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AUGMENTED REALITY FOR KNOWLEDGE  
DISCOVERY THROUGH FEATURE DETECTION 

 AND SEMANTIC SIMILARITY 

Igor KLEIMAN 1*, Marian GHEORGHE2, Eduard Laurențiu NIȚU3  

The need for real-time, context-aware knowledge discovery in AR 
environments led to a new approach that combines feature-based object recognition 
and semantic similarity search—an innovation beyond current systems. This method 
uses feature extraction to construct feature graphs, which are matched to knowledge 
products within knowledge bases. Based on object recognition and contextual cues, 
relevant knowledge products are retrieved and overlaid on physical objects via 
Augmented Reality Markup Language. This integration empowers users to access 
context-specific knowledge in real-time, enhancing decision-making and efficiency. 
In the context of industrial robotics, it shows substantial improvements in knowledge 
retrieval and task performance. 

Keywords: Augmented Reality (AR), Knowledge Mesh, Data Mesh, Knowledge 
Product, Knowledge Product Contract, ARML (Augmented Reality 
Markup Language), XR (Extended Reality), SPARQL (Protocol and 
RDF Query Language), SIFT (Scale-Invariant Feature Transform), 
Intelligent Digital Mesh (IDM), Laplacian of Gaussian (LoG), 
Difference of Gaussians (DoG) 

1. Introduction 

Augmented Reality-enabled implicit knowledge discovery delivers real-
time contextual information through visual recognition of objects, enhancing 
interaction by automatically overlaying relevant knowledge without explicit 
searches. Using Scale-Invariant Feature Transform (SIFT) for feature extraction; 
the system detects key points in objects and matches them to stored knowledge 
products. This integration of AR, SIFT, and ARML allows users to access 3D 
models, instructions, or data directly on objects, improving task efficiency and 
decision-making. 
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Scale-Invariant Feature Transform (SIFT) [1] [2] is a widely used feature 
extraction method in computer vision, known for its robustness in object 
recognition tasks due to its invariance to scale, rotation, and lighting. These 
properties make it ideal for real-world applications where environmental changes 
can impact recognition accuracy. However, SIFT has limitations in AR. Its 
computational complexity can hinder real-time performance, especially in large-
scale environments. While effective in static object recognition, SIFT struggles 
with moving objects or interactive scenarios, areas where AR requires real-time 
responsiveness. This highlights the need for faster or more efficient methods in 
feature extraction for AR applications. 

In addition to SIFT, other feature extraction techniques have emerged to 
address specific challenges [3] [4]: Speeded-Up Robust Features (SURF), a faster 
alternative to SIFT, reduces computation time but may sacrifice some accuracy; 
Oriented FAST and Rotated BRIEF (ORB), optimized for speed, is popular in 
mobile AR applications, though less robust in terms of scale invariance; Deep 
Learning Methods/ Convolutional Neural Networks (CNNs) have increasingly 
replaced traditional methods, providing higher accuracy in object detection but 
requiring significant computational resources [4]. While alternatives like SURF and 
ORB address speed issues, the integration of semantic knowledge retrieval in AR 
systems remains an open challenge in feature-based recognition. 

Implicit Knowledge Discovery in AR-Enabled Systems [5] [6] [7] aims to 
retrieve knowledge automatically, based on contextual cues, without explicit user 
input. This approach can enhance AR systems by providing users with relevant 
information in real time, based on their environment or interaction. Despite its 
potential, implicit knowledge discovery remains underexplored in AR research. 
Current systems focus primarily on explicit knowledge retrieval, where users 
manually search for information. While some AR applications utilize contextual 
cues, there is a significant gap in integrating semantic similarity search with feature 
recognition.   

The adoption of complex system modeling methodologies has become 
essential in developing innovative solutions that bridge the gap between digital and 
physical interactions. Building on the Relational Modeling Framework for 
Complex Systems [8], which emphasizes the integration of diverse modeling 
formalisms to handle heterogeneous data and interactions, this research explores an 
augmented reality (AR) approach to enable real-time, context-aware knowledge 
discovery. 

The concept of the Intelligent Digital Mesh (IDM) [9] [10] has emerged as 
a key trend in fields like smart manufacturing (SM). IDM represents a digital, 
interconnected system that links various platforms and devices to create an 
integrated operational environment. Despite the promise of IDM, its development 
faces challenges, particularly in data sharing and system integration. 
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Digitization trends and intense competition in the industry require 
universities to innovate in production methods and techniques while providing 
graduates with the specific skills needed for their application. The emergence of 
Learning Factories and Industry 4.0 has fostered the development of techniques 
tailored to industrial processes and systems [11] [12]. These techniques include 
virtual, augmented, and mixed reality, as well as digital assistance, project-based 
learning, problem-based learning, and intuitive learning. 

