
U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 1, 2014                                                    ISSN 2286 – 3540 

FRAMEWORK FOR ADAPTIVE GRID COMPUTING 
SERVICE  

Alexandru STANCIU1, Marius GURAN2 

This paper presents a framework for an adaptive Grid Computing Element 
service which can auto-scale its computational resources depending on the 
workload. To efficiently operate a Grid infrastructure the framework is designed to 
provide autonomic capabilities for the Grid service responsible for application 
execution. Self-management of the infrastructure is based on policy enforcement by 
a configuration management system. This capability is integrated with dynamic 
provisioning of the Grid site computational cluster on virtualized resources by a 
resource manager module using a feedback control loop. In order to efficiently 
allocate resources for the computing cluster we maximize the utility function for the 
job execution service. We have defined and experimented the dynamic allocation of 
resources so that the utility of the Grid Computing Element service is maximized.   

 
Keywords: adaptive Grid computing service, autonomic element, utility based 

optimization, constraint programming 

1. Introduction 

Grid computing as a technology which enables distinct clusters operated 
by independent institutions to share resources in a transparent way, has its major 
benefit the provision of virtually unlimited computing capacity to execute both 
individual jobs and very complex scientific workflows. However, as there is the 
case that for some periods of time those resources are not utilized, it is useful to 
have mechanisms to be able to scale up and down the computing capacity 
according to the actual workload, in order to run the infrastructure in an efficient 
way. 

Large distributed ICT infrastructures, like the Grid infrastructure, are 
known for their extremely high complexity which makes their management 
especially difficult and error prone [1]. Automatic configuration of the systems is 
designed to solve the problems which occur with systems that are administrated 
manually [2]. It is desirable to use a configuration management system, and to 
define exhaustive rules to achieve a specified system state.  
                                                            
1 PhD student, The Faculty of Automatic Control and Computers, University POLITEHNICA of  

Bucharest, Romania, e-mail: stanciu@grid.ici.ro 
2 Prof., The Faculty of Automatic Control and Computers, University POLITEHNICA of 

Bucharest, Romania, e-mail: guranmarius89@yahoo.com 



46                                                   Alexandru Stanciu, Marius Guran 

Because the Grid middleware is composed from a large number of various 
software components there is a great challenge to build it, but also to deploy and 
configure it. There are common configuration parameters used by a Grid site, as 
well as particular parameters which are specific to a Grid service. 

Particularly for the Grid site administration, there were proposed various 
strategies that tried to address the need for a robust operation, like the separate 
and independent operation, collaboration on a local or regional area, or a 
centralized approach where the entire Grid infrastructure is managed from a 
central operation center [3].   

This latter approach promoted the use of a configuration management 
system that can provide the functionality capable to address a number of specific 
requirements. For example, continuous maintenance of the system components 
must be performed during the life time of the system. In addition of the 
installation and post-installation configuration, the system should be updated and 
its operation should be catered for. All system components should be covered by 
the configuration tool in order to eliminate the need to perform manually 
configuration actions which can divert the state of the system. 

By using a configuration management system to maintain the desired state 
of the infrastructure we can develop configuration templates for the Grid 
middleware components, which can be shared by the community and it can enable 
collaborative management of the Grid infrastructure by the means of sharing 
experience and using best practices. 

This paper presents a framework for an adaptive Grid Computing Element  
(CE) service which can auto-scale its computational capacity depending on the 
workload. To efficiently operate a production Grid infrastructure the framework is 
designed to provide autonomic capabilities for a Grid CE service. Self-
management of the infrastructure is based on policy enforcement by a 
configuration management system. This capability is integrated with dynamic 
provisioning of the computing cluster nodes on virtualized resources by a resource 
manager module. In order to efficiently allocate resources for the computing 
cluster we define a utility function for the Grid CE service, and then we proceed 
to maximize the utility value. 

 2. Management strategies for a Grid infrastructure 

Our research was dedicated to the gLite Grid middleware stack which is 
widely used in various large scale Grid infrastructures. For example, it is 
successfully deployed on large international computing infrastructures such as the 
WLCG which supports LHC experiment at CERN, as well as by the National Grid 
Infrastructures (NGI) which are part of the European Grid Initiative (EGI). 



