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BIFURCATIONS OF A HOLLING TYPE II

COMMENSAL-HOST-PARASITE SYSTEM

Cristina Bercia1

The objective of this paper is to study the dynamical properties of the
commensal-host-parasite differential system with 9 parameters, where the func-
tional response of the parasite and the commensal species are of Holling type II.
It is shown that the system has up to 8 equilibrium points, that saddle-node bifur-
cations occur or Hopf bifurcations from two different stationary solutions. From
numerical simulations we found a situation of bistability for the system and we
obtained phase portraits for different strata in the control parameter space induced
by the topological equivalence. We detected two limit cycles in according with the
analytical findings.
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1. Introduction

Symbiotic relationships appear to be very common in biological and ecological
communities [10]. There are generally identified three different symbiotic associa-
tions [9]. In mutualism, all the different species benefit from the interactions. In
parasitism, the parasite get benefits at the expenses of the host, for instance bacte-
ria, helmints and viruses fall generally in this category.
Commensalism denotes the interaction for which one organism benefits, but for the
other one there is no gain or loss; for example golden jackals, who link themselves
to a tiger maintaining a safe distance, feed on the remnants of the tiger’s prey.
Another example is the commensal microbiota that inhabit different parts of the
gastrointestinal human tract and has been shaped by co-evolution with the host.
The intestinal microbiota enhances resistence of the organism to infection by bac-
terial pathogens [5]. For example, the Lactobacillus bacteria alters the persistence
of an gastrointestinal parasite (helminth) [8]. In ecology, in the commensal relation,
the host organism is unmodified, whereas the commensal species may show great
structural adaptation, for instance numerous birds perch on bodies of large mamal
herbivores or feed on the insects turned up by grazing mammals.
Several scholars studied the dynamic behaviors of the commensalism or mutualism
model for two species, for example in [1] a model with harvesting was proposed and
in [11], a model with Allee efect, also [3] investigated a model with the equations of
polynom-type.

In the present study, we consider three populations; commensal population
X(t), the host population Y (t) and the parasite population Z(t) at time t. The
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model describing the interaction between them is governed by the following system
of differential equations:

X ′(t) = r1X

(
1− X

k1

)
+

αXY

α1 + Y
+ γXZ (1)

Y ′(t) = r2Y

(
1− Y

k2

)
− b1Y Z

α2 + Y

Z ′(t) = −mZ +
b2Y Z

α2 + Y
− δXZ

In [2] it is a study of a close form of the model, but the term in the first equation
αXY
α1+Y

is replaced by αXY
α1+X

and the dynamics appear not to contain any limit cycle

which is a necessary condition for a realistic model [6].
The assumptions of the model include that the first and second population grow
logistically, since both have sufficient resources for alternative foods. The parameters
r1, r2 represent their intrinesc growth rate; k1 is the environmental carrying capacity
of the commensals, in the absence of all the other populations, the same is k2 for
the host population.
αY
α1+Y

represents the rate of consumption of one commensal per unit of time;
α1 is the half saturation rate for the first population. Also it grows proportional
with the parasite population, but there is no saturation effect when fedding upon
the parasite. The host is not affected by the commensal and no recovery is possible
for the host species once they get infected with the parasite.
b1Y
α2+Y

denotes the functional response of the parasite (i.e. the rate of consumption

of one parasite); its form, known as Holling type II response function [6] is the same
as the commensal’s.
The third population has the rate m of mortality and grows only from interaction
with Y , b2 being the maximum growth rate of the parasite. The parameters are all
strictly positive.

We adimensionalize the system, as follows:

tr2 = τ ;x(τ) =
X(t)

k1
; y(τ) =

Y (t)

k2
; z(τ) =

Z(t)

k2
;
r1
r2

= r;
α

r2
= a;

γk2
r2

= b; (2)

α1

k2
= c;

α2

k2
= d;

δk1
r2

= θ;
b1
r2

= β1;
b2
r2

= β2;
m

r2
= µ

We keep the notation x′ = dx
dτ and the system (1) becomes:

x′ = rx(1− x) +
axy

c+ y
+ bxz (3)

y′ = y(1− y)− β1yz

d+ y

z′ = −µz +
β2yz

d+ y
− θxz

We consider the biologically meaningful initial conditions x(0), y(0), z(0) ≥ 0.

Proposition 1.1. The domain R3
+ is an invariant set of the system (3).