Augmented reality blends the real and virtual worlds through real-time 
interactions, precise registration of actual and virtual 3D objects, and their 
superimposition in the real environment. 

This paper is introducing a system that merges SIFT-based feature 
recognition, semantic similarity search, and ARML, enabling real-time, context-
aware knowledge discovery in AR environments. It propagates a novel solution that 
leverages AR Markup Language (ARML) and implicit knowledge discovery to 
create a context-aware knowledge retrieval system for Intelligent Digital Mesh 
(IDM) environments, particularly addressing gaps in smart manufacturing. The core 
innovation integrates Scale-Invariant Feature Transform (SIFT) for feature 
extraction, semantic similarity search to match feature graphs with knowledge 
products, and ARML to overlay those products in real-time onto physical objects. 

2. Modelling on feature graphs 
The Scale-Invariant Feature Transform (SIFT) detects key points through a 

multi-step process that begins with constructing a scale-space representation, where 
the image is progressively blurred at different scales to identify stable features. 
Using the Difference of Gaussian (DoG) technique, local extrema are detected as 
potential key points across scales. Each key point is then refined to ensure contrast 
and localization accuracy. Finally, SIFT assigns orientations to each key point 
based on local gradients, generating descriptors that capture the local gradient 
distribution around each key point. These descriptors are invariant to scale and 
rotation, making them effective for consistent recognition across varied conditions. 

To generate the Keypoint Descriptor (Feature Vector) in SIFT, we focus on 
creating a representation that captures the local gradient information around each 
detected keypoint, as follows. 

 

1. Define the Keypoint Region: around each keypoint, a square region (typically 
16x16 pixels) is selected for analysis; this region provides the context for the 
keypoint and is subdivided into a 4x4 grid of smaller cells (each cell being 4x4 
pixels). 

2. Compute Gradient Orientations and Magnitudes: for each pixel in the 16x16 
region, gradients are calculated by examining the changes in intensity along the 
x and y directions; this gives both a magnitude (the strength of the gradient) and 
an orientation (the direction of the gradient) at each pixel. 
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3. Orientation Histogram for Each Cell: for each of the 4x4 cells within the 
keypoint region, an 8-bin orientation histogram is created; each bin represents 
a 45-degree range (covering a total of 360 degrees); pixels within each cell 
contribute to the histogram based on their orientation, with the gradient 
magnitude used as the weight for the histogram bins. 

4. Normalize and Concatenate Histograms: the histograms from each of the 16 
cells (4x4 grid) are concatenated to form a 128-dimensional feature vector (4x4 
cells × 8 bins), as shown in Fig. 1; this vector is then normalized to reduce the 
effects of lighting and contrast variations, ensuring the descriptor’s robustness. 

 

 
While SIFT provides robust key point detection and descriptive features, 

this article builds on its foundation by introducing an innovative approach: the 
feature graph. Rather than using key points solely for direct matching, the feature 
graph leverages SIFT-extracted key points and organizes them into a structured 
graph format. In this framework, each key point serves as a node, while edges 
represent spatial and orientation relationships between these nodes, creating a 
structural "fingerprint" of the object. 

Fig. 1. Normalized Orientation Histograms for SIFT Keypoint Descriptor  
(4x4 cells, 8 bins each) 
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After key points are extracted from the image, the system organizes them 
into a feature graph, where the key points are treated as nodes and the relationships 
between them (such as their spatial arrangement) are represented as edges.  

This graph encapsulates the structural representation of the object. The 
feature graph serves as a unique fingerprint of the object, making it possible to 
match it with pre-existing graphs stored in a knowledge base.  

A feature graph is: 
 

𝐺𝐺 = (𝑉𝑉,𝐸𝐸)      (1) 
 
where: 𝑉𝑉 is the set of nodes (key points) and 𝐸𝐸 - the set of edges, which describe 
relationships between nodes (key points). 

A node, 𝑣𝑣𝑖𝑖, is defined by the followings: 
 

 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉,  𝑣𝑣𝑖𝑖 = (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 ,  𝜃𝜃𝑖𝑖 ,  𝑠𝑠𝑖𝑖,𝑑𝑑𝑖𝑖)    (2) 
 

where: 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖 are the coordinates of the key point, 𝜃𝜃𝑖𝑖 − dominant orientation of 
the local image gradient information around the key point, 𝑠𝑠𝑖𝑖 − 𝑠𝑠cale at which the 
key point was detected, 𝑑𝑑𝑖𝑖- the 128 - dimensional SIFT descriptor vector. 