Framework for adaptive Grid computing service                                       47 

One of the first tools for automatic installation and configurations of 
systems was the LCFG (Local ConFiGuration system) which was developed at 
Edinburgh University [4]. LCFG was the tool used to deploy and manage the Grid 
middleware developed by the EDG project, and then in the subsequent EGEE1 
project until it was replaced by the YAIM (YAIM Ain't an Installation Manager) 
toolkit. 

YAIM is composed of shell scripts which perform the configuration 
actions required for each Grid service. It uses a configuration file where are 
declared specific configuration variables. It is possible to deploy multiple services 
on the same machine, as well as to configure only a some components for a Grid 
service, but these actions should be performed manually. 

Another tool developed by the EDG project was Quattor, which was 
designed to provide the automated management of large Grid computing 
fabrics[5]. Quattor does not ensure the correct execution of configuration 
component, as this is followed up by the monitoring systems which should detect 
and alert on the eventual failures. Quattor can be used to manage the Grid 
middleware by two methods: one method is based on using the YAIM toolkit 
together with Quattor, and the second uses only special templates developed by 
the Grid community to manage the Grid services [6]. 

To dynamically adapt the capacity of the Grid CE service a resource 
management module is designed as a control loop with feedback, and should act 
as an independent component. There were some efforts in this direction, for 
example using Cloud computing to elastically extend Grid site resources [7], but 
they were not integrated with a configuration management system. Virtualized 
environments can bring benefits to data centers that want to consolidate smaller 
servers into higher capacity ones. However, an important challenge is the 
management of the physical resources so that each virtual environment receives 
an appropriate share of these resources as the workload varies with time [8]. 

By integrating the automated scaling of resources according to the current 
workload with automated configuration of the infrastructure which includes newly 
created resources, it is possible to have an autonomous infrastructure that is able 
to self-manage itself [9]. Self-configurations is achieved by using a configuration 
management system with a configuration policy which fully describes the 
infrastructure state. Self-optimization is performed by the feedback control loop 
of the resource manager component of the framework. Self-protection and self-
healing properties are enforced as well by the configuration management system 
according to the computer immunology model [10]. 

Utility functions can be used to translate high level economic goals related 
to the provision of a service to resource allocation actions. For example, self-
optimization of an autonomic system can be based on the maximization of the 



48                                                   Alexandru Stanciu, Marius Guran 

utility function [11]. One approach to solve the optimization of the utility function 
is to use constraint programming [12]. 

 3. Framework for an adaptive Grid Computing Element service 

The problem that we need to solve is to optimize the usage of the 
computational resources. Grid CE service provides computational resources to run 
applications submitted by members of Virtual Organizations (VO). It uses 
underneath a Local Resource Management System (LRMS) which manages the 
applications on the local execution systems. These computing systems are part of 
a computational cluster which aims to maximize the number of applications 
executed in an amount of time which is specific to High Throughput Computing 
(HTC) paradigm. 

Unfortunately, the workload on the cluster is not constant as it is used at a 
full capacity only for a fraction of time, which means that a number of systems are 
idle, when they can be used for other tasks. 

For this reason we need an adaptive Grid CE service which can respond to 
workload fluctuations by reducing or expanding its computational resources as 
required. The aim is to maximize the number of applications which are executed 
in a period of time. We can use the queue waiting time for a job as a quality of 
service (QoS) parameter which can be defined by a Service Level Agreement 
(SLA) for the Grid CE service. 

One approach to address these problems is to design a software framework 
that can provide elastic computational resources for the Grid CE service. For this 
we shall create elastic computing resources on demand as presented in Fig. 1. 

 
Fig. 1: Elastic computing resources described in a configuration policy 

 



Framework for adaptive Grid computing service                                       49 

We use Cloud computing for new systems provisioning, and a resource 
manager developed with a feedback control loop which monitors the Grid CE 
service's workload, as presented in Fig. 2. 

The integration of new systems into the Grid infrastructure, as well as the 
decommissioning of unused resources should be managed in an automated way, 
therefore we need to define a configuration policy for the Grid infrastructure 
which must describe the desired state of the systems and which should be 
enforced whenever there is deviation from it.  

This approach is used by configuration management systems which are 
able to automatically configure systems according to a configuration description 
and then to maintain that configuration in a proper way. 