Proof. If (v1, v2, v3) is the vector-field which defines the differential system (3),
v1 |x=0 = 0, therefore all trajectories which initiate in this plane, remain in it,
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∀t ≥ 0, so the plane x = 0 is an invariant set for the system. Similar arguments,
v2 |y=0 = 0 and v3 |z=0 = 0 imply that y = 0 and z = 0 are also invariant sets and
the three coordinate planes separate the interior of the first octant, which also will
be invariant under the flow generated by the system. �

Proposition 1.2. Every solution of the system (3) with positive initial values, is
bounded.

Proof. Let (x(t), y(t), z(t)) be such a solution. We know from the previous proposi-
tion that its components remain positive for any future time.

Denote by U(t) = θ
bx(t) + β2

β1
y(t) + z(t). Then U ′(t) < rθ

b x(1 − x) + aθ
b x+

β2
β1
y(1− y)− µz ≤ (r+a)θ

b ( r+ar − x) + β2
β1

(1− y)− µz.
So, U ′(t) < C − (r+a)θ

b x(t)− β2
β1
y(t)− µz(t), ∀t ≥ 0, where C = (r+a)2θ

br + β2
β1
> 0.

If M = min(1, r + a, µ), then U ′(t) < C −MU(t), ∀t ≥ 0. We obtain
U(t) ≤ (U(0)− C

M ) exp(−Mt) + C
M , that is U(t) ≤ max(U(0), CM ), ∀t ≥ 0 and U(t)

is bounded. Since the first octant is an invariant set, the solutions starting in it are
bounded. �

2. The equilibrium points and their stability

We determine the location of the equilibrium points of the system (3) and
we state criteria that guarantee their existence. For any values of the param-
eters, the system admits the trivial equilibrium E0(0, 0, 0), the axial equilibria
E1(1, 0, 0), E2(0, 1, 0) and the parasite-free equilibrium E3(x3, 1, 0), where
x3 = a

r(c+1) + 1. There exists a commensal-free point of equilibrium E4(0, y4, z4),

where y4 = dµ
β2−µ , z4 = β2d[β2−µ(1+d)]

β1(β2−µ)2 , iff β2 > µ(1 + d). The system has an

interior equilibrium E5(x5, y5, z5) with x5, y5, z5 > 0, where x5 = ( β2y5d+y5
− µ)1θ ,

z5 = (1−y5)(d+y5)
β1

, iff y5 ∈ (0, 1) is a solution of the equation:

f(y)
def
=

r

θ

[β2y − (θ + µ)(y + d)]

d+ y
− ay

c+ y
− b

β1
(1− y)(d+ y) = 0 (4)

with necessary conditions that y5 >
d(µ+θ)
β2−µ−θ and β2 > (d+ 1)(µ+ θ).

Proposition 2.1. Let

d >
aθβ1c

(c+ 1)((θ + µ)β1r + 2bcθ) + aθβ1

def
= d0. (5)

If there is an interior equilibrium E5, then

β2 > (d+ 1)(θ + µ+
aθ

r(c+ 1)
)
def
= β22 . (6)

Proof. The equation (4) can be written in the form

β2 = h(y)
def
=

d+ y

y
[θ + µ+

aθy

r(c+ y)
+

bθ

rβ1
(1− y)(d+ y)], y ∈ (0, 1) (7)

and h(1) = β22 . Simple calculations give us that

h(y)− h(1) = d(θ+µ)(1−y)
y + aθ(d−c)(1−y)

r(c+1)(c+y) + bθ
rβ1

(1−y)(d+y)2
y . If d is not too small, i.e. it

is at least a fraction of c and verifies (5), then h(y) > h(1). �
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Proposition 2.2. If β2 > β22 , the system has one, two or three interior equili-bria.
The second case happens if there exists y ∈ (0, 1) such that β2 = h(y) and h′(y) = 0.
For the values {β2|β2 = h(y), h′(y) > 0}, there are three interior equilibria. For all
other values of β2, there exists only one interior equilibrium.

Proof. Denote by f(y, β2) = 0 the equation (4), defined for y ∈ (A
def
= d(µ+θ)

β2−µ−θ , 1).

