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INVESTIGATION OF OXYGEN ISOTOPES IN THE D-
DIMENSION SCHRODINGER EQUATION BY THE PNU
METHOD

Khosravi Bijaeim, JAMSHID?; Shojaei, Mohammad REZA! And Mousavi,
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In this article, we review few-body systems by analytical methods. As we
know, solve equations related to few-body systems for reasons such as the Tensor
forces and the coupling between the equations is difficult. Therefore, to describe the
motion of nucleons in the nucleus, such as forces modeling techniques must be used.
To do this, we examined the Schrédinger equation for a few-body system using, Jacobi
coordinates and hyper-spherical functions. We used the improved Hult'en plus
Yukawa potential for interactions between nucleons. The D-dimensional Schrodinger
equation in the case of | # 0 had discussed by using Parametric Nikiforov-Uvarov
method. And we obtained relations energy values and wave function. The dependence
of the few-body binding energies on the potential parameters has been investigated.
Also, the energy state of two- and three-body systems have been compared. Finally,
the energy of the ground state of some of the isotopes of oxygen was obtained.

Keywords: D-dimensional Schrodinger equation; Jacobi coordinates; Parametric
Nikiforov-Uvarov method.

PACS No. 03.65.Ge, 03.65.Pm, 02.30.Gp
1. Introduction

As we know, full resolution of the equations for few-body systems is very difficult
for reasons such as tensor forces and coupling between the corresponding
equations. Therefore, methods such as force modeling should be used to describe
the motion of nuclei in the nucleus non relativistic Schrédinger equation, Klein-
Gordon (K-G) and relativistic Dirac equation have long been recognized as
essential tools for the study of atoms, nuclei, molecules and their spectral behaviors.
Different methods have been used to solve these equations with central and non-
central potentials. Some of these methods are supersymmetric quantum mechanics
[1,2], path integral [3,4], factorization method [5,6]. In recent years, there has been
a great desire to solve quantum mechanical systems in the framework of the
Parametric Nikiforov—Uvarov (PNU) method. This algebraic technique is used to
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solve second-order linear differential equations. Which has been successfully used
to solve the Schrodinger, Dirac, Klein-Gordon, and Duffin-Kemmer-Petiau (DKP)
wave equations in the presence of central and non-central potentials [7,8].

The study of nuclei under extreme conditions has always been a necessity to
understand the nuclear forces. As early as 1934, Elsasser [9] noticed the existence
of special numbers of neutrons and protons which confer a particularly stable
configuration to the corresponding nuclei. In analogy with atomic electrons, he
correlated these numbers with closed shells in a model of non-interacting nucleons
occupying energy levels generated by a potential well. Using the macroscopic-
microscopic (M-M) model with isospin-dependent spin-orbit potential Qijun Zhi et
al. showed that systematic calculation of the ground state properties of nuclei with
proton number Z = 8-20. The calculated binding energies agree well with the
experimental data. [10-11].

Understanding the evolution of the shell structure from the valley of stability to
neutron-rich extremes represent a key challenge in nuclear structure. With a closed
proton shell, the 70, 180, %0 and 2°0 isotopes provide an ideal region to investigate
the shell formation and evolution in medium mass nuclei from nuclear forces
[12,13]. These isotopes have a double magic number with 1, 2, 3 and 4 neutrons on
top of the closed core. For example, the nuclei 'O and *®O can be modeled as a
doubly magic Y’O=n+ (N=Z=8) and °0=3n+ (N=Z=8), with additional (valence)
nucleons in the Ids;2 level. The ground state spin and parity of O and °0 are j= =
5/2*, which corresponds to the spin and parity of the level where the valence
nucleon resides [14].

We use non-relativistic shell model for calculation of the energy levels for 1-2°0
isotopes. Since these isotopes have some nucleons out of the core, Schrodinger
equations in D-dimensional is utilized to investigate them in non-relativistic shell
model. We apply the improved Hult'en plus Yukawa potential between the core and
additional (valence) nucleons because these potentials are important nuclear
potentials for a description of the interaction between single nucleon and whole
nuclei.

