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KINEMATIC ANALYSIS OF THE RTaRT MOTORS GROUP 

Cristina Luciana DUDICI1, Alexandra ROTARU2, Iulian TABĂRĂ3 

The mechanisms actuation is based on the motor groups. The kinematic 

analysis of the motor groups uses several methods such as: the closed-loops method, 

bars method, the matrix method, etc. 

In this paper, the kinematic analysis of the RTaRT motor group by using the 

closed-loops method (Chr. Pelecudi) is presented. To ease the numerical 

calculations of the kinematic parameters of the RTaRT motors group, a procedure 

was established using the MATLAB®. This procedure was used in a program in 

order to determine the kinematic parameters of a mechanism for drawing a line 

mathematically precise.  
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 List of symbols 

 

kS : the variable parameter asociated to the prismatic joint  

kS : the relative speed asociated to the prismatic joint 

kS
..

: the relative acceleration asociated to the prismatic joint 

k  : position angle related to revolute joint 

k , k : the angular velocity related to revolute joint  

k , k : angular acceleration related to revolute joint  

21, ff : the functions of the nonlinear equations system 

W : the functional matrix [Jacobian matrix] of the system 
1W : the inverse matrix 

 : the angle between the unit vector's OX axis and the direction of 

translational motion of the link 

 : the first derivative of the angle θ 

 : the second derivative of the angle θ 
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1. Introduction 

The kinematic analysis of the mechanism can be accomplished by 

considering modular groups separately and combine the results in order to study 

the entire mechanism [2, 5, 6, 7, 9, 10, 11, 12] or by taking into account the 

linkage as a whole [1, 3, 4, 14, 15, 16]. If the modular groups are utilized for the 

analysis of mechanisms, the number of equations is small, leading to a reduced 

calculation time. The kinematic analysis of mechanisms using the matrix method 

is successfully addressed in papers [12, 13]. 

 In this paper, the kinematic analysis of the RTaRT motor group is fulfilled, 

a special procedure using the MATLAB® being achieved for this goal. 

 

2. Kinematic analysis of the RTaRT motors group 

 To determine the kinematic parameters of the RTaRT motors group, the 

following data are known: 

 -  d =CD – distance from point C to the direction of the motion of the 

exterior prismatic joint; 

 - YPXPYAXA ,,,  - coordinates of points A and P; 

 - 
....

,,, YPXPYAXA  - projections of linear velocities of points A and P; 

 - 
. . . . 

YPXPYAXA
....

,,,  - projections of linear accelerations of points A and P; 

 - 1S  - independent parameter of the B active joint; 

 - 1S - linear relative velocity between the links 1 and 2 (the relative 

velocity of the active joint B); 

 - 1S - linear relative acceleration between the links 1 and 2 (the relative 

acceleration of active joint B); 

 - 1  - the approximate angle between the OX axis unit vector and the AC  

vector;  

 - 3S  - the approximate distance PD, measured in the positive sense of θ; 

 

 Figure 1 shows the kinematic schematics of the RTaRT motors group. 
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Fig. 1. The kinematic scheme of the RTaRT motors group 

 

 It is required to determine:  

 - 1  - angle related to revolute joint A, between the OX axis unit vector 

and the AC  vector; 

  - 3S  - the variable parameter asociated to the prismatic joint D; 

 - 1  - the angular velocity related to revolute joint A (of the links 1 and 2); 

 - 3S - the relative speed asociated to the prismatic joint D ; 

 - 1  - angular acceleration related to revolute joint A (of the links 1 and 2); 

 - 3

..

S - the relative acceleration asociated to the prismatic joint D; 

 - YC XC ,  - the coordinates of the center of the joint C; 

 -
..

,YCXC  - projections of the linear velocity of the center of the joint C; 

- 
. . 

YCXC
..

, - projections of the linear acceleration of the center of 

 the joint C 

 

2.1. Positions analysis of the RTaRT motors group 

 The positions system of equations is obtained by projecting the vectorial 

equation DCPDOPACOA   on the coordanate system axes, namely: 
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where: k =XP - XA, h =YP - YA. 
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 The nonlinear system of position equations with the unknowns 1 and 3S , 

is solved by the Newton-Raphson iterative method, starting from a given initial 

solution [8]. 

