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CORRELATED DUAL AUTOENCODER FOR ZERO-SHOT 

LEARNING 

Ming JIANG1, Zhiyong LIU2*, Pengfei LI3, Min ZHANG4, Jingfan TANG5 

In the existing researches on zero-shot learning, people focus more on the 

mapping relationship between the visual features of images and the semantic 

features of each class. However, these features themselves affect the final 

identification for classification in a very significant way. Particularly, concerning 

the semantic features, some representations are relatively close to each other in 

some similar categories, which indicates the distinction among categories will not 

be so apparent. Additionally, features will also witness a redundancy if the wider 

span of the category appears. Therefore, to obtain more discriminative and finer-

grained semantic features, this paper proposes a model on framework of the 

correlated dual autoencoder. Although these autoencoders are established for visual 

and semantic features, the two autoencoders are still related to each other without 

any independence. Hence, we encode the visual features, and these are added to the 

encoded semantic features with the decoding of added semantic features. Finally, the 

decoded and the original semantic features are added for better attainment and 

completion of semantic features. In this paper, experiments were carried out on the 

AwA and Cub datasets, and higher accuracy was achieved in the final classification 

identification. 
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1. Introduction 

In recent years, with the development of deep learning technology, the use 

of computer vision for image classification and recognition has achieved good 

results [1, 2]. For example, in a large database such as ImageNet [3], the accuracy 

of recognition is already very high. However, it can be noted that the 

identification of these images usually requires us to collect and label a large 

number of images for each category. This approach severely limits the scalability 

of the entire model, as it becomes difficult to meet all of these needs as the size of 

the identification task continues to grow, and the fine-grained classification 

requirements increase. For example, it is easier to collect pictures of common 
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animals and plants such as cats and dogs, but for some rare or endangered animals 

and plants, it is difficult to collect a large number of these pictures in advance. 

This means that there may be no such data sets in the training sample. In contrast, 

humans are very good at identifying objects without seeing any visual images. 

This ability is also known as zero-shot learning. For example, a child has only 

seen a horse before, and then you let him go to the zoo to find a zebra. You tell 

him that the zebra is a horse, but there are black and white stripes on his body, so 

he can easily recognize the zebra. Inspired by human zero-shot learning ability, 

people hope that machines can also have this ability. This way of learning can 

extend the visual recognition of visible classes to invisible classes without 

additional data sets [4,5,6,7,8,9,10,11,12,13]. 

Zero-shot learning ultimately needs to establish a mapping relationship 

between visual features and semantic features, so these features themselves will 

have a significant impact on the final classification results. In particular, semantic 

features, these artificially defined attribute features or textual descriptions, have a 

limited distinction between similar categories, such as horses and zebras that are 

very close in the representation of attribute feature vectors. Besides, if the 

category of the category to be identified is relatively broad, such as a data set of 

various categories such as animals, vehicles, plants, furniture, etc., it has the 

problem of feature redundancy in the representation of the attribute vector 

because some features will only be apparent in some specific categories. Both of 

the above problems have caused difficulties in our following classification and 

identification. Therefore, this paper proposes a feature extraction model to mine 

these attribute features to obtain more distinguishing semantic features. 

Experiments show that using this method to obtain semantic features, the 

distinction between them is better, and higher accuracy is achieved in the 

following classification and recognition. 

In this article we present a model architecture for a correlated dual 

autoencoder, where the autoencoder differs from a traditional autoencoder [14]. 

Its role is not only to reduce the dimension of the main components of the original 

information. We encode and decode visual and semantic features separately. In 

order to obtain more discriminative semantic features, we add the features 

obtained by visual feature coding to the encoded semantic features and add this 

new constraint to the encoded semantic features, so that it is affected by this 

potential visual feature. This ultimately affects the semantic feature of the decoder 

reconstruction. Finally, we add the decoded semantic features and the original 

semantic features to obtain the final semantic features. Experiments show that the 

semantic features obtained by this method are more distinguishable than the 

original semantic features. 
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2. Related Work 

Zero-shot learning includes semantic space and visual space. Visual space 

is often learned through deep neural network learning and training. The most 

widely used semantic space is the attribute space, which requires manual attribute 

annotation for each class. However, for some problems between classes and 

classes that are relatively large or have a large number of categories, there may be 

some difficulties in the annotation of attribute features. Therefore, for some 

models, their semantic space may also contain word vectors corresponding to 

class names and textual descriptions of these classes [15]. Only the attribute space 

is used in the experiments in this article. 

