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THE STATIONARY MOTION OF A BOGIE ALONG A 
CIRCULAR CURVE  

Mădălina DUMITRIU1 

În lucrare se propune o nouă abordare privind rezolvarea ecuaţiilor de 
echilibru ale mişcării permanente a unui boghiu într-o curbă circulară, abordare 
bazată pe definirea poziţiilor limită secantă şi coardă. Prin aceasta se rezolvă 
problema nedeterminării poziţiei boghiului datorită jocului în cale. Sunt calculate 
forţele centrifuge necompensate corespunzătoare acestor poziţii limită şi, pe această 
bază, se stabileşte poziţia boghiului în funcţie de forţa centrifugă necompensată 
care acţionează efectiv. Este analizat cazul unui boghiu cu conducere elastică a 
osiilor şi se pune în evidenţă influenţa razei curbei şi vitezei, precum şi a 
ampatamentului şi elasticităţilor conducerii osiilor asupra regimului staţionar. 

 
This paper proposes a new approach of solving the equilibrium equations of 

the stationary motion of a bogie in a circular curve, based on the secant and chord 
limit positions. Thus, the issue of the undetermined position of the bogie due to the 
clearance in the track is solved. The unbalanced centrifugal forces corresponding to 
the two limit positions are calculated and then the bogie position is determined 
depending on the unbalanced centrifugal force applied on the bogie. The case of a 
bogie with elastic steering of the wheelsets is analyzed and the influence of the curve 
radius, speed, the bogie base and the elasticity of the steering of the wheelsets on the 
curving behaviour is pointed out.  
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1. Introduction 

Curves are a critical area of any railway system, since almost every 
challenge in vehicle/track interaction is a greater test in curves. Derailment of 
trains occurs more frequently in curves or in switches and crossing, which may be 
considered a special case of the curved track [1 - 4]. The reprofiling interval of 
wheels is usually prescribed by the rapid wear that occurs in both treads and 
flanges in curves. Vehicles are more sensitive to lateral irregularities in track 
geometry because they follow the high rail in a curve more closely and thereby 
affect the passenger ride. On the other hand, the rail life is generally much shorter 
in curves; rail fastenings break off from greater movement of the rails, sleeper 
skew and, thereby, narrow the gauge etc. [5-7].  
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By studying the curving of the vehicles the best technical improvements of 
the construction [8-11] can be found and the traction [12, 13] and braking [14] can 
be optimized. 

Solving the issues of the curving simulation is a difficult task, due to the 
nonlinearities of the wheelset/rails interface: the wheelset/rails clearance, the 
geometry of the contact between the wheels and rails and the friction coefficient 
[1, 15, 16].  

This work proposes a new approach of the equilibrium equations of the 
stationary motion of a bogie along a circular curve based on the concept of the 
limit positions. These limit positions are defined as the geometric contact between 
the rear wheelset of the bogie and the inner rail – the secant limit position, and the 
outer rail – the chord limit position; there is no leading force acting on the rear 
wheelset. Starting from the values of the unbalanced centrifugal force 
corresponding to the two limit positions, the bogie position may be found (secant, 
free or chord position), depending on the effective unbalanced centrifugal force 
acting on bogie. Here, this method is applied to point out the basic features of the 
stationary motion of a bogie along a circular curve.  

2. The equilibrium equations  

The mechanical model of a two-axle bogie in stationary motion with 
constant velocity V along a circular curve of radius R is presented in Fig. 1. The 
wheelsets are linked to a body frame of the bogie by means of linear springs of 
stiffness kx, ky in the longitudinal and lateral direction, respectively. The bogie 
base is 2a, the transversal base of the suspension 2b and the distance between the 
rolling circles of the wheels is 2e. 

 
Fig. 1. Mechanical model of the bogie in curve. 

 
The position of each wheelset is determined by the displacements y1 and y2 

respectively of the wheelset centre in respect to its local reference moving frame 
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and the attack angles α1 and α2 with respect to the radial position (Fig. 2). Also, 
the position of the body frame of the bogie is given by the lateral displacement yb 
of the body frame centre and the rotation αb. 

 
Fig. 2. Coordinates of the bogie. 

 
It is supposed that the attacking wheel of the leading wheelset is in contact 

with the flange of the high rail. The position of the rear wheelset may be in 
contact with the high rail or the low rail or even between both rails, depending on 
the equilibrium position of the bogie. The three cases are known as the so-called 
the chord position, the secant position and the free position, respectively. The 
effect of the wheel flange is replaced by a guidance roller that introduces the 
leading forces P1 and P2, corresponding to the two wheelsets. This hypothesis has 
been adopted by Heummann [17] and recommended by Sebeşan [1], and others.  

