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A DESCENT METHOD FOR VARIATIONAL INEQUALITIES IN
HILBERT SPACES

R. Sadhu!, C. Nahak?

In this article, a variational inequality problem is reformulated as an optimiza-
tion problem. An adaptive descent method for solving the reformulated optimization
problem is proposed. The method is structured by the introduction of a generalised class
of differentiable gap function. Global convergence of the proposed descent method is also
proved in a Hilbert space.
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1. Introduction

Let H be a separable Hilbert space and S be a nonempty closed convex subset of H,
(.,.) denotes the standard inner product on H and ||.|| represents the usual norm induced
by the inner product i.e., ||z|| =+/(z,z) for all x € H. Let F : H — H be a mapping, then
the variational inequality problem (in short,VIP) is to find z* € S such that,

(VIP) (F(z*),z —2*) > 0, Yz € S (1)

The applicability of VIP in diverse areas such as partial differential equation, operation
research and mathematical economics, has craved the attention of several researchers and
various solution methods for VIP have been developed. For a comprehensive survey, readers
are referred to Harker and Pang [5] and the references therein.

In the last two decades a considerable amount of research has been devoted in re-
formulating a VIP as an equivalent optimization problem. The methodology involves a
non-negative real-valued functions g on the search space S, with the property g(z) = 0 if
and only if z is a solution to the VIP. These functions allows to cast the VIP as the following
minimization problem:

minimize g(x) subject to z € S. (2)
Such a function g is often called as gap function and was first introduced by Auslenders
[7]. Although Auslenders gap function was not differentiable but it possessed some excellent
global properties, the differentiable gap function was first proposed by Auchmuty [8] and
Fukushima [9]. By using Fukushima’s regularized gap function the VIP was successfully re-
formulated as a differentiable optimization problem. Various extensions and modifications of
these differentiable gap functions were accomplished by many authors; e.g., see ([10], Chap-
ter 4) and references therein. Such merit functions and their associated descent algorithm in
finite dimension, comprises a huge portion of the literature; e.g., see [14, 15, 16, 17, 18] Most
of these descent type methods have been restricted to the finite dimensional space so far,
a quest for the applicability and convergence of these methods in the infinite dimensional
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setting encourages many authors. Fukushima’s regularized gap function was extended to the
Hilbert space setting and a descent framework was proposed by Konnov, Kum and Lee see,
([11]). The global convergence of the method was also proved under the strong monotonicity
assumption on the cost mapping. Note that a recent work due to Zhu and Marcotte [12]
deals with a generalization of Fukushima’s method in Banach spaces. Using Auchmutys gap
function, Noor presented fixed-point algorithms for VIPs under a Hilbert space setting; see
[13]. For more recent iterative methods in VIP see, [1, 2, 3, 4, 6]

In this paper, we propose a generalized class of differentiable gap function for solving
the VIP in a Hilbert space. This class of gap function generalizes the regularized gap function
proposed by Fukushima. Here we extensively study different properties of the proposed gap
function and use it to develop an adaptive descent method. The global convergence of the
scheme is also proved under some mild assumption on the cost mapping.

The paper is organized as follows. Some basic definition and results are recalled in
Section 2. Section 3 addresses the formulation of the general class of gap function. Section
4 discusses some properties of the proposed gap function. Section 5 defines the auxiliary
problem. Section 6 deals with the generalised descent algorithm and its global convergence
are proved in Section 7. A brief conclusion of our work is presented in Section 9.

2. Preliminaries

In this section, we will recall some basic definition and properties that will be useful
in the subsequent sections.

Definition 2.1. An operator F': S C H — H is said to be monotone on S if
(F(z) = F(y),z—y) 20, Vz,y €S (3)
F is said to be strictly monotone if strict inequality holds in (3).
Definition 2.2. F' is said to be strongly monotone with modulus p on S if it satisfies,
(F(z) = F(y),x —y) 2 plle —ylI?, Yo,y €S (4)
for some p > 0.

