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A NEW DIAGONAL GRADIENT-TYPE METHOD FOR LARGE
SCALE UNCONSTRAINED OPTIMIZATION

Mahboubeh Farid!, Wah June Leong? and Lihong Zheng?

The main focus of this paper is to derive new diagonal updating scheme
via the direct weak secant equation. This new scheme allows us to improve the
accuracy of the Hessian’s approximation and is also capable to utilize informa-
tion gathered about the function in previous iterations. It follows by an scaling
approach that employs scaling parameter based upon the proposed weak secant
equation to guarantee the positive definiteness of the Hessian’s approximation.
Moreover, we also prove the convergence of the proposed method under a sim-
ple monotone strategy. Numerical results show that the method is promising and
frequently outperforms its competitors.
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1. Introduction
To minimize a continuously differentiable function f without constraints,
min f(z), z € R", (1)
Barzilai and Borwein method [2] generates the sequence z, according to the iterative
scheme:
Tri1 = vk — By gk, (2)
where g = V f(xx) and kal = ayl. Here, oy, is a stepsize decided by the informa-

tion obtained at points x and xx_1. The two choice of the scalar «aj are given as
follows:

T
1 Sk—15k—1
afl) = (3)
Sp_1Yk—1
and .
2 Sp_1Yk—1
o) = Zho1ThTl (4)
Yi_1Yk—1
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where s;_1 = xp — rp_1 and yr_1 = gr — gr—1. These alternative choices for are
related to the quasi-Newton equation (also called the secant equation)

Brsg—1 = yi—1, (5)

where By is an n X n symmetric positive definite matrix approximating the Hessian
matrix V2 f(x;). The BB method has received a great deal of studies because it pro-
vides an effective and very useful stepsize adaption procedure for unconstrained op-
timization [4],[10],[15]. However, there are several disadvantages of the BB method.
The method does not guarantee a descent in the objective function at each iteration,
and the extent of the non-monotonicity depends in some way on the condition of
the Hessian matrix. Motivated by these shortcomings, a variant of spectral gradi-
ent methods, called diagonal gradient-type method are developed by [8],[9],[11],[12].
This approach replaces ajl with the diagonal matrix B;l, and the spectral infor-
mation on the By is corrected via a weaker form of the quasi-Newton equation (5).
In general, the approach consists in finding an updated Hessian approximation By,
which is restricted to be a diagonal matrix, obeys the weak secant equation of Dennis
and Wolkowicz [6], namely

T T
Sk—1BrSk—1 = Sk_1Yk-1, (6)

and simultaneously preserves as much information as possible from the current ap-
proximation By_1, which is assumed to be diagonal. Here, the spectral information
which is characteristically used in determining By, is contained only in vectors s
and yg, and does not use information of function values of the objective function.
Thus, it is reasonable to construct a new weak secant equation that incorporates
information on function values for approximating the curvature. Moreover, one can
view the weak secant equation as a projection of the quasi-Newton equation (5) in
a direction v such that v Bys,_; = vy, # 0. It seems that the choice of v may
influent the quality of the curvature information.

To avoid these obstacles, the approach proposed in this paper is based on
defining the weak secant equation by interpolation rather than deriving from the
secant equation. Moreover, it uses information of two successive function values for
approximating the curvature information in higher accuracy. Along this line, a new
diagonal updating formula is proposed. The structure of the paper is as follows:
in Section 2 we describe the new diagonal updating and details of the proposed
algorithm. Section 3 deals with the global convergence of the algorithm and Section
4 presents the result of computational experiments. Finally, Section 5 concludes the

paper.

