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(F1,F2)-CHAOS AND SENSITIVITY FOR TIME-VARYING DISCRETE

SYSTEMS

Xinxing Wu1, Yang Luo1, Lidong Wang2, Jianhua Liang3

We prove that the (F1,F2)-chaoticity and sensitivity of two uniformly

topological equiconjugate time-varying discrete systems are equivalent, improving the

main result in [Annales Polonici Mathematici, 107 (2013), 49–57]. Moreover, some

examples are given to show that Li-Yorke chaos, distributional chaos, and distributional

chaos in a sequence on general metric spaces are not preserved under topological conju-

gation.
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1. Introduction

Li and Yorke firstly gave the concept of ‘chaos’ in their famous paper [7] in 1975.

Meanwhile, it was the first description the conception ‘chaos’ with strict mathematical lan-

guage. A dynamical system is a pair (X, f), where X is a compact metric space with a metric

d and f : X → X is a continuous map. A subset D ⊂ X is called a Li-Yorke scrambled set

of f if any different points x, y ∈ D satisfy

lim sup
n→∞

d(fn(x), fn(y)) > 0, lim inf
n→∞

d(fn(x), fn(y)) = 0.

(X, f) is chaotic in the sense of Li-Yorke (or Li-Yorke chaotic) if there exists an uncountable

Li-Yorke scrambled set. Since then, the research of chaos has greatly influenced dynami-

cal systems. Various definitions of chaos had been given according to property of iterative

mapping, such as Devaney chaos [4], distributional chaos [10], Li-Yorke sensitivity [2], dis-

tributional chaos in a sequence [13], etc.

Throughout this paper, let N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}. A time-varying

discrete system (TVDS) can be written in the following form

xn+1 = fn(xn), n ∈ Z+, (1)
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where fn : Dn −→ Dn+1 is a map and Dn is a subset of a metric space (X, d). Consider

another TVDS

yn+1 = gn(yn), n ∈ Z+, (2)

where gn : En −→ En+1 is a map and En is a subset of a metric space (Y, %).

Definition 1.1. System (1) is said to be topologically {hn}∞n=0 conjugate to system (2) if for

each n ≥ 0, there exists a homeomorphism hn : Dn → En such that hn+1◦fn = gn◦hn, n ≥ 0.

The sequence {hn}∞n=0 is said to be uniformly equicontinuous in {D}∞n=0 if for any ε > 0,

there exists a positive constant δ such that ρ(hn(x), hn(y)) < ε for all n ≥ 0 and x, y ∈
Dn with d(x, y) < δ. System (1) is said to be uniformly topologically {hn}∞n=0 conjugate

(resp. equiconjugate) to system (2) if {hn}∞n=0 and {h−1n }∞n=0 are uniformly continuous

(resp. equicontinuous) in {Dn}∞n=0 and {En}∞n=0.

D0
f0−−−−→ D1

f1−−−−→ D2
f2−−−−→ D3......Dn−1

fn−1−−−−→ Dn
fn−−−−→ Dn+1.....yh0

yh1

yh2

y yhn

yhn+1

E0
g0−−−−→ E1

g1−−−−→ E2
g2−−−−→ E3......En−1

gn−1−−−−→ En
gn−−−−→ En+1 .....

For any n ≥ 2, denote f
(n)
0 = fn−1 ◦ · · · f1 ◦ f0 and f

(1)
0 = f0, f

(0)
0 = idD0

.

Clearly, xn = f
(n)
0 (x0). These TVDS have been considered by several mathematicians

([3, 11, 14, 19, 29]). For example, Wu and Zhu [29] proved that some chaotic properties are

preserved under iterations for TVDS which is uniformly converges. Wang et al. [14] studied

distributional chaos for TVDS and proved that two uniormly topological equiconjugate time-

varying discrete systems have simultaneously the distributional chaos in a sequence and the

weakly mixing property. Recently, Shao et al. [11] obtained more results on distributional

chaos for TVDS.

Recently, the notion of (F1,F2)-chaos via a Furstenberg family couple F1 and F2 was

introduced by Tan and Xiong [12]. In this paper, we prove that the (F1,F2)-chaoticity and

sensitivity of two uniformly topological equi-conjugate time-varying systems are equivalent,

improving the main result in [14]. Finally, we give some examples to show that Li-Yorke

chaos, distributional chaos, and distributional chaos in a sequence are not preserved under

topological conjugation.

