
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call this common vertex as inner vertex. Any face (of cube) of of which contains the inner
vertex is called an inner face (of cube). Any other face (of cube) of o¢ lies on the boundary
of of.

Proposition 1. Let A be a (d — 1)-dimensional simplicial complex and A€ be the cubical
complex Then for 0 < i < d—1, the number of i-dimensional faces of A° is given by
ff= Z (Jﬂ)f], where f = (fo,..., fa—1) be the f-vector of the simplicial complex A.

Proof. Firstly, note that each i-dimensional face F of A° can be obtained from a face F}
of dimension j of A for ¢ < j < d — 1. This fix the range of j in the required formula.
Secondly, it enough to consider a standard j-simplex ;. We are interested to calculate
the number of k-dimensional cubes which lie inside the subdivided cubical j-simplex o7 for
0 < k < j. By the geometric definition, the inner vertex share an edge with each inner vertex
of (j — 1)-dimensional simplicies lies the boundary of o§. Since there are j+1 such simplies

we count these number of edges as (j "1'1) Now each pair of inner edges of o contribute to
an inner 2-cube, hence number of 2-cubes is (j "2’1) and so on. Finally, each combination of j
inner edges contribute to a j-dimensional inner cube and hence, the number of such j-cubes
is given by (J 'H)

Since these calculations take into account only the inner cubes of A€, if we consider
each j-dimensional face of A as an j-simplex, it follows that the total numbers of i-faces of
A is given by (T fi + () fisr + o+ (D famr = Zd FOTY U

To prove the remaining results of this section we need following combinatorial result.

Lemma 1. Let C(n,i) be the number of i-dimensional faces of a n-cube. Then

S LAY €l g}, n)} e ni ) = K, ), (2.)
ni—1=1 no=1 jo=0

where n; = n and
K i+
H(n, i) :Z(—l)]( , )(2(¢—j)+3)”. (2.2)
=0 J
Proof. We prove it by usmg induction on i. It is well known that C(n,i) = 2"~ Z( ) For: =0,
we have ng = n and Z]O _C(n, o) = S 2nm (r)=02+1)"=1=3"—1=H(n,0).

Jjo=0
Suppose Equation (1) is true for i. Now, for ¢ + 1 we have that n;y; = n and

(n=ni41)—1 ni—1 ng—1

S {2 D] Cnosdo)Ye(na, o)} - 3C(nit,mi)

n;=i+1 no=1 jo=0
n—1 1+1

= 2 <Z+1)(2(ij)+3)”i}(‘3(n7m)
n;=t+1 j5=0

= 5 S (e e (),
n;=i+1 7=0 ' n;

Using binomial theorem and simplification we get
i+2 .
i+ 2 .
- Z(—UJ ( , )(2@ —j+1)+3)"
i=0 J

Hence Equation (1) is true by mathematical induction. O
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We use factor H(n, i) defined in above lemma in the remaining part of this section.
Note that H(n,i) < H(n+ 1,1).

Lemma 2. Let A be a (d — 1)-dimensional simplicial complex. For 0 < j < d — 1, the
number of j-dimensional faces of the subdivided simplicial complex AS"™P is given by

£ = Zﬂ{ D ff,

where fi be the number of k-dimensional faces of the cubical complex A°.

Proof. By definition, the barycentric subdivision of A° is a simplicial complex AS"P on the
ground set A°\ {#}. The j-dimensional faces of AS'P are the strictly increasing chains
F§ C Ff C -+ C F¥ (of length j) of faces in A®\ {0}. We fix j and some k-dimensional face
F¢ and count the chains of length j whose top element is F. If j = 0 then by definition

d—1 d—1
fet = f5 = (K
k=0 k=0

Assume j > 0. The dimensions kg of F§, ..., kj_1 of F _q are a strictly increasing sequence
of numbers 0 < ko < --- < kj—1 < k < d—1. Fixing these numbers there C(k, k;_1) choices
for Fy_ 4, C(kj—1,k;—2) choices for Ff oo C(k1, ko) choices for F§. Summing up over the

choices we get
ko—1k—1

Z 3N @k, ko)Clka, k) -+ €(ky k1) = H(ky, G — 1).

kj_1=j—1 k1=1 ko=0

Now there are f7 choices for F and its dimension k must be at least j. This yields f;“b =
d—1 . c
k=j :H:(k7]71)fk: D

On combining the results of Proposition 1 and Lemma 2, we get the following corollary.

Theorem 1. Let A be a (d — 1)-dimensional simplicial complex and AS™® be the subdi-
vided simplicial complex. The number of i-dimensional faces of A"’ is given by f5'b =

Z;l;ll ZZ;; H(j,i— 1)(k+1)fk, where f; is the number of j-dimensional faces of A.

Note that f; < P, for any 0 < i < d — 1. Now extending these results to h-vector
transformation, we give the following proposition.