Definition 2.3. F' is said to be strongly pseudo-monotone with modulus n on S if for every
x,y € S we have,

(F(z),y —2) 2 0= (F(y),y — ) 2 nl|lz - y||? (5)
Definition 2.4. F' is said to be coercive on S if there exist a x° € S such that
F _ o
i @)z -2t (6)
z€S,||z]|wo0 ||z — 2°|]

It is to be noted that, every strongly monotone function on S is coercive on S.

Definition 2.5. Let (X, ||.||x) and (Y, |.||y) be Banach spaces, and U be an open subset of
X. A function F : U — 'Y s called Fréchet differentiable at x € U if there exists a bounded

linear operator A : X —'Y such that
_NF(z 4 u) — F(z) — Aully

lim
u—0 [Jullx

=0 (7)

Definition 2.6. A function f : S — R is said to be strongly conver on S with parameter
a >0, if for every x,y € S and X € [0,1] we have,
ar(l —X\)

FOz+ (1= Ny) <Af(2)+ (1= Nf(y) - —5—lle = yl* (8)
Moreover if f isFréchet differentiable, strong convezity of f can also be defined as,
(V@) = V(y),z—y) >Elle -yl Vo,y €S (9)
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for some € > 0. It is hence worth noting that strong convexity of f ensures V f(x) is strongly
monotone.

Definition 2.7. [11] [Gap function] A function ¢ : S — R U {400} is called a gap function
for the variational inequality problem (1) if it satisfies,

(i) #x) >0, Va € S

(ii) é(z) =0 if and only if x solves the (VIP).

3. Extended gap function formulation

Let Q(z,y) : S x S — R be a mapping which satisfies the following property,
Nx,y) >0, Ve,y €S
Q) is continuously differentiable on S x S
Q(z,y) is strongly convex on S with respect to ‘y’ for all z € S
Qz,z) =0, Vx €S
V,Qz,2)=0, Vz €S
V,Q(z,y) is Lipschitz continuous in the variable‘y’, on any bounded subset of S.

Some examples of Q(z,y) that satisfies the above conditions are given below,
Qz,y) = 5llz - yII%,
Q(x’ y) = %<]\4('7j - y)’x - y>7
Qz,y) = 5(Bulz —y)z —y),
where M and B, are symmetric and positive definite operator on a real Hilbert space
H. Note that such a bi-function Q(x,y), defined above, is a proximity measure between x
and y. Let us now define,

h(z,y) = (F(z),z —y) — Uz,y) (10)
g(z) = max h(z,y) = h(z, Tz) (11)

where the maximizer Tz is unambiguously defined, since h is the sum of a linear and a
strongly concave term. Thus
9(z) = (F(z),z — Tz) — Q(z, T). (12)
On account of Tz being a solution to the maximization problem (11) it satisfies the following
variational inequality,
(F(z) + VyQ(z,Tx), 2 —Tx) >0, Vz €S (13)
Theorem 3.1. The function g defined as in (12) is a gap function.

Proof. Let © € S, by (10) h(xz,z) = 0 and thus by (11) g(z) > h(z,z) = 0. So, g(x) >

0,V z € S. Now, let us assume that = solves the VIP. So,(F(z),y — z) > 0¥y € S and so,

hz,y) = (F(z),z —y) — Qx,y) <0, Yy € S. Hence, g(x) = max h(z,y) < 0. This implies
ye

g(x) =0
Conversely, let g(x) = 0. Thus, h(z,y) < 0, Yy € S and hence z is a solution to
the optimization problem max h(z,y) (as h(x,2z) = 0). Therefore x satisfies the variational
ye

inequality,
(Vyh(z,z),z—x) <0, Vz €S
(F(z) + VyQ(z,2),z—2) >0, Vz €S
(F(z),z—x)>0,Vz€eS
Thus « solves the VIP. O

The above theorem ensures that the function g is a gap function. We now provide a
fixed point characterization of the solution of VIP in terms of the mapping T’
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Theorem 3.2. x is a solution to the VIP if and only if x is a fixed point of the mapping
T, ie x="Tz.

Proof. Let us assume Tx = x, then g(z) = 0 and « solves the VIP.