An edge 𝑒𝑒𝑖𝑖𝑖𝑖 between nodes 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗  is defined by the followings: 
 

𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸, (𝑣𝑣𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖 𝑣𝑣𝑗𝑗),  𝑒𝑒𝑖𝑖𝑖𝑖 = �𝑑𝑑𝑖𝑖𝑖𝑖,∆𝜃𝜃𝑖𝑖𝑖𝑖�    (3) 
 

𝑑𝑑𝑖𝑖𝑖𝑖 = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2 +  �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�

2     (4) 
 

∆𝜃𝜃𝑖𝑖𝑖𝑖  =  �𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗�     (5) 
 

were: 𝑑𝑑𝑖𝑖𝑖𝑖  represents Euclidean distance between the key points of coordinates 
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗);  ∆𝜃𝜃𝑖𝑖𝑖𝑖 - the difference between orientations 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑗𝑗  of the local 
image gradient information around each detected key point pair (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗). 
 

3. Case Study 
 

In our R&D project, we utilized the Google Cloud Platform Architecture for 
an AR and Feature Graph-Enabled Knowledge Mesh.  

The sequence diagram illustrates the collaborative interaction between 
system components in facilitating real-time, context-aware knowledge retrieval 
through AR, as shown in Fig. 2. 

Beginning with the SIFT-based component identification, the AR device 
captures key points and sends the generated feature graph to the Neo4j Knowledge 
Base. 
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Through sub-graph matching, Neo4j utilizes Cypher queries to locate 

relevant knowledge products, even allowing partial matches to improve retrieval 
accuracy. Once identified, these knowledge products are presented through the AR 
interface, with the VR interface assisting in ambiguity handling if multiple 
documents match. Finally, the selected knowledge product is delivered as an 
overlay on the AR device, enabling seamless collaboration between AR, feature 
detection, and database components to support efficient knowledge discovery. 

The system employs SIFT for object recognition, automatically identifying 
machine components by extracting their feature graphs. This information is used as 
a composite identifier to search a knowledge base (stored in a graph database like 
Neo4j), where relevant engineering documentation (e.g., configuration guides, 
calibration protocols) is stored and indexed by feature graphs, as follows.  

 
(1) Component Identification with SIFT 

• The engineer uses an AR headset or AR-enabled tablet to scan the machine 
component. 

Fig. 2. Sequence Diagram: Feature Graph - Enabled Knowledge Retrieval Workflow 
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• The system runs SIFT (Scale-Invariant Feature Transform) to detect key 
points on the component, creating a feature graph representing the 
component's unique structure. The feature graph is embedded into ARML 
as presented in Fig. 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
(2) Feature Graph Search in the Knowledge Base  

• The extracted feature graph is used to perform a sub-graph matching search 
in the Neo4j knowledge base. The knowledge base contains a library of 
knowledge products, each associated with a stored feature graph, as shown 
in Fig. 4. 

• Sub-graph matching ensures efficient retrieval of relevant knowledge 
products, even when the match is not exact. This improves performance by 
allowing partial matches to retrieve the closest results. Fig. 5 illustrates the 

Fig. 3. SIFT feature graph embedded into ARML 

KnowledgeProductContract: 
  knowledgeProductId: "KP12345" 
  name: "Machine Maintenance Guide" 
  version: "1.0" 
  ARML: 
    Location: 
      Latitude: 37.7749 
      Longitude: -122.4194 
    3DModel: 
      ModelURL: "http://example.com/models/machine123.glb" 
      Placement: 
        Orientation: "0,0,0" 
        Scale: 1.0 
    Metadata: 
      KnowledgeProduct: "MaintenanceGuide" 
      Trigger: "Proximity" 
    SIFTFeatureGraph: 
      KeyPoints: 
        - {x: 123.4, y: 567.8, scale: 1.6, orientation: 0.1, descriptor: "0.13,0.45,0.32,..."} 
        - {x: 223.5, y: 667.9, scale: 1.2, orientation: 0.15, descriptor: "0.21,0.34,0.31,..."} 
        - {x: 323.6, y: 767.0, scale: 1.0, orientation: 0.2, descriptor: "0.22,0.47,0.35,..."} 
      Relationships: 
        - {sourceKeyPoint: 123.4, targetKeyPoint: 223.5, distance: 142.07} 
        - {sourceKeyPoint: 223.5, targetKeyPoint: 323.6, distance: 120.34} 
      Detection: 
        - FeatureDetected: "SIFT-based detection of component" 
        - ProductId: "Product123"  # Dynamically identified product from feature graph matching 
        - ActionOnDetection: 
            SPARQLQuery: 
              query: | 
                SELECT ?maintenanceGuide 
                WHERE { 
                  ?product rdf:type ex:Product . 
                  ?product ex:hasInstruction ?maintenanceGuide . 
                  FILTER (?product = <http://example.com/ontology#{{ProductId}}>) 
                } 
              parameters: 
                - ProductId: "{{FeatureGraphMatchedProductId}}" 
      Visualization: 
        Description: "When the SIFT feature graph detects the component, this dynamically triggers 
the SPARQL query with the detected Product ID to retrieve and display the maintenance guide via 
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Cypher query identifies and retrieves a Knowledge Product in a Neo4j graph 
database based on key point relationships, using similarity measures 
between descriptors. 