                      
Fig. 3. Contact forces. 

On the rolling surfaces the contact forces act (Fig. 3): the normal force Nij 
and the friction force Tij, where the index i = 1, 2 stands for the leading or rear 
wheelset and the index j = 1, 2 stands for the outer or inner rail. The friction force 
has the components Txij and Tyzij. The components of the resultants of the contact 
forces are  

xijij TX = ;                                                                                                   (1) 
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ijyzijijijij TNY γ+γ= cossin∓ ;                                                                     (2) 

ijyzijijijij TNQ γ±γ= sincos ;                                                                     (3) 
where γij stands for the contact angle. 
             The friction forces may be calculated using the nonlinear formula provided 
by Chartet [18] 
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where κ stands for the creepage coefficient, μ is the coefficient of adherence, νij is 
the creepage of the wheel ‘ij’ and νxij and νyzij are its components 

22
yzijxijij ν+ν=ν .                                                                                      (5) 

The creepage components result from the kinematics of the wheelset 
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where  
ryryr iiii −=Δ )()( 11 ; )()( 22 iiii yrryr −=Δ ,                                              (7) 

with rij(yi) - the radius of the rolling circles depending on the wheelset 
displacement and r - the wheel radius when the wheelset takes the central place 
between rails. To calculate Δrij(yi), the contact curve method may be applied [1]. 
In fact, this method allows to solve the issue of the contact between the wheels 
and rails, including the contact angles γij(yi).  

 
Fig. 4. Forces acting on the wheelsets and the frame of the bogie. 

 
Fig. 4 shows the forces acting on the wheelsets and the bogie frame for the 

chord position. It distinguishes the elastic forces between the wheelsets and the 
bogie frame Fijx,y, the contact forces Xij and Yij, the unbalanced centrifugal force 
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Fcn and the leading forces P1 and P2. It has to be noticed that the leading force P2 
satisfies the following conditions 

- for the chord position P2 > 0; 
- for the free position P2 = 0; 
- for the secant position P2 < 0. 
The equations of equilibrium for the chord position of the bogie may be 

written as follows 
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Likewise, the above equations represent the equilibrium condition for the 
secant position, but, in this case, P2 will have negative sign. If the bogie takes the 
free position, then Eq. (9) writes 
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jj FY .                                                                                    (14) 

The elastic forces depend on the stiffness kx and ky, and the relative 
position between bogie frame and the wheelsets  

)(21 ibixxixi bkFF α−α=−= , i = 1, 2;                                                      (15) 
)(21 ibiyyiyi yykFF −==  i = 1, 2,                                                           (16) 
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The unbalanced centrifugal force depends on the curve radius R, the super-
elevation of the track h and the bogie velocity V 
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where M is the 1/2 vehicle mass and g stands for the acceleration of gravity.  
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When the bogie velocity equals  

 
e

ghRVV
20 ==  ,                                                                                    (19) 

the unbalanced centrifugal force is zero and the bogie velocity is the equilibrium 
velocity.  

When the velocity is lower than the equilibrium velocity, the unbalanced 
centrifugal force acts into the inner rail and its magnitude may be calculated using  

e
EMgFcn 2

= ,                                                                                           (20) 

where E is the so-called excess of super-elevation  
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When the velocity is higher than the equilibrium velocity, the unbalanced 
centrifugal force acts into the outer rail and Eq. (18) reads 

 
e
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where I stands for the so-called insufficiency of super-elevation  
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The unbalanced centrifugal force is the cause of a load transfer but this 
may be usually neglected; hence, corroborating the fact that the contact angle on 
the rolling surface is a small angle, Eq. (3) becomes 

0sincos QNTNQ ijijyzijijijij ≅≅γ±γ= ,                                                   (24) 
where Q0 is the static load on wheel. 
 By inserting the forces expressions in the equilibrium equations, a set of 
nonlinear equations is obtained: 

BAq = ,                                                                                                   (25) 
where q is the column vector of the bogie displacements and leading force(s), A is 
a matrix depending on the wheelsets displacements and B is the column vector of 
the free terms, including the unbalanced centrifugal force. 
 Considering the wheelset/track clearance 2σ, we have the following cases: 

- the bogie takes place in the secant position 
               σ=1y , σ−=2y [ ]T2121 PPy bb ααα=q ;                             (26) 