2. Derivation of New Diagonal Updating

Many of the quasi-Newton methods accumulate Hessian information based on
the secant equation (5). However, since it is usually difficult to satisfy the secant
equation with a nonsingular matrix of the diagonal form, we need some alternatives
that can ensure the accumulated curvature information along the step is correct. The
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alternative we look for is the non-secant updating strategy proposed by Dennis and
Wolkowicz [6]. Dennis and Wolkowicz introduced a weaker form of secant equation
by projecting the secant equation (5) in a direction v such that ygv # 0 to give

VI Bisp_1 = vl yg. (7)

Particularly, Dennis and Wolkowicz considered v = s;_1, which leads to (6). Under
this weak-secant equation, Zhu et al. [16], Hassan et al., [11], and Leong et al. [12]
employ independently, a variational technique that is analogue to the one used to
derive the Powell Symmetric Broyden (PSB) quasi-Newton update (see, for example
Dennis and Schnabel [5]) for approximating the Hessian matrix diagonally. Despite
some promising numerical results, it remains unknown on the appropriateness of the
choice of v and one can expect that nontrivial computational experience is required
to determine such direction. Moreover, relation (6) does not use information of
function values of the objective function, which may be essential to interpolate the
curvature information correctly.

Motivated by these drawbacks, we propose an approach that defines a new
weak secant equation as view of interpolation rather than deriving from secant equa-
tion. The general idea of our approach is given as follows:

Quasi-Newton methods use a local quadratic model of the form

Flon+ ) % 0u(s) = (o) + gl + 557 Grs 8

where Gy, is the true Hessian at xj. Thus, the curvature information carried in
sTGys of (11) can be approximated by

s Grs = 2(f(xr + 5) — f(x1) — g 9). 9)
Since the updated By is supposed to approximate Gy, it is reasonable to having
st Beg1sk = 2(fep1r — fr + 95 sk) (10)

In fact, this new weak secant equation (10) is superior to the one defined by
(6) in the sense that it gives lower error in approximating the curvature information.
We shall give some details on this claim. Let us consider the Taylor expansion of
f(z + si) about xzy, and its derivative, respectively:
1
6

1

g(xg +sp) = g(zr) + G(zk)sk + §Tk ® sz + O(||skll®), (12)

1
flzg+sk) = flzg)+glsk+ ESiFGkSk + =T, ® sy + O(|| skl ") (11)

where T}, € R™ ™" ig the third order derivative tensor of f at zp and ® is some
appropriate tensor product. After multiplying (12) by s; and using the fact that,
Yk = g(xk + sk) — g(zx) we have

1
styk = sp G(zy) sy, + 5Tk @ sy + O([[skll). (13)
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If Biyq and BkH is the Hessian approximation that based upon (10) and (6) (with
index k being replaced by k + 1), respectively. Then we obtain

1
|st Bi+15k — 85 Grsy| = g\Tk®Si| + O(||s]); (14)

. 1
|5t Bi15k — 85 Grsi| = §|Tk ® sp| + O(||sk||"), (15)

and these imply that using (10) will eventually give a lower error in the approxima-
tion.

Hence, by using (10) we shall construct the new updating formula for diagonal
approximation of Hessian accordingly. The updating formula that we are looking for
is derived based upon the least change updating strategy analogue to that of Leong
et al. [12], i.e. the solution of the following problem:

o1
min 5 | B — Bl

st sp Bepisk = 2(ferr — fr + 9k 5k), (16)
and By is a diagonal matrix

where ||.||p denotes the Frobonius norm. Using the procedure similar to that of
Leong et al. [12], the updating formula for By will be generated by the following:

2(fe+1 — fx + 9f sk) — st Brsg 5
tr(E) *

Byy1 = B + < (17)
where Ej, = diag((s,gl))z, (8](3))2, ey (s,(cn))Q) and s,(f) is the ith component of vector
sg. To safeguard on the possibility of having non-positive-definite updating matrix,
we define a scaling for (17) such that By is forced to be positive definite. Note
that we will have Bg11 > 0 if the following condition holds:

Q(fk_H — fu+ ngsk) — S{Bksk > 0. (18)
Then, one can employ a scaling §i such that
B = min(pg, 1) (19)

where
o = 2(fr+1 — fru + 98 sk)
b szksk

. (20)

We can immediately see that by incorporating such scaling to By, before using it to
update By1, we can guarantee the positive definiteness of By [13]. Accordingly,
our updating formula will be as follow:

2(fr1 — S + ¢ k) — Brsi Brsk B

tr(E2) b
We can now state the detailed algorithm corresponding to the updating formula (21)
under the monotone strategy of [11].