Fig. 2. Auto-scaling Grid Computing Element 
 
The software framework is therefore split in two components which 

address two distinct requirements: 
• For the static part which is related to the specific configuration of the Grid infrastructure, 

we propose a configuration policy which should be maintained by a configuration 
management system, such as Puppet [13], [14]. 

• For the dynamic part which is related to the actual utilization of the Grid 
site, and which should be able to react to the variable load of the Grid 
computing service, we devise a resource manager based on a feedback 
control loop. 
In order to have auto-scaling capabilities of the elastic computing service, 

we need to use a resource management module which monitors the load of the 
computing cluster. According to defined policies, the resource management 
module is able to create virtual machines which are automatically configured as 
worker nodes for the Grid CE service. After the jobs are executed, the resource 
management module should remove unused worker nodes and automatically 
reconfigure the computing cluster and the Grid middleware. 

To dynamically scale the computational resources of the Grid CE service 
we use virtualization technology. This brings important advantages such as 
flexibility for systems configuration, scalability and resource consolidation which 
provide cost savings. On the other hand, using virtualized resources has an impact 
on the computing system performance, which should be taken into account as 
there is a requirement for the Grid CE service to maximize the number of 
applications executed in a period of time. 



50                                                   Alexandru Stanciu, Marius Guran 

In order to optimize the resource allocation for the application's execution 
we define the utility function for the Grid CE service. Utility represents a way to 
quantify the fulfillment of QoS requirements which can be defined by a SLA.  For 
example, we can use as QoS parameter the waiting time in queue for a job.  

We can consider that the QoS is respected, and a benefit is obtained, if the 
applications can be started in a period less than the limit defined by the SLA, and 
for the applications that cannot be started in due time as specified by the SLA, that 
the SLA is breached and there is a penalty to be paid. 

 4. Definition and evaluation of the utility function 

We can consider the utility function of a LRMS for running applications 
for a Grid CE service to be an instrument to evaluate the fulfillment of 
requirements for the jobs execution as specified in a SLA. The utility function 
should represent an economic value related with a certain level of quality of the 
service, and it can include both the revenues and the costs related with the jobs 
execution.  

For example, we can use as a parameter to evaluate the performance of an 
execution queue, the waiting time until the job is executed by the LRMS. As the 
time required for the job to complete is not known a priori, the waiting time in 
queue depends on different factors such as the advanced reservations, queue 
capacity for simultaneous running jobs and the total number of jobs, and the 
performance of the execution systems. 

Therefore, the utility function of a LRMS can be used to evaluate the 
benefits obtained for providing the computational resources for jobs execution 
with a QoS defined in a SLA, where for the QoS requirements we have proposed 
the queue waiting time. The utility function evaluates the profits which can be 
obtained by the Grid site owner which provides computational resources at a 
certain QoS (max queue waiting time) bound by a SLA. 

In order to calculate the utility function we should take into account the 
costs for providing the resources for jobs execution which should include the costs 
for running the servers, cooling and electricity, etc. We can assume that the queue 
waiting time depends on the following factors: 

• Number of slots allocated for the queue (the number of concurrent running 
jobs or the capacity of the queue). It can be changed in order to maximize 
the utility function. 

• Performance of the computing systems. This can be changed in order to 
maximize the utility function. For example, we can allocate more CPU 
capacity for a virtual machine. 

• The number of jobs which are in the queue (the workload). 



Framework for adaptive Grid computing service                                       51 

If we consider R(t) as the number of jobs executed according to the SLA, 
Q(t) as the number of jobs for which the SLA is not met, and C(t) as the capacity 
of the queue at the moment of time t, we can define the utility function as follows: 

 
U (t )=a�R(t )− b�Q (t )− c�C (t)                                   (1) 

The jobs that are executed conform with the SLA requirements provide a 
revenue which is expressed by the parameter „a”. For the jobs that cannot be 
started in period of time specified by the SLA there is penalty which is defined by 
parameter „b”. Finally, computational resources which are allocated for the job 
execution incur an operational cost which is expressed by parameter „c”.  

In order to validate the model for the utility based optimization of the 
capacity of the LRMS we have simulated the job execution for a Grid CE service. 