In order to achieve the final classification recognition effect, we need to 

establish a mapping relationship between semantic space and visual space. The 

mapping between the two can be roughly divided into these three categories. (1) 

Semantic space is mapped to visual space. (2) The visual space is mapped to the 

semantic space. (3) Projecting visual features and semantic features into the 

intermediate space. When choosing the mapping relationship, we need to pay 

attention to the hubness problem in zero-shot learning. This is actually a problem 

inherent in high-dimensional space: in high-dimensional space, some points 

become the nearest neighbors of most points. For the above mapping 

relationships, [16] found that the mapping from semantic space to visual space 

achieved the best results, because it can well alleviate the hubness problem in the 

high-dimensional space. Therefore, in this paper, we use the mapping from 

semantic space to visual space in the choice of the final mapping relationship. 

The autoencoder has a good effect on data noise reduction and 

dimensionality reduction and can extract various good features. Because of the 

simplicity and effectiveness of the autoencoder, it has a wide range of applications 

in the field of computer vision. The autoencoder mainly includes two processes of 

encoding and decoding.it encodes the original features, extracts the optimized 

features S, and then decodes the S to obtain the reconstructed features. We hope 

that this reconstructed feature and the original feature will be as similar as 

possible. There are also examples of using autoencoders in the zero-shot learning 

field, such as [17]. Because the semantic space is usually lower than the 

dimension of the visual feature space, it uses an autoencoder for the visual 

features. It is hoped that the features obtained after encoding are the same as the 

semantic features, so as to obtain the mapping relationship between the two. In 

our model, we use an autoencoder for both visual and semantic features and add 

the encoded visual features to the encoded semantic features. The purpose here is 

not to construct mapping relationships but to extract better semantic features. 

There is a problem with domain drift in zero-shot learning. The domain 

drift represents the same attribute, and its corresponding visual representation may 
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be different in different categories. For example, horses and pigs have the tail 

attribute, but they have different performance on the tail. The horse's tail is longer, 

and the pig's tail is shorter. If the horse is a training set and the pig is a test set, it 

is difficult to classify the pig using the model trained by the horse. Because the 

data in the training set may describe the "tail" differently from the data in the test 

set, although they all have the "tail" attribute, the direct migration may be biased. 

The dual autoencoder model constructed by our model adds visual features 

to the reconstruction of semantic features, and the optimized semantic features can 

better represent the correct semantics of the category, to reduce the influence 

caused by domain drift. Previous work on zero-shot learning focused more on 

finding mappings, ignoring the study of attributes themselves. This paper focuses 

more on attributes, simply using autoencoders to optimize attribute features. In the 

course of the experiment, our mapping relationship uses the method mentioned in 

[16], and the final result is better compared with it. 

3. Approach 

Our model consists of three submodels. The three models are visual 

feature autoencoder, visual semantic correlation autoencoder, and mapping model. 

The coded visual features are obtained by visual feature autoencoder, which is 

used in visual semantic correlation autoencoders to train optimized attribute 

features. Optimized attribute features are trained as inputs to the mapping model, 

ultimately achieving the purpose of classification recognition. More details will be 

described below. 

3.1 Problem Settings 

In zero-shot learning, we are given  training set classes(denoted as ) 

and  test set classes(denoted as ), where the training set and test set classes are 

disjoint, i.e. .We use the index  to represent the training set 

classes and  to represent the test set classes. The source classes 

contain P labeled images .  represents the 

visual feature space. Semantic information  is provided for each class 

. The goal of ZSL is to learn visual classifiers of test set classes 

. 
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3.2 Visual feature autoencoder 

 
 

Fig. 1. The framework of visual feature autoencoder.  is the visual feature extracted from the 

original image using the deep neural network(VGG and Inception-V2), and we train it to construct 

the autoencoder. The purpose is to obtain the encoded visual feature . We believe that the 

trained  is an important feature of the image.  represents the visual features after decoding 

reconstruction. 