Conversely, let x solves the VIP. So,(F(z),y —x) >0, Vy € S

Since Tz € S, Vo € H, (F(x),Tx —x) > 0. Since Tz is a solution of the optimization
problem Igr}eaéi h(zx,y), it satisfies the variational inequality

(Vyh(z,Tz),y —Tx) <0, Vy € S
(F(xz)+ VyQz,Tx),x —Tx) >0

(VyQa,Tx),x —Tx) > (F(z),Txr —x) >0 (14)

Therefore (V,Q(x,Tx), Tz —x) < 0. Since, Q(z,y) is strongly convex in y, there exist a
schalar £ > 0 which satisfies

(VyQz,Tx) — V,Qx,3), Tz — x) > ||Tz —z||* >0 (15)
Thus by (14) and (15) ||Tx — z|| =0 i.e., Tx = x. O

4. Properties of gap function

Let us first prove that the gap function g is differentiable on S. We begin with a
technical lemma.

Lemma 4.1. ([11] ,Lemma 3.1) Let h: H XS — R be a function such that V h(z,y) exists
and is continuous on H x S. Define two function as follows

Uz = max h(z,y), Ve €S
yEeS

Mz ={y eS| h(z,y) = ¥z}

Assume that Mz is a single tone for all x € H, and M is a continuous function on H, then
U is continuously differentiable and the gradient of ¥ is given by

VUz =V, h(z, Mz)
Hence onwards in this chapter, by ‘differentiability’ we will mean ‘Frechet-differentiability.’

Theorem 4.1. The gap-function g defined by (12) is continuous (resp. continuously differ-
entiable) whenever F' is continuous (resp. continuously differentiable)on S. In particular if
g is continuously differentiable, the gradient of g is given by

Vg(z) = F(z) — (VF(2)(.), Tz — ) — V. Q(x,Tx).

Proof. By continuity of F' and Q2 we have h(z,y) defined by (10) is continuous. By definition

)

g(x) = max h(x,y) = h(z,Tx)

yES
Let x € H and € > 0 be arbitrary, let z = 2 + h, for some h € H by (11)
9(z) = h(z,Tz) < h(z,Tz) + € [by continuity of h(x,y)]
<glx)+e
whenever ||z — z|| < 4§, for some § > 0 depending upon € . Since we may similarly obtain

the same inequality with z and z switched, continuity of g follows.
Suppose that F is continuously differentiable. Define h: H x S — R by,

Wz, y) = (F(x),z —y) — Uz, y).
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Then we apply Lemma 4.1 to the case Va = max h(z,y) and Mz = Tx so that we can
ye

obtain
VUz =V h(z,Mz) = F(x) — (VF(z)(.),Tx — x) — V;Q(z,Tx)
Thus we have,
Vy(x) =F(z) — (VF(x)(.), Tx —x) — V,Q(z, Tx).
This completes the proof. O
Proposition 4.1. [11]) Let F be continuously differentiable and the gradient VF(x) be
positive (or strictly monotone) for all x € S, i.e., (VF(x)d,d) > 0 for all d(£ 0) € H. If

x is a stationary point of g on S,i.e. (Vg(x),y —x) >0, Yy € S then x is a global optimal
solution of (2) and hence solves the VIP.

The following property of g is essential for constructing a descent method for mini-
mizing g over S.

Theorem 4.2. Let z* be a solution of the VIP. If F is strongly pseudo monotone with
modulus p > 0 on S and the gradient of Q with respect to y is Lipschitz continuous with
modulus Ly, ~on'S then there exists a positive scalar o such that

9(x) 2 allz —a*|]*, vz €S

Proof. Since z* is a solution to the VIP, so (F(z*),z — z*) > 0, Vo € S. By pseudo-
monotonicity of F' we have,

(F(z),z —x*) > pllx — z*||?, Vz €S
Let z = x + t(z* — x), t € [0,1].
Now by convexity of Q(z,y) and Lipschitz continuity of V,§(z,y) with respect to y, we get
Az, x) — Az, x) <(V,Qz,2¢), 20 — )
<V Qz,2¢) = Vo Qz,2), 20 — x)
< |IVyQz, 21) = Vy 2z, z)||.]|ze — 2]
< Lv,q,

Thus we have, g(z) > (F(z),z —y) — Q(z,y), Vy €.
Let y = x4 € S. Therefore,

e — 2.