Corollary 1. Let A be a (d— 1)-dimensional simplicial complex and A" be the subdivided
simiplicial complex. The h-vector of AS™P is given by h$"P =

T 8 o ) [ ) IS

j=1k=j—1 1=k m=0
where h = (hg, h1, ..., hq—1) is the h-vector of A.
Proof. From the definition of the h-vector of A | we have
hsub _ i(il)z;j d —-J su];i _ (7 fsub + Z ‘ SUbl'
7 = i _] J— 7 _] J—

As f84P = h3"P = hy = 1, we have

oo (e
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If we substitute the expression of f51b

721 from Lemma 2 in Equation 2.3, we get
i

= 1 (e + X T (1) (2 )seni - 28z (2.4)

j=1k=j—1

Using the expression of fi given in Proposition 1 in Equation 2.4, we have

4 i d-1 d-1 AN 141

hy = (—W(i)ho Ty > D (Y (Z - ) ( i ):H(k,j ~2)fi. (25
J=1k=j—1 1=k J

Since for any 0 < k < d—1, fp_1 = Z?:o (3=1)hs, so by Equation 2.5 we have the required

result. O

3. Transformation Matrices

For a (d — 1)-dimensional simplicial complex A we denote by Fi—1 = (fi;j)o<i j<d €
READXEHD) and $5_1 = (hij)o<ij<a € REFVXEHD) the matrices of transformations
that send f- and h-vectors of A to f- and h-vectors of ASUP| respectively. Thus ffub =
Z?ZO fijfj—1 and hT‘b = Z?:o hijhj, where 0 < i < d. Note that entries of the matrices
Fa—1 and $Hy_1 can be computed from Theorem 1 and Corollary 1. For example for d = 3
we obtained following matrices.

1 00 0 1 0 0 0
o138 7 [ 16 14 10 7
2= g 0 43 |7 7 10 14 16
00 0 24 0 0 0 1

Proposition 2. For a (d — 1)-dimensional simplicial complex A:

(a) The matrices Fq—1 and Hq—1 are similar.

(b) The matrices Fa—1 and Hq—1 are diagonizable and have the eigenvalue 1 of multiplicity
2 and eigenvalues \p = (k + 1)!2% of multiplicity 1 for each k =1,...,d — 1.

Proof. (a) Since the transformation sending f-vector of A to h-vector of A is an invertible
linear transformation, thus by Theorem 1 and Corollary 1 the matrices §4—1 and $4_1
are similar.

(b) Counsider Fq4—1. Clearly F4—1 is an upper triangular matrix with diagonal entries
1,1,4,24, ... ,d!Qd’l. Since the matrices Fqs_1 and $Hy_1 are similar, thus the result

follows.
O

Proposition 3. Let d > 3 and r1(d), ri(d), r2(d), ..., ra(d) be some eigenvectors of the ma-
triz §q—1, where r1(d), r;(d) are eigenvectors for the eigenvalue 1 and ri(d) is an eigenvector
for the eigenvalue k!28=1,2 < k < d. Then the vectors ri(d+ 1) = (r1(d),0),ri(d + 1) =
(r3(d),0) and r(d+1) = (rx(d),0) are eigenvectors of Fq for the eigenvalues 1,1,4,24, ... d129-1.

Proof. Since by Theorem 1, for a (d — 1)-dimensional simplicial complexes A and its subdi-
vided simplicial complex A" we have fb = Zj;l ZZ;; H(j,i—1) (kyl)fk. Thus clearly
Sd—1 and §q are upper triangular matrices. Moreover, coefficients f;; of f;_1 are same for
0<i<d,0<j<din both matrices F4—1 and §4. Thus
Ji(a+1)
Sa-1 :
Sa =

Jaa+1)

0 ... 0 frasnya+n)
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Hence the result follows.
O

Theorem 2. Let F4—1 be the matriz of transformation sending the f-vector of A to the

f-vector of AS™P. Then determinant of Fq_1 is | Sa_1 |= H;iz_ol(z + 1)12¢.

Proof. The number of k-dimensional faces of the subdivided simplicial complex AP is
calculated using [ dimensional faces of the given simplicial complex A, where k <[ < d—1.
So F4—1 is an upper triangular matrix and hence its determinant | F4—1 | is given by the
product of its diagonal entries. By Theorem 1, the diagonal entries of §;—1 are given by
(i+1)H(i,i—1) for 0 < i < d—1. From Equation 2.2, H(i,i—1) = 2' 3°7_o(=1)7 (%) (i—j+3)".

Thus it remains to prove E;ZO(—I)j (;) (i—j+3)" =il. For this we proceed as follows. The
ith derivative of a function f(x) is defined by
; A f()
(2) _ h
£ w) = fim S (3.1)

where Al f(z) = Z;:o(_l)j (j‘)f(x + (i — j)h) is the ith forward difference of f(x). Now

applying Equation 3.1 on f(z) = 2%, we get

. Yo (=17 () (@ + (i = j)h)’
O(z) =il = li I= I ) 2
fa) =it = lim = (3.2)
Obviously Equation 3.2 is true for any value of x. In particular for x = %h, we have
Yo () Gh+ (i =) NAW! .
! = 1. J= J - = —1 J —_ y — 7)?
= : S ()i i-ar

as required. O
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