 
As shown in Fig. 1, we first use the deep neural network (VGG and Inception-

V2) to extract features from the original image to obtain the initial visual feature 

vector . An autoencoder is then constructed for the initial visual feature 

vector . The method of constructing the autoencoder can be completed by the 

following method: 

  (1) 

  (2) 

 

where  denotes the encoded features of visual 

features,  denotes the visual features of  after decoding and 

reconstruction, and  are the weights which will be 

learned,  and  are bias. is the ReLU activation function. 

 

The loss function can be formulated as: 

 
 

(3) 

   

3.3 Visual semantic correlation autoencoder 

As shown in Fig. 2, we use the first visually trained visual feature to obtain 

a coded feature  from the encoder and an initial attribute feature  to 

construct a visual semantic correlation autoencoder model.  
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Fig. 2. The framework of visual semantic correlation autoencoder. We decode the initial attribute 

feature  to obtain the encoded attribute feature . At the same time,  is mapped to the same 

dimensional space as  by ReLU+FC Block (two ReLU+FC activation function layers) to obtain 

the eigenvector .  represents the encoded visual features obtained from the visual feature 

autoencoder. Then add  and  to get , and finally decode  to get . In order to obtain 

a more complete semantic expression,  and  are added to obtain the finally optimized attribute 

feature . 
 

We encode the initial attribute feature A to obtain the encoded attribute 

feature , and also map  to the space of the same dimension as  

through two ReLU+FC activation function layers to obtain the feature vector. 

. These two processes can be represented by the following formula: 

  (4) 

  (5) 

where , and  are the weights which 

will be learned, ,  and are bias. is the ReLU activation function. 

 

We add the eigenvectors  and  to get ,  is influenced by 

both visual and semantic aspects, can be better expressed, and then decodes , 

the calculation formula is: 

  (6) 

  (7) 

where  denotes reconstructed attribute features,  is 

the weights which will be learned,  is bias. is the ReLU activation function. 

The loss function can be formulated as: 

  (8) 
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Finally, in order to express the attribute features more fully, we add the 

initial attribute feature A and the reconstructed attribute feature  to get 

: 

  (9) 

3.4 Mapping model 

 

 
 

Fig. 3. The framework of mapping model. The feature vector  is mapped into the dimensional 

space of the feature vector  by ReLU+FC Block (two ReLU+FC activation function layers). 

 is an optimized attribute feature obtained by a visual semantic correlation autoencoder, and 

 represents an initial visual feature. 
 

The mapping model we borrowed from the method proposed in [16]. As 

shown in Fig. 3, the right side is the initial visual feature V trained by the deep 

neural network. This D-dimensional visual feature space will be used as an 

embedding space that will embed the image content and semantic representation 

of the class to which the image belongs. In the left part, [16] uses the initial 

semantic feature vector , and our model uses the optimized semantic feature 

vector .  obtains a D-dimensional semantic embedding vector through two 

ReLU+FC activation function layers. The loss is then calculated for the visual 

feature vector and the semantic feature vector using the least squares method on 

the visual feature space. The loss function can be formulated as: 

  (10) 

where and  are the weights which will be learned,  and 
 are bias. is the ReLU activation function. 

In the process of testing, calculate the visual distance  of an image and the 

Euclidean distance of all the optimized attribute features in the test set. The one 

with the smallest distance is the category we predict to belong to. 
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4. Experiment 

4.1 Dataset and settings 

Datasets: We use the classic zero-shot learning datasets of AwA and CUB 

in this experiment. AwA data set [18] contains 30,745 pictures of animals, with 50 

categories, of which 40 are training sets and 10 are test sets. CUB data set [19] 

contains 11,788 images of birds, with 200 categories, 150 as a training set and 50 

as a test set. 

Semantic space: For AwA datasets, we use 85-dimensional continuous 

attribute vectors. For CUB, we use a 312-dimensional continuous attribute vector. 

It should be noted that only attribute features are used in this experiment, and no 

additional word vector features or text features are added. 

Model setting and training: Experiment uses the pytorch deep learning 

framework to assist the training and learning model.For initial visual feature 

vectors, we use VGG and Inception-V2 networks to train and extract them. The 

extracted visual feature vector size is 1024 dimension. Adam is used to optimise 

our model with a learning rate of 0.0001.  