For the experimental model we have made the following assumptions: 
each job is successfully executed in a specific amount of time, which is not known 
a priori, but it cannot be extended over a certain limit which is enforced by the 
LRMS. The jobs that are not finished until the queue time limit are terminated 
automatically and are lost. 

We have considered discrete moments of time t, when we have made 
measurement of the LRMS state. We have recorded the number of new jobs, the 
number of running jobs, and the number of queued jobs. 

For simplification we have considered that the interval between two 
consecutive moments is sufficient for finalizing all the running jobs in the queue 
at the start of the interval (the interval is bigger than the queue max running time 
limit) and that the SLA for all new jobs has not been breached. 

We have also considered that the number of running jobs is equal with the 
capacity of the LRMS, so that in each moment of time there are no free resources 
that are not allocated for job execution. 

For resource accounting reasons we have assumed that one job is executed 
in a computing system, and each computing system has allocated only one slot for 
job execution so that only one job is executed at a time. We have also assumed 
that the cost for using each computing system is the same for all systems. For the 
utility function optimization we have used constraint programming, and we 
modeled the problem in Minizinc language [15]. We have used a mixed integer 
programming (MIP) solver – G12-MIP, to calculate the solution for 
computational resource allocation (capacity of the queue) C(t), in order to 
maximize the value of the utility U(t), at each moment of time t.  

For solving the optimization problem we have defined the following 
variables and constraints: 

T = {t1,t2, ... , t20}, where T is a set of 20 moments of time. 
C = {c1, c2, ... , c20}, where ci  is the capacity of the queue at the moment ti.  



52                                                   Alexandru Stanciu, Marius Guran 

We must have ci > 0 and ci < CapMax, i = 1..20, where CapMax is the 
maximum capacity of the queue. 

J = {j1, j2, ... , j20}, where ji is the number of new jobs in the queue at the 
moment ti. 

Q = {q1, q2, ... , q20}, where qi represents the number of jobs waiting in 
queue at the moment ti, qi >= 0, i = 1..20. 

We have performed two experiments for computational resource allocation 
based on optimization of utility function, with a similar distribution of new jobs at 
the selected moments of time, but with different values for parameters “a”, “b” 
and “c”, and for the maximum capacity of the queue CapMax, as presented in the 
Table 1. 

Table 1 
Parameters used for experimental evaluation of utility based resource allocation 

 a b c CapMax 
Experiment 1 50 1 30 8 
Experiment 2 50 20 30 7 

Fig. 3 Experimental results 
 



Framework for adaptive Grid computing service                                       53 

The “a”, “b” and “c” parameters provide the economic value of the 
utility function, and they are chosen with the assumption that the revenue and the 
associated costs and penalties have a comparable value. The simulation results are 
presented in the Fig. 3. 

In the first experiment we have considered that the capacity of the LRMS 
was of 8 concurrent jobs, and the following parameters were used for the utility 
function: a=50, b=1, c=30 as we wanted to stimulate the executions of jobs with a 
bigger reward than the penalties for SLA breach and cost of resources used. 

In the second experiment we have used the following parameters: a=50, 
b=20, c=30 and we have reduced the capacity of LRMS to 7 running jobs. 

As the first experiment shows a similar shape of the utility function and 
the queue capacity, the second experiment stresses the influence of the waiting 
jobs which cannot be started in due time as expected by the QoS requirement. For 
these jobs the LRMS cannot meet the SLA, and therefore there is a penalty to be 
paid which affects the value of the utility function. 

Both experiments have a similar distribution of new jobs, but their utility 
functions have very different shapes. This is due to the modification of parameter 
“b” which increases the penalty for the SLA breach, and it can be observed very 
clearly at the moments 0-4, 15-18 when the number of jobs in the waiting queue 
increases and the utility function value decreases significantly in the second 
experiment. 

 5. Conclusions and future work 

The Grid CE service represents the interface for the local batch system 
which is implemented as a computing cluster. Using virtualization for creating 
new systems for the computing cluster on demand has the advantages of 
scalability and configuration flexibility. Virtualization provides another benefit 
such as reducing operating costs by systems consolidation. As this can affect the 
performance we need to consider it for the resource allocation optimization. 