g(x) 2 (F(z),x — 2¢) — Uz, 14)
> t(F(x),x —ax) — (Qz, x¢) — Uz, 2))
> tulle — 2*||* = Ly ,q, o — 2|
(

th— Ly q,t*)|lz — 27|

1 )
= tLvygy(? —t)||z — 2*|?

vy
Let ¢ = min{1, ﬁ}, we chose,
oo I ;szyny i? o> 2Lvyny,
v, if u < QLVyQy.
Thus o > 0 and g(z) > allr — 2*||? for all z € S O

Remarks: The above inequality infers that g is non-negative and has a bounded
level set.
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5. Auxiliary variational inequality

Let I(z,y) : S xS — H be a continuous mapping (the auxiliary mapping), which
is strongly monotone with respect to the variable y. The auxiliary variational inequality
problem is stated as: for each fixed x € S, find a point w € S which satisfies the following
inequality,

(AVIP(z)) (INz,w) = '(z,z) + F(z),y —w) > 0, Vy € S. (16)

Due to the strong monotonicity of I'(z,y) with respect to y, for every fixed z € S
there exist a unique solution to the above auxiliary variational inequality problem. Let us
now construct a function W : S — S, such that W (x) is the unique solution to (AVIP(x))
for each point = € S i.e.,

(D(2, W (@) = D(w,2) + F(a),y — W(x)) = 0, ¥y € 5. (17)
Theorem 5.1. z is a solution to the VIP if and only if it is a fized point of the mapping
W ie, W(x)=x.
Proof. Let us first suppose that x is a fixed point of W i.e., W(z) = z. Thus substituting =
in place of W (x) in (17) we obtain,

(F(z),y—=x) 20, Vy €S

and hence x solves the VIP (1).
Conversely, suppose that z is a solution to the (VIP), then,

(F(z),W(z) —z) 20
and it follows from (17) that
(T(z,W(x)) —(z,z) + F(z),x — W(x)) >0

Adding the two preceding inequalities, we obtain

(T(x,W(x)) —T(z,2),x —W(zx)) >0 (18)

Now by strong monotonicity of I'(z.y) with respect to y we have
(C(a, W(2)) = D(z,2), W(z) — 2) 2 0]|W(z) —z[[* > 0 (19)
where 6 is the modulus of strong monotonicity of I'. Thus by comparing (18) and (19), we
get W(x) = x. O

6. Generalised descent algorithm

Theorem 5.1 suggests a fixed-point algorithm for solving a VIP. For given zF € S
consider the auxiliary variational inequality problem: Find W (z*) € S such that

(AVIP(a?)) (D(*, W (a?)) = T(a*, %) + F(a*),y = W(a") >0, vyeS  (20)
in our approach, instead of choosing z*+! = W (z*), we will use
d* = W(z*) — 2*
as a descent direction for the merit function ¢ at 2* and incorporate Armijo type line search
technique to find the next iterate z**1. If ¥ = W (a*), the solution to VIP is obtained,
otherwise, the vector d* = W (x*) — 2%, is a descent direction for g at z*, under conditions
to be imposed latter.

The liberty to choose I' often makes the problem AVIP(x*), easier to solve than the
original VIP. In this chapter, we impose a specific structure to the auxiliary function I and
presents a general descent scheme. Let us first assert the generic algorithm.

General Algorithm

Step 0: Chose, 2° € S, set tolerance factor € > 0 and select parameters v, 3 and ¢ from the
interval (0,1). Set k = 0.
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Step 1: At k*" iteration of the algorithm, compute W (x*) by solving the auxiliary variational
inequality problem AVIP(z*). Set d* = W (z*) — 2
Step 2: Line search if g(x* + d¥) < vg(x¥), set 2*+! = 2 4 d*.
Otherwise select the smallest positive integer m such that
g(z*) — g(a* + Bmd*) > —oB™|dP|1%; set ag = A™,
and set zF T = zF + apdF.
Step 3: STOP if ||[z*+! — 2¥|| < e. Otherwise, increase k by one and return to
Step 1.