2. Review of Parametric Nikiforov—Uvarov Method

Nikiforov—Uvarov (NU) method is based on reducing the second-order
differential equation to a generalized equation of hyper-geometric type. This
powerful mathematical tool solves second order differential equations. Let us
consider the following differential equation
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Where o (s) and ¢ (s) are polynomials, at most of the second degree, and 7~ (S) is a
first-degree polynomial. Also, n and | are the radial quantum number and the orbital
angular momentum quantum numbers, respectively.
The application of the NU method can be made simpler and direct without the need
to check the validity of the solution. We present a shortcut for the method. So, at
first, we write the general form of the Schrédinger -like Eq. (1) in a more general
form as [15,16]:

{d_zz_’_ €, —€,8 1 (- Xzs + ;8 XO):|‘Pn’[(S)=0- (2

ds® s(l—g,s)ds s?(1—g,8)°

For the Schrddinger equation, in the presence of potentials that can be written as in
Eq. (2), the relation of energy Eigen-values and wave function is given by the
following relationships, respectively:

—(2n+De;+(2n+ 1)(\/5 + 83\/@ +n(n—1)g; + &, +2e,8; +2,/g58, =0, (3)
W, (s) =N, 5% (1—g,8)% P! (1 2g,5) . (4)

In these relations y(s) the wave function and &; are constant coefficients which are
obtained with respect to the initial parameters y; (i = 0,1,2) in Eq. (5). Also, n is the
quantum number of the system, N, is the normalization coefficient and the
P (x) Jacobi polynomials.
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The parametric method NU can solve the second-order differential equations with
the conditions mentioned. We can study the Dirac, Klein Gordon and Schrodinger
equations and other similar equations with the help of this method for some specific
potentials. However, this method can only be solved for some of the potentials
summarized in Eq. (1) [17,18].

3. The energy Eigen-values and wave functions

The many-body forces are more easily introduced and treated within the hyper-
spherical harmonics formalism. For N-particle system after eliminating the center-
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of-mass motion becomes a D-dimensional one where D=3N—3. When the particles
are nucleons, it is possible to ignore the difference in mass between protons and
neutrons. For such as system, we can define the N Jacobi vector as follows [19].

£= | [rl%Zr]  i=1,2,...N-1. (6)

i+1

Where The & is the location of each point relative to the center of mass of the

previous points, and the rj is the coordinates of the particles in the laboratory
system. The volume element in this coordinate is as follows:

3
[T}, dr,=N? dRIT} d& =dx . (7)

In the hyper-spherical method, a point in the (D=3N-3)-dimensional configuration
space is represented as lying on a (D-1)-dimensional hypersphere of radius x. The
variable x is called the hyper-radius [19]. The potential V(x) is assumed to depend
on the hyper-radius x only. The potential V(x) is called hyper-central in the sense
that it is invariant for any rotation in the D-dimensional space. The Schrddinger
equation in D-dimension [20] is given as follows.

dZ_R_i_Md_R+2_M|:En’(_V(X)_Z_z(f(€+D_2)Jj|R:O’ (8)
H
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where D=3N-3 and x is the mass reduced of the N-particle system. In this study,
we consider the improved Hult'en plus Yukawa potential [21-22] follows:
Vv, 0 e | )

V(X) == (1_e—aX) Vl X2

where the parameters vo and v; are real parameters, these are strength parameters,
and the parameter « is related to the range of the potential.
D-1

Using the change of variables, U(X)=x ? R(x), A=(+

and putting the

potential in the Schrodinger equation, Eq. (10) is given as:
d2U(x) 2;{E L Voo™ e A2 +1)
e, _
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}U(x) =0. (10)

Eq. (10) can be precisely solved only for 2= 0, -1. We consider the approximation
proposed by Greene and Aldrich to solve the analytical Eq. (10) [23]. This
approximation is valid for ax<<1. The main characteristic of these solutions lies in
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the substitution of the centrifugal term by an approximation so that one can obtain
an equation, normally hyper-geometric, which is solvable [24].

1 aZe—aX

o 11
X2 (1_e—OLX)2 ( )
Using the change of variable s = exp(—ax) the Eq. (10) is written as follows:
y 1-s
U /(S) ( ) n/() [ X252+X13_X0:|Un,/,(5):0: (12)
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where the parameters y2, y1 and yo are considered as follows:
2
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Now, by comparing Eq. (12) with Eq. (2), the coefficients & (i = 1, 2, 3) are easily
obtained.
€1= &= e3=1. (14)

The coefficients & (i = 4, 5 ... 13) are also obtained according to Eq. (5), which is
given in Eq. (15) as following:

1
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Applying PNU method, we obtain the energy equation (with referring to Eq. (3))
as:

/ 1 1 1 1
(2n +1)[ X2 = X1t Xo +Z+M+Z(2n +1)]+2\/X0(X2 X1t Xo +Z) + 2%, —xl+z=0

. (16)

The energy equation with referring to Eq. (13) summarized as:
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In the following, we can obtain the wave function according to Eq. (4) and Eq. (15):

Rn,@ (X) _ NMX{%J (e,ux )(M) (1_ oo )(%+ /%err)mxo] P[Z\/EZ, %ﬂcz—)irr%] (1_e—ax ) , (18)

n

where Np, is the normalization coefficient.