 

 
(3) Knowledge Product Retrieval and Ambiguity Handling 

• If a clear match is found, the system retrieves the corresponding knowledge 
product—such as a maintenance guide, operational history, or real-time 
sensor data. 

• If the match is ambiguous (multiple potential documents are returned), the 
engineer is presented with multiple AR overlays, each corresponding to a 
different document. Using the Virtual Reality (VR) interface, the engineer 
can interact with the AR representations of the knowledge products, preview 
them, and select the correct one for the task at hand. 
 

(4) AR Overlay for Context-Aware Knowledge Delivery 
Once the correct knowledge product is selected, the system overlays the 

relevant information directly onto the machine component. This may include: 
• configuration guidelines with step-by-step instructions; 
• calibration data and real-time metrics such as pressure, alignment, or 

torque values; 
• operational parameters and safety thresholds required for the component. 

Fig. 5. Neo4j Cypher query for knowledge retreaval based on similarity  
measures between feature graphs 

MATCH (newKP1:KeyPoint {descriptor:"0.22,0.45,..."})-[:RELATED 
{distance:142.07}]->(newKP2:KeyPoint {descriptor:"0.13,0.55,..."}) 
 
MATCH (newKP1)-[:IDENTIFIES]->(knowledgeProduct:KnowledgeProduct) 
 
RETURN knowledgeProduct 
 

CREATE (kp1:KeyPoint {x:100, y:150, orientation:45, scale:1.5, 
descriptor:"0.22,0.45,..."}) 
CREATE (kp2:KeyPoint {x:200, y:250, orientation:90, scale:1.8, 
descriptor:"0.13,0.55,..."}) 
CREATE (kp1)-[:RELATED {distance:142.07, angle_difference:45}]->(kp2) 
 
CREATE (kp2)-[:IDENTIFIES]->(knowledgeProduct:KnowledgeProduct {id:"KP123", 
name:"Maintenance Guide"}) 
 

Fig. 4. Index the Feature Graph as an Identifier for the Knowledge Product 
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A demonstration of AR-enabled Knowledge Mesh solution in a live setting 
showcasing real-time interaction with a model of an industrial pump unit using 
augmented reality is as presented in Fig. 6. 

 

4. Conclusions   

The presented system demonstrates the potential for AR-enabled implicit 
knowledge discovery by seamlessly integrating feature-based recognition with 
semantic similarity search. This approach facilitates real-time access to 
contextually relevant knowledge, essential in complex industrial settings. By 
leveraging SIFT-based feature graphs and AR Markup Language (ARML), the 
solution enables a unique identification process for knowledge products that boosts 
operational efficiency and decision-making. 

The application of feature graphs as unique identifiers within the 
Knowledge Mesh framework proves versatile, with scalable potential across 
diverse fields such as robotics, engineering, and quality assurance. By enabling  
AR-based visualization, this approach supports engineers in accessing critical 
information directly in the physical environment, bridging the gap between data and 
its real-world application. While effective, the system’s reliance on SIFT presents 
challenges, particularly in real-time performance due to SIFT’s computational 
intensity. The need for optimized feature matching methods, like sub-graph 
matching algorithms and hardware acceleration, becomes apparent to harness  
AR-driven knowledge discovery in dynamic environments.  

 
Fig. 6. Live Demonstration of AR-Enabled Knowledge Mesh Solution 

for Real-Time industrial device interaction 
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Future research should explore deep learning-based feature extraction and 
enhanced matching techniques to improve efficiency in larger, complex 
environments, expanding multi-object recognition and collaborative AR 
capabilities to push the boundaries of AR-enabled knowledge management. 
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