The flexibility, to choose the regularizing term §2 in g, enables us to construct a gap
function which suits the problem most. The function Q should be chosen in such a fashion
that g and its gradient map Vg are easily computable at any point = in H. The gap function
g acts as a merit function and thus monitors the iterates to a solution of the VIP. By sincere
choice of ' and 2 one can thus construct an excellent algorithm that will guide the sequence
generated by it, to a solution of the VIP. In the following sections, we introduce the specific
choice of I' and the associated convergence frameworks.

7. Descent method and its convergence

In this section, {2 assumes the general form introduced in Section 3, and the auxiliary
mapping is chosen as

[(z,y) = V,Q(z,y).

For this specific choice of I, we observe that,

Wz, y) = (F(z),z —y) — Qz,y) (21)
T'(r) = argmax,cch(z,y) = W(z) (22)
g(z) = max hz,y) = h(z, Wz)

g(x) = (F(z),2 - W($)> — Oz, W(x)) (23)

where W (z) is the unique solution of the auxiliary variational inequality (AVIP(z)).
From (gradient function), we have

Vy(z) = F(z) = (VF(2)(.), W (z) — z) = Vo Q(z, W (). (24)

Following the analysis above, we introduce the general descent framework for VIP.
Algorithm
Step 0: Chose, 20 € S, set tolerance factor ¢ > 0 and select parameters v, 8 and o from the
interval (0,1). Set k& = 0.
Step 1: At k'* iteration of the algorithm, compute W (z*) by solving the auxiliary variational
inequality problem

AVIP(2") (V,Q(w,2") + F(2*),y —w) >0, Yy € S
and let d¥ = W (2*) — 2¥.

Step 2: Line search if g(x* + d¥) < vg(x%), set 2*+! = 2 4 d*.
Otherwise select the smallest positive integer m such that
g(z") — g(a* + gmd*) > —op™||d"(|%; (25)
set ap, = B,
and set 2T = 2% + apdF.
Step 3: STOP if ||z%*! — 2¥|| < e.Otherwise, increase k by one and return to

Step 1.
The following assumptions are essential for global convergence of the algorithm.
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Assumption 7.1. In addition to the condition stated in Sec.3, let the function Q(x,y) also
satisfies ,

o (Vo Qz,y)+V,Qz,y),z—y) >0, V,y €S

o V,Q(x,y) is Lipschitz continuous in x on any bounded subset of S.

o V. Q(z,y) is Lipschitz continuous on any bounded subset of S x S.

Theorem 7.1. If F' is strongly monotone with modulus p on S, 2 satisfies assumption and
x¥ is not a solution of VIP, then d* = W (z*) — 2* satisfies

(Vg(a®),d") < —n||d"||? (26)
for some n > 0, i.e. d* is a feasible descent direction of g at x*.

Proof. Let us temporarily ignore the iteration index k for notational simplicity. Since d =
W (z*) — z*, we have from (24) that

(Vg(x),d) = (F(x), W(z) — x) = (VF(z)(W(2) — 2), W (2) — x)
— (Vold(z, W(z)), W(z) — )
= (VyQz, W(z)) + F(z), W(z) — )
— (Vald(z, W(2)) + V, Q(z, W(2)), W(z) — )
—(VF(x)d,d) (27)

Since W (z) is a solution of AVIP(x), the first term of (27) is non-positive.From the above
assumption, the second term of (27) is also non-positive. By strong monotonicity of F ,

(VF(x)d,d) > pl|d|>

Letting n = p the result follows. ]

The above theorem ensures that the direction d* is in fact a descent direction for g
at 2¥. Next, we present some lemmas which will play an important role to prove the global
convergence of the algorithm.