2. Basic definitions

We recall some basic concepts related to the Furstenberg families (see [1] for more

details). Let P be the collection of all subsets of Z+. A collection F ⊂ P is called a

Furstenberg family if it is hereditary upwards, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . A

family F is proper if it is a proper subset of P, i.e., neither empty nor the whole P. It is

easy to see that F is proper if and only if Z+ ∈ F and Ø /∈ F . Let Finf be the collection

of all infinite subsets of Z+. All the families considered below are assumed to be proper.

ForA ⊂ Z+, define d(A) = lim supn→∞
1
n |A ∩ [0, n− 1]|, and d(A) = lim infn→∞

1
n |A

∩[0, n− 1]|. Then, d(A) and d(A) are the upper density and the lower density of A, respec-

tively. Fix any α ∈ [0, 1] and denote by M̂ α (resp. M̂α) the family consisting of sets A ⊂ Z+

with d(A) ≥ α (resp. d(A) ≥ α).
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Definition 2.1. [12] Let (X,T ) F1, F2 be Furstenberg families. D ⊂ D0.

(1) D is a (F1,F2)-scrambled subset of system (1) if for any two different points u, v ∈ D,

there exists δ > 0 such that

(a) {n ∈ Z+ : d(f
(i)
0 (u), f

(i)
0 (v)) < ε} ∈ F1 for all ε > 0;

(b) {n ∈ Z+ : d(f
(i)
0 (u), f

(i)
0 (v)) > δ} ∈ F2.

(2) System (1) is (F1,F2)-chaotic if it admits an uncountable (F1,F2)-scrambled subset.

It follows directly from Definition 2.1 that system (1) is Li-Yorke chaotic (resp., dis-

tributionally chaotic) if and only if it is (Finf ,Finf )-chaotic (resp., (M̂ 1, M̂ 1)-chaotic).

For U ⊂ X and ε > 0, let N(U, ε) = {n ∈ Z+ : diam(f
(n)
0 (U)) > ε}. It is easy to see

that system (1) is sensitive if and only if there exists ε > 0 such that, for any nonempty open

subset U ⊂ X, N(U, ε) 6= Ø. For a dynamical system, Moothathu [8] initiated a preliminary

study of stronger forms of sensitivity formulated in terms of some subsets of Z+, namely

the syndetical sensitivity and cofinite sensitivity. Recently, Li [6] introduced the concept of

ergodic sensitivity. Let F be a Furstenberg family. System (1) is said to be F -sensitive

if there exists ε > 0 such that for any nonempty open subset U ⊂ X, N(U, ε) ∈ F . More

results on sensitivity can be found in [5, 9, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30].

Akin and Kolyada [2] introduced the concept of Li-Yorke sensitivity which links the Li-

Yorke chaos with the notion of sensitivity and proved that every weakly mixing dynamical

system is Li-Yorke sensitive. According to Akin and Kolyada [2], system (1) is Li-Yorke

sensitive if there exists some δ > 0 such that any neighbourhood of any x ∈ X contains a

point y satisfying lim infn→∞ d(f
(n)
0 (x), f

(n)
0 (y)) = 0 and lim supn→∞ d(f

(n)
0 (x), f

(n)
0 (y)) >

δ.

3. Chaoticity of uniformly topological conjugate systems

This section proves that both (F1,F2)-chaoticity and sensitivity are preserved under

uniform topological equiconjugation for TVDS.

Theorem 3.1. Let F1 and F2 be two proper Furstenberg families. If systems (1) and (2)

are uniformly topologically equiconjugate, then system (1) is (F1,F2)-chaotic if and only if

system (2) is (F1,F2)-chaotic.

Proof. It suffices to check the necessity, because the sufficiency can be verified similarly. Take

an uncountable (F1,F2)-scrambled subset D ⊂ D0 of system (1) and choose E = h0(D).

We shall show that E is a (F1,F2)-scrambled subset D ⊂ D0 of system (2).

Given any two distinct points x, y ∈ E, there exist u, v ∈ D such that h0(u) = x and

h0(v) = y. The (F1,F2)-chaoticity of system (1) implies that there exists δ > 0 such that

(a) {i ∈ Z+ : d(f
(i)
0 (u), f

(i)
0 (v)) < ε} ∈ F1 for all ε > 0;

(b) {i ∈ Z+ : d(f
(i)
0 (u), f

(i)
0 (v)) > δ} ∈ F2.