- the bogie occupies the free position  
                 σ=1y , 02 =P , [ ]T1221 Pyy bb ααα=q ,                            (27) 
with –σ  < y2  < σ;  

- the bogie is in the chord position 
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               σ=1y , σ=2y , [ ]T2121 PPy bb ααα=q .                             (28) 
The structure of the matrix A and the column vector B changes, according 

to the three cases.  
The nonlinear equation (25) may be solved following an iterative method. 
It has to be noticed that the issue of the bogie curving is nonlinear, due to 

the clearance of the wheelset that modifies the shape of the equilibrium equations. 
Moreover, for every case, the equilibrium equations are nonlinear due to 
wheels/rails contact, including the geometry and the friction coefficient. 

A value of the unbalanced centrifugal force being given, the bogie position 
cannot be directly determined, due to the nonlinearity of the wheelset/track 
clearance. To overcome this shortcoming, the following procedure should be 
taken into consideration. There are two limit positions, named the limit secant 
position when the rear wheelset and the inner rail are in contact and the limit 
chord position when the wheelset and the outer rail are in contact; the leading 
force P2 is zero for both. The bogie touches the limit positions for two particular 
values of the unbalanced centrifugal force, Fcns and Fcnc.  

These values may be calculated starting from the equations (8) and (10-14) 
corresponding to the free position of the bogie rewritten in the matrix form (25), 
where the column vector q is as follows 

- for the limit secant position 
           σ=1y , σ−=2y , 02 =P , [ ]T121 cnsbb FPy ααα=q ;                (29) 

- for the chord limit position 
             σ=1y , σ=2y , 02 =P , [ ]T121 cncbb FPy ααα=q .                 (30) 
 When the two limit values of the unbalanced centrifugal force are 
calculated, the bogie position is determined by the correlations below: 
 - the bogie is in the secant position for Fcn < Fcns     
 - the bogie is in the free position for Fcns < Fcn< Fcnc 
 - the bogie is in the chord position for Fcnc < Fcn. 
 For a particular Fcn force, one may choose the adequate equilibrium 
equation according to the correlation above. Then, solving this equation 
iteratively, the position of each part of the bogie and the leading force(s) are 
obtained.    

3. Numerical application  

Next, the stationary motion of a particular two-axle bogie along a curved 
circular track is numerically analysed using the equilibrium equations and the 
method presented in previous section. The physical parameters of the bogie taken 
into account are as follows: M = 20000 kg, kx = 40 MN/m, ky = 10 MN/m, 2a = 
2.56 m, 2r = 0.89 m, Qo = 49 kN, μ = 0.36, κ = 195. The CFR S78 wheel profile 
is considered for the bogie wheelsets. The track has the UIC 60 rails and the 
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super-elevation h = 150 mm for any radius of curvature. Also, the admissible 
value of the insufficiency of super-elevation is Iadm = 70 mm.  

 
Fig. 5. Unbalanced centrifugal forces at the limit positions and extreme values: 

 ─, Fcns ; --- Fcnc;  ······, Fcnmin ; - · - · -, Fcnmax;   
 

Fig. 5 presents the unbalanced centrifugal forces at the limit positions 
versus the curve radius. Also, the min/max values of the unbalanced centrifugal 
force acting on the bogie are displayed in order to determine the curving position 
of the bogie. The min/max values of the unbalanced centrifugal force (Fcnmin/ 
Fcnmax) are obtained taking E = h (V = 0) and I = Iadm (V = Vadm) in Eqs. (20) and 
(23), respectively. One observes that the bogie takes the free position for all 
speeds when the curve radius is higher than 390 m. For a low speed, the bogie 
occupies the secant position for the curves of radius lower than 390 m.    

 
Fig. 6. Influence of velocity at R = 500 m: (a) ─, rear wheelset displacement; ······, displacement of 
the bogie frame; (b) ---, attack angle of the leading wheelset; ─, attack angle of the rear wheelset; 

······, rotation of the bogie frame; (c) ---, P1; ─, P2. 
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Fig. 6 shows the influence of the bogie velocity upon the curving 
behaviour when the bogie runs along a 500 m radius curve. The maximum 
velocity corresponding to the insufficiency of super-elevation of 70 mm is 96.5 
km/h. The bogie moves in the free position for any value of velocity, according to 
the preceding results. When the velocity increases, the rear wheelset and the bogie 
frame move to the outer rail due to the unbalanced centrifugal force that increases 
as the velocity increases (fig. 6 (a)). The attack angles of the wheelsets and the 
rotation angle of the bogie frame decrease (fig. 6 (b)). In fact, the bogie exhibits 
the tendency to take place in the chord position but it does not touch this position. 
The leading force increases as long as the velocity increases and its increasing rate 
becomes higher when the velocity is higher than 30-40 km/h. 