Lemma 7.1. The mapping W : S — S is Lipschitz continuous on any bounded subset of S

Proof. By equation (21),

g(x) = max h(z,y) = h(z, Wz)

Hence Wz satisfies,
(Vyh(z,Wz),z—Wz) <0, Vz €S (28)
Let x1, x5 € H then by (28) we have,

(Vyh(z1,Wz1),2 — Wa1) <0, Vz €S (29)
(Vyh(ze, Was),2' — Wao) <0, V2' €S (30)

Substituting z = Wag in (29) and 2/ = Wx; in (30), and adding we obtain
<vyh($1, Wl‘l) - vyh(l'g, W$2)7 W.%‘l - W.Z‘2> Z 0 (31)
or

(Vyh(z1, Wa1) — Vyh(ze, Wae) + Vyh(ze, Wa1) — Vyh(ze, W), Way — Waxa) >0 (32)
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Using the strong monotonicity of F' and the strong convexity of {2 in the second variable,
(32) yields

(Vyh(z1, Wa1)=Vyh(ze, War), Way — W)
> (Vyh(xze, Waa) — Vyh(ze, Way), Way — Wag)
= (VyQ(z2, Wa1) — V, Q(z2, Wag), Way — Was)
+ (F(x1) — F(x2), Wx1 — Was)
> 1| |Way — Was|]?

for some positive constant [.
By virtue of Schwarz’s inequality, the above inequality gives

l||WJZ1 - W$2||2 S ||Vyh(x1,Wx1) - Vyh(xg,WZj)H ||W$1 - WZEQH

or

1
[Way = Was|| < 7[IVyh(z1, W) = Vyh(zz, Wz

IN

%(HF(l’l) — F(2)|[ + [IVy (w1, Wa1) = Vy (w2, Wa1)][)

Thus the Lipschitz continuity of F' and that of V,Q(z,y) in the variable z on any bounded
subset of S enforces W to be Lipschitz continuous. O

Proposition 7.1. ([11] , Lemma 4.2) Let f : H — R be a mapping, such that the gradient
function V f is Lipschitz continuous on a conver set D C H with modulus L,0 then for any
z,y € D and t € R, we have,

1
fla+ty —2)) < f2) + KV f(@),y = 2) = 5Lz = y]]® (33)
Lemma 7.2. Vg is Lipschitz continuous on any bounded subset D of S

Proof. Let x1,x2 € D, we have

[[Vg(x1) — Vg(@2)|| = ||F'(z1) — F(z2)
= [(VF(21))"(W(z1) — 21) — (VF(22))" (W (22) — 22)]

— (Vo Q(z1, W(z1)) = Vo Q(z2, W(222)))||

< |[F (1) — F(z2)]|

+ [(VF(21))" (W (z1) — 21) = (VF(22))" (W (22) — 22)||

+ [V l(z1, W(z1)) — VaQ(z2, W(zz2))||

< |[F(z1) — F(z2)]|

+[(VF(21))" = (VF(22))" (W (1) — 21|

+ [(VEF(22)) W (1) — W(z2) + 22 — 21]||

+ Va1, W(z1)) — VaQ(z2, W(zz2))||

< Lr|lz1 — z2|| + Lyp||zr — 22| [[W(21) — 21]|

+ @+ O(VF(@2)|] [lz1 — 22|

+ Ly, o(1+6)[|z1 — 22|

= [Lp + Lyp||W(z1) — 21]| + (1 +0)

(II(VE(@2))*]] + Lv,o)lllz1 — z2]|

where Lp, Lyr, 0 and Ly, q are the Lipschitz constants for ' ,VF, W and V,Q on D,
respectively. Since W, F' and VF are Lipschitz continuous and D is bounded, there exist a
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constant L < oo such that

Lp + Lyp|[W(zy) — x|l + L+ O)([(VF(22))*|[ + Lv,a) < L,

that is, Vg is Lipschitz continuous on D. (]

We are now in a position to state the global convergence result in the Hilbert space.

Theorem 7.2 (Global Convergence). Let {x*} be a sequence generated by the iteration
ohtt = gk 4 apdk; k=0,1,2, ..., where d* is given by d* = W (x*) — 2* and ay, € [0,1]; is
determined by the Armijo-type steplength rule (25). Assume that F' : H — H is differentiable
and strongly monotone with modulus p > 0 on S. Further assume that F and VF are
Lipschitz continuous on each bounded subset of S. Let Q be defined as in sec3 and satisfies
assumption 7.1. Then whenever the positive constant o in the Armijo-type steplength rule
(25) is chosen sufficiently small so that o < p, then the generated sequence {x*} lies in S
and converges to a unique solution of (VIP)(1) for any starting point z° € S.