Parameter setting: Weight matrix of two FC layers in the construction of 

visual feature autoencoder, ， 。The weight 

matrix involved in the construction of the visual semantic correlation autoencoder, 

in the data set CUB, ， ，

, , in the data set AwA, ，

， , . The weight matrix of two 

FC layers in the mapping model, in the data set CUB, ，

，in the data set AwA, ， 。 

4.2 Experimental results on the AwA dataset and CUB dataset 

Since these two data sets are relatively classical in the field of zero-shot 

learning and are relatively small in scale, a lot of work has been done to deal with 

them and some achievements have been made. As shown in Table 1, we have 

selected some representative results for comparison. 

Comparative results on AwA: Using our model, 86.935% accuracy can be 

achieved on AwA dataset. This improves the accuracy by 0.2% compared with 

DEM method which directly uses original semantic space for mapping. 

Comparative results on CUB: On the CUB dataset, our model can be 1.1% 

more accurate than the DEM model, reaching 59.4181%. 
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Table 1 

Compare accuracy with CUB on the dataset AwA. SS in the table represents the semantic 

space, where A represents the attribute space, W represents the word vector space, and D 

represents the text description space (valid only for CUB data set). F represents the method 

of obtaining visual space, where  represents the overfeat method;  represents the 

GoogLeNet network structure; and  represents the VGG network structure.  

represents the Inception-V2. 
 

Model F SS AwA CUB 

AMP[11]  A+W 66.0 - 

SJE[7]  A 66.7 50.1 

SJE[7]  A+W 73.9 51.7 

ESZSL[6]  A 76.3 47.2 

SSE-Relu[4]  A 76.3 30.4 

JLSE[20]  A 80.5 42.1 

SS-Voc[10]  A/W 78.3/68.9 - 

SynC-struct[21]  A 72.9 54.5 

SEX-ML[13]  A 77.3 43.3 

DeViSE[5]  A/W 56.7/50.4 33.5 

Socher et al.[22]  A/W 60.8/50.3 39.6 

MTMDL[23]  A/W 63.7/55.3 32.3 

Ba et al.[24]  A/W 69.3/58.7 34.0 

DS-SJE[15]  A/D - 50.4/56.8 

DEM[16]  A/W(D) 86.7/78.8 58.3/53.5 

Ours  A 86.9 59.4 

4.3 Experimental results using different feature maps 

As shown in table 2, we mapped different attribute features and initial 

visual features. The experimental results are as follows: 

: Map the initial attribute features to the initial visual features. This 

is what [16] does. The accuracy rate of 58.3% was obtained in CUB data set and 

86.7% accuracy in the AwA dataset. 

: The reconstructed attribute feature is mapped to the initial visual 

feature. Through experiments, we found that this kind of mapping method has 

different effects on different data sets. For CUB datasets, the effect is not as good 

as , with 57.5% accuracy. For AwA datasets, the effect is similar to , 

with 86.6% accuracy. 

: The final experiment proves that this mapping method of 

remapping the reconstructed attribute features plus the initial attribute features to 

the initial visual features is the best.It has had good results in both the AwA and 
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CUB data sets. The accuracy rate of 59.4% was obtained in CUB data set and 

86.9% accuracy in the AwA dataset. 

The experimental results show that the attribute features obtained after the 

reconstruction are added to the original attribute features have better semantic 

representation. The added attribute features not only have the original attribute 

features but also contain additional hidden information of visual feature blessing, 

which makes the expression of attribute features more complete and more 

granular. 
Table 2 

Results of different feature mappings. 

 CUB AwA 

 58.3 86.7 

 57.5 86.6 

 59.4 86.9 

5. Conclusion 

In this paper, we propose a novel autoencoder model for zero-shot 

learning. This model mainly contains three submodels. The visual feature 

autoencoder model is to obtain the encoded visual features. The visual semantic 

correlation autoencoder model plays the role of optimizing semantic features. It 

combines the coded visual features generated by the previous model so that the 

semantic features are affected by the visual features so that the semantic features 

can be described better and more completely. The last model is the mapping 

model. We map the optimized semantic features to the visual feature space and 

then classify and identify them according to the Euclidean distance. Our model 

optimizes semantic features to improve the accuracy of the final classification. 

Extensive experiments on two benchmark datasets show the superiority of the 

proposed approach. 

Acknowledgements 

This work is supported by Zhejiang Provincial Technical Plan Project (No. 