For any ε > 0, noting that {hn}∞n=0 is uniformly equicontinuous, it follows that there

exists 0 < ε1 < ε such that %(hn(x1), hn(x2)) < ε holds for all n ∈ Z+ and x1, x2 ∈ Dn with
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d(x1, x2) < ε1. This implies that

{i ∈ Z+ : %(g
(i)
0 (x), g

(i)
0 (y)) < ε}

= {i ∈ Z+ : %(hi(f
(i)
0 (u)), hi(f

(i)
0 (v))) < ε}

⊃ {i ∈ Z+ : d(f
(i)
0 (u), f

(i)
0 (v)) < ε1} ∈ F1.

So, {i ∈ Z+ : %(g
(i)
0 (x), g

(i)
0 (y)) < ε} ∈ F1, as F1 is hereditary upwards.

Similarly, since {h−1n }∞n=0 is uniformly equicontinuous, then there there exists 0 <

ε2 < δ such that d(h−1n (x1), h−1n (x2)) ≤ δ holds for all n ∈ Z+ and x1, x2 ∈ En with

%(x1, x2) < ε2. This, together with (b), implies that

{i ∈ Z+ : d(f
(i)
0 (u), f

(i)
0 (v)) > δ}

= {i ∈ Z+ : d(h−1i (g
(i)
0 (x)), h−1i (g

(i)
0 (y))) > δ}

⊂ {i ∈ Z+ : %(g
(i)
0 (x), g

(i)
0 (y)) > ε2} ∈ F2.

�

Corollary 3.1. If systems (1) and (2) are uniformly topologically equiconjugate, then system

(1) is Li-Yorke chaotic (resp., distributionally chaotic, distributionally chaotic in a sequence)

if and only if system (2) is (resp., distributionally chaotic, distributionally chaotic in a

sequence) .

According to the proof of Theorem 3.1, we can obtained the following.

Theorem 3.2. Let F be a Furstenberg families. If systems (1) and (2) are uniformly

topologically equiconjugate, then system (1) is F -sensitive (resp., sensitive, multi-sensitive,

Li-Yorke sensitive) if and only if system (2) is F -sensitive (resp., sensitive, multi-sensitive,

Li-Yorke sensitive).

4. Examples

In [14, Theorem 2.12], Wang et al. proved that distributional chaos in a sequence is

preserved under uniform topological equiconjugation. Here, we use some examples to show

that Li-Yorke chaos, distributional chaos, and distributional chaos in a sequence are not

preserved under topological conjugation. Firstly, we define α-map, β-map, and γ-map as

follows:

α-map. Let X = [0,+∞). Define %1 : X ×X −→ [0, 1] by

%1(x, y) =


0, x = y,

1
2[x] , [x] = [y] ≡ 1 (mod 2) and x 6= y,

1, otherwise.

Define α : (X, %1) −→ (X, %1) by

α(x) =


0, x = 0,
n(n−1)

2 , x = n(n−1)
2 + (n− 1) for some n ≥ 2,

x+ 1, otherwise.
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β-map. Define %2 : X ×X −→ [0, 1] by

%2(x, y) =

0, x = y,

1, x 6= y,

and choose β : (X, %2)→ (X, %2) such that β(x) = α(x) for any x ∈ X.

γ-map. Define %3 : X ×X −→ [0, 1] by

%3(x, y) =


0, x = y,

1
22k
, x 6= y ∈ [0, b1) or x 6= y ∈

[∑2k
j=1 bj ,

∑2k+1
j=1 bj

)
, k ∈ N,

1, otherwise.

where b1 = 2, bi = 2b1+···+bi−1 (i ≥ 2) and take γ : (X, %3) −→ (X, %3) as γ(x) = α(x) for

any x ∈ X.

Clearly, each %i is a discrete metric on X. So, α-map, β-map, and γ-map are all

continuous. From the definitions of α-map, β-map, and γ-map, it can be verified that the

following result holds.

Proposition 4.1. Any pair of α-map, β-map, and γ-map are topologically conjugate.

Proposition 4.2. α-map is distributioally chaotic in a sequence.

Proof. Take D = (0, 1) ⊂ X and let b1 = 2, bi = 2b1+···+bi−1 (i ≥ 2),

pk =

2k + 1, k ≤ b1 or
∑2k
j=1 bj < k ≤

∑2k+1
j=1 bj (k ∈ N),

2k,
∑2k−1
j=1 bj < k ≤

∑2k
j=1 bj (k ∈ N).