Proof. To prove the theorem it is enough to follow the subsequent steps.

(i)

The sequence {z*} lies in' S and is bounced.

Since z* and 2* 4+ d* both belong to S and since 0 < ap < 1, it follows from the
convexity of S that the sequence {z*} lies in S.Now by Theorem 7.1 and Step 2 (line
search rule ) of the algorithm, the sequence {g(z*)} is strictly decreasing. Thus by
Theorem 4.2, {z*} is bounded.

The sequence {g(x*)} converges to 0 as k tends to infinity.

Case 1: if g(z¥ + d*) < ~vg(a¥), for v < 1, holds infinitely often. Then there exist
a subsequence {2*}, k € X, such that

lim g(z") =0k € X.
k—o0
Case 2: Let us now consider the case where g(z* + gi’“) < vg(z*), holds for only finitely
many values of the index k; i.e. there exist index K; such that
g(a® +d*) > g(a®), k> K.
Then for k > K, by Armijo line search rule we have,
92" ) — g(a*) < oo |ld¥|Pe (34)

thus by (34) we observe that the sequence {g(z*)} for k > K; is monotonically de-
creasing and by Theorem 3.1 it is bounded below. By taking limit on both side of (34)
we get,
lim oy||d®|| = 0. (35)
k—> 00

Claim 1: o > o/ > 0 for all k > K;.

As W is Lipschitz continuous {z*} is bounded (by (i)) we can easily show that {d*} is
also bounded. Therefore, there exists a closed, convex and bounded subset D of S which
contains all terms of the sequences {2*} and {z* + d*} for all k > K;. By Lipschitz

continuity of Vg on D and letting z = z*, y = 2* + d* and ¢t > 0 in Proposition 7.1
we have,

1
g(a" + 1d*) < g(a") + 1(Vg(a®),d") — S Lyt?||d"|?, (36)
where L is the Lipschitz constant for Vg on D. Using (26) in (36) we obtain

1
gz +td") — g(a*) < —(n - ngt)tHdeI2
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hence,
g(a" +td") — g(a*) < —atl|d"||?
holds for all ¢ satisfying 0 <t < min{1;2(n — o)/L,}, provided that ¢ < n = p. Let,
o =min{B;26(n—0)/Ly}
Thus by choosing aj > o/ > 0, the Armijo step length rule is satisfied for all & > K.

Hence the sequence aj, is bounded below.
Hence, by boundedness of ay and (35) it is easy to show that,

lim [|d*|| = 0. (37)
k—> 00

Claim 2: lim Q(zF, W(z%)) = 0.

k— 00

For any = € S, we have Q(z,z) = 0. Using the Lipschitz continuity of € in the
second variable we can write,

Q" W(ah)) = Q" W(z")) — Q(a*, 2%) < Lol |[W(2") — 2"

hence,
Q=" W (")) < Lal|d"|] (38)
taking limit on both side and using (37)
lim Q(zF, W(z*)) =0 (39)
k—> o0

By definition,
g(a*) = (F(*), 2" — W(a)) — Q(a*, W (")
= (F(a"), d") — (", W (") (40)
taking limit on both side of (40) and using (39) we obtain,
Jim o) =0

(iii) klim zF = %, where z* is the unique solution to the VIP (1).
— 00
Since F' is strongly monotone and continuous, VIP (1) has a unique solution, say x*.
By Theorem 4.2,
g(zx) = afjzx — 2*|%,
holds for some fixed a > 0. Taking limit,
k *

lim 2" =«
k— o0

this completes the proof. O

8. Conclusion

In our present chapter, we introduce a general class of gap function for the variational
inequality problem in a Hilbert Space. We prove some excellent properties of the proposed
gap function and based on those properties we develop a very flexible descent method to
solve the VIP. The liberty of constructing the function €2 in the definition of gap function
makes the method well adaptive to the problem environment. The global convergence of
the proposed iterative algorithm is proved under the strong monotonicity assumption on
the main operator (F'). It is, however, worth mentioning, that the strong monotonicity
assumption is satisfied very often in the problem of Mathematical physics; e.g, see [19].
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