Fig. 7 diplays the influence of the curve radius upon the stationary motion 
of the bogie when the insufficiency of super-elevation takes the admisible value. 
It is noticed that the attack angles of both wheelsets and the leading force 
increases at small radiuses. 

  

 
Fig. 7. Influence of curve radius (I = Iadm): (a) ---, attack angle of the leading wheelset; ─,  

attact angle of the rear wheelset;  ······, rotation of the bogie frame; (c) ---, P1; ─, P2.  
 

 
Fig. 8. Influence of the bogie base (R = 500 m): (a) attack angle of the leading wheelset; (b) 

leading force; ─, 2a = 2,56 m; ······, 2a = 2 m. 
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The attack angle of the leading wheelset and the leading force calculated 
for two bogie base values, 2.56 m and 2.00 m respectively, are presented in Figure 
8. The numerical simulation takes into consideration a radius of 500 m and 
velocities from 0 to 96.5 km/h. When the bogie base is smaller, the attack angle 
and the leading force of the leading wheelset are lower. It seems that the tendency 
of the two parameters are poorly influenced by the bogie velocity.  
 

 
 

Fig. 9. Influence of longitudinal stiffness (R = 500 m): (a) attack angle of the leading wheelset;  
(b) leading force; ······, bogie with rigid wheelsets; ─, kx = 40 MN/m, ky = 6 MN/m;  

---, kx = 6 MN/m, ky = 6 MN/m.   
 

 
 

Fig. 10. Influence of transversale stiffness (R = 500 m): (a) attack angle of the leading wheelset; 
(b) leading force; ─, kx = 40 MN/m, ky = 6 MN/m; ······, kx = 40 MN/m, ky = 1 MN/m. 

 
Fig. 9 shows the influence of the longitudinal stiffness, upon considering 

the circulation in a 500 m radius curve.  The attack angle of the leading wheelset 
and the leading force are presented for the following wheelsets steering: bogie 
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with rigid wheelsets, bogie with elastic steering – the reference option kx = 40 
MN/m, ky = 6 MN/m and bogie with a very elastic longitudinal steering kx = 6 
MN/m, ky = 6 MN/m.   It is evident that the larger attack angles and leading forces 
derive for the bogie with rigid wheelset.  The lower the longitudinal stiffness of 
the bogie steering system, the lower the attack angle and the leading force.  

Similar results show in case of the influence of the lateral stiffness of the 
wheelsets steering, as is figure 10. The numerical simulation refers to the 
reference option and to the instance when the transversal leading is more elastic 
(kx = 40 MN/m, ky = 1 MN/m).  The greater the elasticity of the bogie transversal 
leading, the smaller the attack angle and the leading force.  

6. Conclusions 

The study of the stationary motion of a bogie along a circular curve 
represents an essential theoretical issue, with real applications in terms of safety 
against derailment, wear of treads, stability of track, etc. 

In order to solve the issue of the motion along a curve, it is required to 
take into account the nonlinearities, due to the wheelset/rails interface that 
changes the equilibrium equations in dependence with the wheelset/rails 
clearance, the geometry of the contact between the wheels and rails and the 
friction coefficient depending on the creepage. This work proposes a new 
approach of the equilibrium equations of the stationary motion of a bogie along a 
circular curve based on the concept of the limit positions. To this end, the secant 
limit position and the chord limit position are defined and the corresponding 
unbalanced centrifugal forces are calculated.  Starting from these, the position of 
the bogie may be found, depending on the effective unbalanced centrifugal force 
acting on bogie.   

The method suggested here has been used to examine the main issues 
related to the two-axle bogie in stationary motion with constant velocity V along a 
circular curve of radius R.  The higher the speed, the closer the bogie tends to get 
to the chord position, and the higher the leading force and the lower attack angle 
of the leading wheelset. The bogie performance of moving along the curve 
improves while crossing curves of long radii, by lowering the wheelbase or 
raising the elasticity of the wheelsets steering.  

It is a must to highlight the fact that the setting of parameters of a bogie is 
a compromise between matching the contradictory requirements imposed by the 
curving and the stability of the rolling movement. 
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