Clearly, {pk}k∈N is an increasing sequence of positive integers.

Given any two distinct points x, y ∈ D, we claim that (x, y) is a distributionally

chaotic pair of α-map along {pk}k∈N.

For any t > 0, choose a sufficient large integer k0 ∈ N such that 1
2k0

< t. It can

be verified that for any k ≥ k0 and any
∑2k
j=1 bj < i ≤

∑2k+1
j=1 bj , %1(αpi(x), αpi(y)) =

1

2(2
i+1)·(2·n0−1)

< 1
2k0

< t, implying that

F ∗x,y(t, {pk}k∈N, α)

= lim sup
n→∞

1

n
| {1 ≤ k ≤ n : %1(αpk(x), αpk(y)) < t} |

≥ lim sup
i→∞

1∑2i+1
h=1 bh

∣∣∣∣∣
{

1 ≤ k ≤
2i+1∑
h=1

bh : %1(αpk(x), αpk(y)) < t

}∣∣∣∣∣
≥ lim

i→∞

b2i+1

li
= lim
i→∞

2b1+···+b2i

b1 + · · ·+ b2i + 2b1+···+b2i
= 1.
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Observe that for any k ∈ N and any
∑2k−1
j=1 bj ≤ i <

∑2k
j=1 bj , %1(αpi(x), αpi(y)) = 1. Then,

Fx,y(1/2, {pk}k∈N, α)

= lim inf
n→∞

1

n
| {1 ≤ k ≤ n : %1(αpk(x), αpk(y)) < 1/2} |

≤ lim inf
i→∞

1∑2i
h=1 bh

∣∣∣∣∣
{

1 ≤ k ≤
2i∑
h=1

bh : %1(αpk(x), αpk(y)) < 1/2

}∣∣∣∣∣
≤ lim

i→∞

b1 + · · ·+ b2i−1
ji

= lim
i→∞

b1 + · · ·+ b2i−1
b1 + · · ·+ b2i−1 + 2b1+···+b2i−1

= 0.

Therefore, α-map is distributionally chaotic along {pk}k∈N. �

Proposition 4.3. β-map is not Li-Yorke chaotic.

Proof. The results follows directly from the definition of %2. �

Proposition 4.4. γ-map is distributionally chaotic.

Proof. Let D = (0, 1) and take any two distinct points x, y ∈ D. For any t > 0, choose a

sufficient large integer h0 ∈ N such that 1
22h0

< t. It is not difficult to check that for any

h ≥ h0 and any
∑2h
j=1 bj ≤ m < (

∑2h+1
j=1 bj) − 1, %3(γm(x), γm(y)) = 1

22h
≤ 1

22h0
< t. This

implies that

F ∗x,y(t, {k}k∈N, γ)

= lim sup
n→∞

1

n
|{1 ≤ k ≤ n : %3(γk(x), γk(y)) < t}|

≥ lim sup
j→∞

1∑2j+1
h=1 bh

∣∣∣∣∣
{

1 ≤ k ≤
2j+1∑
h=1

bh : %3(γk(x), γk(y)) < t

}∣∣∣∣∣
≥ lim

j→∞

b2j+1 − 1

lj
= lim
j→∞

2b1+···+b2j − 1

b1 + · · ·+ b2j + 2b1+···+b2j
= 1.

Since for any k ∈ N and any
∑2k−1
j=1 bj ≤ i <

∑2k
j=1 bj , %3(γi(x), γi(y)) = 1, it follows that

Fx,y(1/2, {k}k∈N, γ)

= lim inf
n→∞

1

n
|{1 ≤ k ≤ n : %3(γk(x), γk(y)) < 1/2}|

≤ lim inf
i→∞

1∑2i
h=1 bh

∣∣∣∣∣
{

1 ≤ k ≤
2i∑
h=1

bh : %3(γk(x), γk(y)) < 1/2

}∣∣∣∣∣
≤ lim

i→∞

b1 + · · ·+ b2i−1 + 1

ji
= lim
i→∞

b1 + · · ·+ b2i−1 + 1

b1 + · · ·+ b2i−1 + 2b1+···+b2i−1
= 0.

Hence, γ-map is distributionally chaotic. �

Summing up Proposition 4.1–Proposition 4.4, it easy to see that Li-Yorke chaos, dis-

tributional chaos, and distributional chaos in a sequence are not preserved under topological

conjugation.
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