The contributions of the paper are: 
1. In order to maximize the number of applications which are executed in a period 
of time, we devise a framework for an adaptive Grid CE service. As the cluster 
capacity is adapted in response to the workload, it is necessary to automate the 
reconfiguration process. This ca be achieved with the help of a configuration 
policy which is monitored and is implemented by a configuration management 
system that has the role to maintain the system configuration in a stable state. Any 
deviation from this reference state is corrected so that the system can self-repair 
itself. 
2. For dynamic allocation of resources for the computing cluster we have defined 
the utility function for Grid CE service. The experiments performed by simulation 



54                                                   Alexandru Stanciu, Marius Guran 

show that the utility function provides support for the optimization of the 
computing cluster capacity as it takes into account the costs associated with 
resources, the estimated revenue from executing the jobs as specified in SLA, and 
the penalties for breaching the SLA. 

We propose to continue the research to implement and test the framework 
for an adaptive Grid CE which is set up as an autonomic element that can self-
manage itself and can be high-level managed by quality requirements expressed in 
a SLA.  

R E F E R E N C E S  
[1] A. Stanciu and G. Neagu, “Help desk structure for the support service of a Virtual 

Organization supported by multiple Grid infrastructures,” in 17th Int. Conference on Control 
Systems and Computer Science (CSCS17), 2009, vol. 1, pp. 429–432. 

[2] S. Traugott and L. Brown, “Why Order Matters: Turing Equivalence in Automated Systems 
Administration,” in Pp. 99-120 of the Proceedings of LISA  ’02: Sixteenth Systems 
Administration Conference, (Berkeley, CA: USENIX Association, 2002)., 2002. 

[3] S. Childs, B. Coghlan, D. O’Callaghan, G. Quigley, and J. Walsh, “The Second-Generation 
Grid-Ireland Deployment Architecture with Quattor Centralised Fabric Management,” in In 
Proc. Cracow Grid Workshop, 2005. 

[4] P. Anderson, “The Complete Guide to LCFG,” 2003. 
[5] R. García Leiva, M. Barroso López, G. Cancio Meliá, B. Chardi Marco, L. Cons, P. 

Poznański, A. Washbrook, E. Ferro, and A. Holt, “Quattor: Tools and Techniques for the 
Configuration, Installation and Management of Large-Scale Grid Computing Fabrics,” 
Journal of Grid Computing, vol. 2, no. 4, pp. 313–322, Apr. 2005. 

[6] M. Jouvin, “Quattor: managing (complex) grid sites,” Journal of Physics: Conference Series, 
vol. 119, no. 5, p. 052021, Jul. 2008. 

[7] P. Marshall, K. Keahey, and T. Freeman, “Elastic Site: Using Clouds to Elastically Extend 
Site Resources,” in Proceedings of the 2010 10th IEEE/ACM International Conference on 
Cluster, Cloud and Grid Computing, Washington, DC, USA, 2010, pp. 43–52. 

[8] D. A. Menasce and M. N. Bennani, “Autonomic Virtualized Environments,” pp. 28–28. 
[9] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, 

no. 1, pp. 41–50, Jan. 2003. 
[10] M. Burgess, “Computer Immunology,” in Proceedings of the 12th USENIX conference on 

System administration, Berkeley, CA, USA, 1998, pp. 283–298. 
[11] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in autonomic 

systems,” pp. 70–77. 
[12] H. N. Van, F. D. Tran, and J.-M. Menaud, “SLA-Aware Virtual Resource Management for 

Cloud Infrastructures,” 2009, pp. 357–362. 
[13] A. Stanciu, B. Enciu, and G. Neagu, “Auto-administration of gLite-based grid sites,” 

presented at the 2nd Workshops on Software Services, Timi�oara, 2011. 
[14] A. Stanciu, B. Enciu, and G. Neagu, “Auto-administrating and self-repairing systems by 

enforcing a configuration policy,” presented at the 18th International Conference on Control 
Systems and Computer Science, Bucure�ti, 2011. 

[15] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack, “MiniZinc: 
Towards a Standard CP Modelling Language,” in Principles and Practice of Constraint 
Programming – CP 2007, vol. 4741, C. Bessière, Ed. Berlin, Heidelberg: Springer Berlin 
Heidelberg, pp. 529–543. 