 

 The system solution for iteration (i + 1) is: 
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are the functions of the nonlinear equations system, and 
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is the functional matrix [Jacobian matrix] of the system. 

 

 The iterative calculation process stops when the difference of two 

consecutive calculated solutions is less than an imposed , 

 

    ii
1
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1
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After determining the unknowns 1 and S3, the exact coordinates of point C 

are calculated, using equations: 

 

 
.sin

;cos

11

11





SYAYC

SXAXC




      (3) 

 

2.2. Velocities analysis of the active group RTaRT 

 The position equations system (1) is derived with respect to time, to yield: 
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where:   )cossin(cos1 31

.

1

.

dSSkA  ; 

   )sincos(sin2 31

.

1 dSShA  ;  

 
...

XAXDk  ; 
...

YAYDh  . 

 

 The system is linear with the unknowns 1

.

  and 3

.

S . Using the method of 

the inverse matrix, is obtained:   
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 The projections of the linear velocity of point C are: 
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2.3. Acceleration analysis of the motodyad RTaRT 

By deriving the system of velocity equations (4) with respect to time, it 

results:  
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 The system is linear with the unknowns 1

. . 

  and 2

. . 

 , so it results:  
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 The projections of the linear acceleration of the point C are: 
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 Accordingly to the presented algorithm, a computational function was 

generated using MATLAB®, function that will be called and accesed by the main 

computational program, to determine the kinematic parameters of the motor group 

RTaRT. 

 

 The definition of this function is: 

 

 function [fi1,s3,C] = A2PVA_T(A,P,s1,th,fi1,s3,d). 
 

 The output parameters have the following meanings: 

 1 – the vector that contains the angle between the vector attached to 

segment AC and the positive sense of OX axis, the angular velocity of the links 1 

and 2, as well as the angular acceleration of the same links; 

 S3 – the vector that contains the distance between the points P and D (in 

the pozitive sense of  ), the relative velocity of the prismatic joint D, as well as 

the relative acceleration of the same joint; 

 C –  the vector that contains the components of the positions, the velocities 

and the accelerations of the point C in the coordinate system; 

 

 The input parameters have the following meanings: 

 A – the vector that contains the components of the positions, the velocities 

and the accelerations of the point A in the coordinate system; 

 P – the vector that contains the components of the positions, the velocities 

and the accelerations of the point P in the coordinate system; 

 S1 – the vector that contains the independent parameter from the active 

joint B, the relative velocity between the links 1 and 2, as well as the angular 

acceleration of the same links; 

 θ – vector that contains the angle between the direction of linear motion of 

joint B and the pozitive sense of the OX axis, the angular velocity of S3 (the 

direction of linear motion of joint D), as well as the angular acceleration of S3; 
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 1  – the approximate angle between the vector attached to segment AC 

with the sense of the OX axis; 

 S3 – the approximate distance between the points P and D; 

 d – the length of the perpendicular from point C on the PD line. 

 

3. Computational example 

 A pantograph mechanism actuated by the motor group RTaRT is 

considered. The kinematic scheme of the mechanism is presented in Figure 2.a.  

 As it can be seen from the multipolar scheme (Figure 2.b) and from the 

structural relation (Figure 2.c), the mechanism is formed from the base )0(Z , the 

motor group )3,2,1(RTaRT , and the 1st aspect dyads: )5,4(RRR , )7,6(RRR .   
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Fig. 2. Kinematic scheme: a), multipolar scheme b), structural relation c) 

 

The kinematic parameters are emphasized in the kinematic scheme from Figure 3. 
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Fig. 3. The kinematic scheme of the mechanism, with the emphasis of the kinematic position 

parameters 

 

For the kinematic analysis of the mechanism, are known: 

- 0XA ; 0YA ;  7.0XG [m];  75.0YG [m]; [m];  2.0YP [m] - 

coordinates of the points A, G, P; 

- 3.0CP  [m] – the piston stroke; 

- 5.010 S [m]- the initial distance between points A and C;  

- 1S  - the independent parameter in the prismatic joint B; 

- 1S  - the relative velocity between links 1 and 2; 

- 1S  - the relative acceleration between links 1 and 2;  

-   - the angle between the OX axis unit vector and the direction of motion 

of link 3; 

-   - the first derivative of angle θ; 

-   - the second derivative angle θ; 

- 3.0EF  [m]; 4.0FG [m]; 3.1EH [m]; 4.0HI [m]; 1IJ [m]; 

7333.1HT  [m] – the kinematic dimensions of the mechanisms’ links. 
 