Biy1 = BB + ( (21)

TSDG Algorithm
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Step 0. Choose an initial point o € R", and a positive definite symetric matrix
By=1.Set k=0.

Step 1. Compute gg. If ||gx]| < €, stop.

Step 2. Set xp11 = ) — kalgk. Calculate pg, Bk, Br+1 by (20),(19),(21), respec-
tively.

Step 3. 1E b1 bM > 2(57)2 Set Byy1 = 71 where 7 = min (2 b @) in Step

(b7)?7 sTs
2 with 0}, b% , b%_l be the smallest and largest diagonal component of
By, and By, 1, respectively.
Step 4. Set k: =k + 1 and go to Step 2.

3. Convergence Analysis

This section is devoted to study the convergence behavior of TSDG method.
We shall establish the convergence of the TSDG algorithm when applied to the
minimization of a strictly convex quadratic function with constant Hessian.

Theorem 3.1. Assume that f(x) is a strictly conver quadratic function. Let {xj}
be a sequence generated by the TSDG method and x* is a unique minimizer of f.
Then either g = 0 holds for some finite k > 1, or klirn llgx|| = 0.

— 00

Proof. Denote G = V?2f. Let b, b]kw , bt and bﬁl be the smallest and largest
diagonal elements of By, and By,1, respectively where By is obtained is step 4 of
TSDG Algorithm. Consider the Taylor expansion of the strictly convex function, f
at T4 :

_ _ 1 _ _
[z, — = 19k) = f(or) — ggBk 19k + §ggBk 1GBI<: lgk' (22)

Since Gsp, = yy, it follows that s%Gsk = g,sz_lBkHBk_lgk.Thus

Flanr) < flaw) = cllonl®, (23)
My-1 _ )b,
where ¢ = (b)) — == > 0. If ¢ > 0, we have f(xp41) < f(xy) for all k.
Else if ¢ < 0, then we let Byy; = Y1 where 9 = min(%, %711:) Hence (23)
I 5,8

becomes
f@irr) < fla) —ellgell?,

where ¢ = b — ((bp1)?¢) /2. With our choice of ¥, we have that ¢ > 0. This implies
that f(xg4+1) < f(xp) for all k£ and since f is bounded below, it follows that

lim f(zy) — f(zk41) = 0.

k—o0

As f(zr) — f(zr41) — 0, and ¢ > 0 then klim llg|| = 0, i.e. x converges to z*. [
—00
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TABLE 1. Test problem and its dimension

Problem

Dimension

Diagonal 5, Extended Himmelblau, Generalized Rosenbrock, Generalized PSC1,
Extended PSC1,Generalized Tridiagonal 1, Extended three Exponential terms,
Generalized Tridiagonal 2, Broydan Tridiagonal, Extended Block Diagonal BD1,
Extended Freudenstein and Roth, Extended Trigonometric, Extended Beale,
Quadratic Diagonal Perturbed, Quadratic QF2, Extended Tridiagonal 2,

Penalty 1, Penalty 2, Diagonal 4, Full Hessian FH1, Raydan 2,

10,100,1000,10000

Perturbed Quadratic,Raydan 1, Diagonal 1, Diagonal 2,Diagonal 3, Hager, EG2,

Almost perturbed Quadratic, Quadratic QF1

10,100,1000

4. Numerical Results

In this section we analysis the effectiveness of TSDG algorithm and compare
it to the BB and MDGRAD [11] method. The algorithms are coded in Matlab 7 and
executed by a PC with Core Duo CPU. For all runs in our numerical experience,
the iteration counts are limited as 1000. In addition, the algorithms are stopped if

the maximum norm of the final gradient is below 10~4, that is

lg(zx)]| < 1074

We solved 30 problems where the name and dimensions of these tested problems are

listed in Table 1.