2019C03096, 2018C03039). 

R E F E R E N C E S 

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional 

neural networks. In Advances in neural information processing systems, vol. 1, Dec. 2012, 

pp. 1097-1105 

[2] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, Overfeat: Integrated 

recognition, localization and detection using convolutional networks. arXiv preprint 

arXiv:1312.6229, 2013 



Correlated dual autoencoder for zero-shot learning                                   75 

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. 

Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale Visual Recognition 

Challenge. International Journal of Computer Vision (IJCV), vol. 115, no. 3, Sept. 2015, pp. 

211-252 

[4] Z. Zhang and V. Saligrama, Zero-shot learning via semantic similarity embedding, In 

Proceedings of the IEEE International Conference on Computer Vision, Dec. 2015, pp. 

4166-4174 

[5] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al., Devise: A deep 

visual-semantic embedding model. In Advances in neural information processing systems, 

vol. 2, Dec. 2013, pp. 2121-2129 

[6] B. Romera-Paredes and P. H. Torr, An embarrassingly simple approach to zero-shot learning. 

Proceedings of the 32nd International Conference on Machine Learning (ICML), vol. 37, 

Jul. 2015, pp. 2151-2161 

[7] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, Evaluation of output embeddings for fine-

grained image classification. In Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition, Jun. 2015, pp. 2927-2936  

[8] M. Thomas, V. Jakob, P. Florent, and C. Gabriela, Metric learning for large scale image 

classification: Generalizing to new classes at near-zero cost. In Computer Vision-ECCV 

2012, Oct. 2012, pp. 488-501 

[9] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, Labelembedding for attribute-based 

classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, Jun. 2013, pp. 819-826 

[10] Y. Fu and L. Sigal, Semi-supervised vocabulary-informed learning. In The IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), Jun. 2016 

[11] Z. Fu, T. Xiang, E. Kodirov, and S. Gong, Zero-shot object recognition by semantic manifold 

distance. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, Jun. 2015, pp. 2635-2644 

[12] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and J. 

Dean, Zero-shot learning by convex combination of semantic embeddings. In ICLR, Apr. 

2014, pp. 488-501 

[13] M. Bucher, S. Herbin, and F. Jurie, Improving semantic embedding consistency by metric 

learning for zero-shot classiffication. In European Conference on Computer Vision, Oct. 

2016, pp. 730-746 

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel distributed processing: 

Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal 

Representations by Error Propagation. MIT Press, Cambridge, MA, USA, 1986, pp. 318-

362 

[15] S. Reed, Z. Akata, B. Schiele, and H. Lee, Learning deep representations of fine-grained visual 

descriptions. In CVPR, Jun. 2016 

[16] L. Zhang, T. Xiang and S. Gong, Learning a Deep Embedding Model for Zero-Shot Learning. 

In CVPR, Jul. 2017 

[17] E. Kodirov, T. Xiang and S. Gong, Semantic Autoencoder for Zero-Shot Learning. In CVPR, 

Jul. 2017 

[18] C. H. Lampert, H. Nickisch, and S. Harmeling, Attributebased classification for zero-shot 

visual object categorization. PAMI, vol. 36, no. 3, Mar. 2014, pp. 453-465 

[19] C. Wah, S. Branson, P. Perona, and S. Belongie, Multiclass recognition and part localization 

with humans in the loop. In ICCV, Nov. 2011 

[20] Z. Zhang and V. Saligrama, Zero-shot learning via joint latent similarity embedding. In 

CVPR, Jun. 2016, pp. 6034-6042 



76                         Ming Jiang, Zhiyong Liu, Pengfei Li, Min Zhang, Jingfan Tang 

[21] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha, Synthesized classifiers for zero-shot 

learning. In CVPR, Jun. 2016 

[22] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, Zero-shot learning through cross-modal 

transfer. In NIPS, vol. 1, Dec. 2013, pp. 935-943 

[23] Y. Yang and T. M. Hospedales, A unified perspective on multi-domain and multi-task 

learning. In ICLR, May. 2015 

[24] J. Lei Ba, K. Swersky, S. Fidler, and R. Salakhutdinov, Predicting deep zero-shot 

convolutional neural networks using textual descriptions. In ICCV, Dec. 2015, pp. 4247-

4255 

 