 The kinematic parameters of the mechanism are required. 
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 Using the procedure proposed by the authors for the modular group 

RTaRT, as for the proper procedure of the dyad RRR [7, 12], a computational 

program has been accomplished in MATLAB®.  

 

 In table 1 are presented the kinematic parameters of the motor group 

RTaRT, which depends on the independent parameter 1s .  

 
Table 1 

poz     s1       fi1       om1       eps1       s3       vs3       as3 

0 0.5000    1.1593    0.0873   -0.0382    0.4583    0.1091   -0.0042 

1 0.5300    1.1838    0.0769   -0.0314    0.4908    0.1080   -0.0034 

2 0.5600    1.2056    0.0683   -0.0262    0.5231    0.1071   -0.0028 

3 0.5900    1.2250    0.0611   -0.0220    0.5551    0.1063   -0.0023 

4 0.6200    1.2423    0.0550   -0.0188    0.5869    0.1056   -0.0020 

5 0.6500    1.2580    0.0498   -0.0161    0.6185    0.1051   -0.0017 

6 0.6800    1.2723    0.0453   -0.0139    0.6499    0.1046   -0.0015 

7 0.7100    1.2852    0.0413   -0.0121    0.6812    0.1042   -0.0013 

8 0.7400    1.2971    0.0379   -0.0107    0.7125    0.1039   -0.0011 

9 0.7700    1.3080    0.0349   -0.0094    0.7436    0.1036   -0.0010 

10 0.8000    1.3181    0.0323   -0.0083    0.7746    0.1033   -0.0009 

       

 

 In table 2 are presented the kinematic parameters of the pantograph 

mechanism. 

 
Table 2 

poz     s1       fi4       om4       eps4      fi5       om5       eps5 

0 0.5000 1.3851 -0.1964 -0.0938 2.6090 -0.2851 0.0122 

1 0.5300 1.3221 -0.2234 -0.0862 2.5241 -0.2805 0.0185 

2 0.5600 1.2513 -0.2479 -0.0766 2.4409 -0.2738 0.0268 

3 0.5900 1.1737 -0.2692 -0.0653 2.3602 -0.2643 0.0362 

4 0.6200 1.0902 -0.2869 -0.0530 2.2826 -0.2520 0.0459 

5 0.6500 1.0019 -0.3010 -0.0407 2.2092 -0.2368 0.0552 

6 0.6800 0.9099 -0.3114 -0.0292 2.1408 -0.2190 0.0632 

7 0.7100 0.8153 -0.3187 -0.0193 2.0780 -0.1990 0.0697 

8 0.7400 0.7190 -0.3232 -0.0113 2.0215 -0.1774 0.0745 

9 0.7700 0.6216 -0.3257 -0.0058 1.9717 -0.1545 0.0776 

10 0.8000 0.5237 -0.3269 -0.0026 1.9289 -0.1309 0.0795 
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 The variations of the angles 1 , 4  and 5  are presented in Figure 4. 
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Fig. 4. The variations of the angles 1 , 4  and 5  

 

 

The variations of the angular velocities 1 , 4  and 5  are shown in Figure 5 
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Fig. 5. The variations of the angular velocities 1 , 4  and 5  

 
 

    In Figure 6, the variations of the angular accelerations 1 , 4  and 5  are 

displayed. 
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Fig. 6. The variations of the angular accelerations 1 , 4  and 5 . 

 

4. Conclusions 

Using the closed-loops method the kinematic analysis of the motor group 

RTaRT has been fulfilled. This modular group can be found in the composition of 

different mechanisms used in many areas of activity such as: the actuation of 

some agricultural machinery, the actuation of some folding tables, the actuation of 

hydraulic excavators etc. 

 The computational procedure, completed in MATLAB®, simplifies a lot 

the kinematic analysis of these mechanisms. 

 The results were validated in Turbo-Pascal, C++ and Matlab programs. In 

order to get a clearer picture on the analyzed mechanism, a simulation of its 

functionality was made using Matlab, and the results were the same as those 

obtained from numerical calculations. 
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