4. Results:

According to Eq. (17), the energy eigenvalues depend on the hyper-central potential
parameters. We carried out calculations for the ground state of two- and three-body
bound systems. Having fixed parameter values of a=0.08fim™,  m=8fm™* and
h=c=1 in the natural units we have investigated the dependence of the two- and
three-body binding energies on the parameter vo, by performing calculations for
several vi, in Fig. 1la-b, respectively. These parameters are taken for the good
behavior of energy values. For a particular vi, few-body binding energies are found
to decrease with increasing vo, as it should be. Similarly, the dependence of the two-
and three-nucleon binding energies on the parameter vi has been investigated in
Fig. 2a-b. It can be seen that for a particular vo, few-body binding energies increase
with increasing vi.
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Fig. 1. The variation of the ground state binding energy of the Schrddinger equation on the
parameter vo with different values of v; for the fixed value of a =0.08fm, m=8fm-tand #2=c=1 in
the natural units, for two-body (a), three-body (b) systems
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Fig.2. The variation of the ground state binding energy of the Schrédinger equation on the
parameter v; with different values of vo for the fixed value of a =0.08fint, m=8fm=and z=c=1 in
the natural units, for two-body (a), three-body (b) systems.

With referring to Eq. (17), the binding energy for the 2, 3, and 4 body systems are
also compared. This comparison is shown in Fig. 3 for different values of potential

parameters in vo and vi. 0
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Fig. 3. Comparison between the Schrédinger ground state binding energy for the two-body, three-
body and four-body systems versus different values of (2) v1 and (b) vo for the fixed value of
a=0.08fm’t, m=8fm~and #=c=1 in the natural units.

Finally, as an application of this argument, we have obtained the ground state
energy by using the Eq. (17) for some of the oxygen isotopes. We have investigated
energy levels these isotopes in Non-Relativistic Shell model. These isotopes can be
considered as a doubly-magic close shell °0 with additional nucleons (valence) at
the Ids,2 level. The results are compared with experimental results and other tasks
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as shown in Table (1). We have considered the parameters a=0.014fm™, n=1, 1=2
(in 1ds) and N= 2, 3,... in Eq. (17) for nuclei 1’0, 180, ¥°0, %0 in the proposed
mathematical model. The a parameter was considered by fitting the potential
parameters for the specific nucleus.
Table 1:
The ground state energy values of some oxygen isotopes (a=0.014fm™). Column (Our)
contains our calculation, Column (Other) contains other calculation and column (Exp)
contains the experimental data.

Oxygen Potential parameters Eni (MeV)
Isotopes
vo( MeV.fm) | vi( MeV.fm?) Our Other Exp[26]
70 82.4235 3.2182 -132.1423 -132.880[11] -131.7624
80 94.4301 0.5387 -140.1993 -139.909[25] -139.8087
0 206.4566 4.1022 -145.0045 -146.870[11] -143.7600
20 153.5082 2.1093 -152.2033 -152.300[25] -151.3714

According to Figures 1 to 3, the parameter vy is smaller than vo, and given that the
binding energies values are different for each isotope, it is logical that the values of
the potential parameters for each isotope are different. These values are calculated
according to the experimental values and the solving process for oxygen isotopes.

5. Conclusion

In this paper, we investigated a Non-Relativistic few-body bound system
problem by presenting the analytical solution of D-dimensional Schrddinger
equation by using Jacobi coordinates and improved Hult'en plus Yukawa potential.
Applying Parametric Nikiforov—Uvarov method, the hyper-radial wave functions,
expressed in terms of the hypergeometric functions, and the energy equation are
obtained. We investigated the dependence of the binding energies for the systems
of two and three Non-Relativistic nucleons interacting by the improved Hult'en plus
Yukawa potential, on the potential parameters. Finally, the ground state energy of
the some of the oxygen isotopes was obtained. We can say that our proposed
approach can be useful in investigating the Non-Relativistic corrections relevant to
the observable characterizing the properties of few-body nuclear systems, within a
simple treatment.
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