FIGURE 1. Performance profile based on Iteration for all problems.
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Figure 1 and 2 report the performance profiles of the TSDG, BB and MD-
GRAD algorithms. These profile graphs compare the number of iteration counts and
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FIGURE 3. Performance profile based on iteration for large scale
problems (n = 10000).

the computation time of the runs. It can be seen from Fig. 1 that TSDG algorithm
is superior to the BB and MDGRAD methods in general. Moreover, all of the algo-
rithms employ a monotone search strategy that only uses one function and gradient
evaluation per iteration while TSDG algorithm uses an additional function value in
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approximating the Hessian diagonally. The additional function value requires only
a unit of storage but the overall improvement is worthy.

5. Conclusion

The main contribution of the paper is in proposing a new derivation for weak
secant equation. Through this new relation, we have presented a new gradient-type
method that estimates Hessian matrix by a diagonal matrix. Our scheme is simple
and able to enhance the performance of the gradient-type methods with minimal
storage.

REFERENCES

[1] N. Andrei, An unconstrained optimization test functions collection, J. Adv. Model Optim. 10
(2008) 147-161.

[2] J. Barzilai and J.M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal. 8
(1988) 141-148.

[3] Y.H. Dai, J.Y. Yuan and Y. Yuan, Modified two-point stepsize gradient methods for uncon-
strained optimization, J. Comput. Optim. Appl. 22 (2002) 103-109.

[4] Y.H. Dai and Y. Yuan, Alternative minimization gradient method, IMA J. Numer. Anal. 23
(2003) 373-393.

[5] J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and non-
linear equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[6] J.E. Dennis and H.Wolkowicz, Sizing and least change secant method, SIAM J. Numer. Anal.
30 (1993) 1291-1313.

[7] E.D. Dolan and J.J. More, Benchmarking optimization software with perpormance profiles,
Math. Program. 91 (2002) 201-213.

[8] M. Farid, W.J. Leong, M.A. Hassan, A new two-step gradient method for large-scale uncon-
strained optimization, Comput. Math. Appl. 59 (2010) 3301-3307.

[9] M. Farid, W.J. Leong, An improved multi-step gradient-type method for large-scale uncon-
strained optimization, Comput. Math. Appl. 61(2011) 3312-3318.

[10] R. Fletcher, On the Barzilai-Borwein method, Research Report NA /207, University of Dundee,
UK, 2001.

[11] M.A. Hassan, W.J. Leong, M. Farid, A new gradient method via quasi-Cauchy relation which
guarantees descent, J. Comput. Appl. Math. 230 (2009) 300-305.

[12] W.J. Leong, M.A. Hassan, M. Farid, A monotone gradient method via weak secant equation
for unconstrained optimization, Taiwanese J. Math. 14(2) (2010) 413-423.

[13] W.J. Leong, M. Farid, M.A. Hassan, Scaling on diagonal quasi-Newton update for large-scale
unconstrained optimization, B. Malays Math Sci So. (2)35(2) (2012)247-256.

[14] J.J. More/, B.S. Garbow and K.E. Hillstorm, Testing unconstrained optimization software.
ACM Trans. Math. Softw. 7 (1981) 17-41.

[15] Y. Yuan, A new stepsize for the steepest descent method, J. Comput. Math. 24 (2006) 149-156.

[16] M. Zhu, J.L. Nazareth and H. Wolkowicz, The quasi-Cauchy relation and diagonal updating,
SIAM J. Optim. 9(4) (1999) 1192-1204.