The condition β2 > β22 gets the form f(1, β2) > 0. Note also that f(A, β2) < 0.
Since the equation in y is equivalent to a fourth order equation, it implies that on
the interval (A, 1) it has 1,2 or 3 distinct solutions. The second case is when one
solution is double, one is distinct and it occurs if there exists y such that
{f(y, β2) = 0, ∂f∂y = 0} ⇔ {β2 = h(y), h′(y) = 0}.
Also, we have β2 − h(y) = θ(d+y)

ry f(y, β2), so the set {β2|β2 = h(y), h′(y) > 0}=
{β2|f(y, β2) = 0, ∂f∂y < 0}. Then, due to the signs of f for y in A and 1, we obtain for

these values of β2, the case when there are three interior equilibria. (The numerical
simulations illustrate these conclusions, see fig. 5) �

Using propositions (2.1) and (2.2), we get the following result:

Theorem 2.1. 1) If β2 < µ(1 + d)
def
= β02 , the system (3) has four equilibria

E0, E1, E2, E3.
2) If β02 < β2 < β22 , there exist E0, E1, E2, E3 and E4. If d > d0, there is no interior
equilibrium.
3) For β2 > β22 , the system has the equilibria Ei, i = 0, 4 and generically, a single
interior equilibrium or three.

We are now discussing the local stability of the equilibria. The Jacobian
matrix J of the system, evaluated at each equilibrium gives explicit eigenvalues for
the boundary equilibria, as follows: J(E0) has λ1 = r, λ2 = 1, λ3 = −µ;
J(E1) has λ1 = −r, λ2 = 1, λ3 = −µ− θ;
For J(E2), λ1 = r + a

c+1 , λ2 = −1,λ3 = −µ+ β2
d+1 ;

J(E3) has λ1 = −r − a
c+1 , λ2 = −1, λ3 = β2

d+1 − (µ+ θ + aθ
r(c+1));

For J(E4), λ1 = r + adµ
c(β2−µ)+dµ + bz4, and λ2,3 verify the equation

λ2 + µ[β2(d−1)+µ(1+d)]
β2(β2−µ) λ+ µ[1− µ(1+d)

β2
] = 0.

If d < 1 and β2 >
µ(1+d)
1−d

def
= β12 , we find that Re(λ2,3) > 0.

If d > 1 or β2 ∈ (µ(1 + d), β12), it implies Re(λ2,3) < 0.

Remark 2.1. i) β12 < β22 is equivalent with d < θ[a+r(c+1)]
θa+(θ+µ)r(c+1)

def
= d1.

ii) Let be d < 1. For any combination of the other parameters, β02 < min(β12 , β
2
2).

We also compute the eigenvectors of J(Ei) for i = 0, 4, to determine the liniar
eigenspaces tangents to the stable or unstable manifolds of the equilibria. If we
recall that the planes x = 0, y = 0, z = 0 are invariant sets for the system, we can
find the stable manifolds for Ei.

Theorem 2.2. 1) The equilibrium point E0 is a saddle, for any values of the pa-
rameters, attractive in the Oz-direction, repulsive in the directions of Ox and Oy;
2) E1 is always a saddle, with xOz the stable manifold;
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3) E2 is always a saddle, attractive in the Oy direction, repulsive in Ox direction;
4) If β2 < β02 , then E3 is a stable node;
5) Let d < 1. If β2 ∈ (β02 , β

1
2), for d < d1 or if β2 ∈ (β02 , β

2
2), for d > d1, then E3 is

a stable node and E4 is a saddle, with yOz the stable manifold;
6) Let d < d1. If β2 ∈ (β12 , β

2
2), then E4 is an unstable focus (or node) and E3 is

a stable node. If β2 > β22 , only E3 changes its stability into a saddle with xOy the
stable manifold;
7) Let d < 1. If β2 ∈ (β22 , β

1
2), for d > d1, then E3 and E4 are saddles. If β2 > β12 ,

only E4 changes its stability into an unstable focus (node);
8) Let d ≥ 1. If β2 > β02 , E4 is a saddle. If β2 ∈ (β02 , β

2
2), E3 is a stable node and

for β2 > β22 , E3 is a saddle.

Next we consider the dynamics of the system in the neighborhood of an interior
equilibrium E5. The linear part of the system at this equilibrium is determined by
the Jacobian matrix J(E5) = (aij)1≤i,j≤3,

a11 = −
(
β2y5
d+ y5

− µ
)
r

θ
; a12 = − ac

(c+ y5)2
a11
r

; a13 =
b

r
a11; (8)

a22 =
y5(1− d− 2y5)

d+ y5
; a23 = − β1y5

d+ y5
; a31 = −θ(1− y5)(d+ y5)

β1
;

a32 =
dβ2(1− y5)
β1(d+ y5)

; a21 = a33 = 0

where y5 verifies the equation (4).
The eigenvalues of J(E5) are the solutions of the characteristic equation

λ3 +A1λ
2 +A2λ+A3 = 0, (9)

where

A1 = −a11 − a22, A2 = a11a22 − a13a31 − a23a32
and

A3 = a22a13a31 + a11a23a32 − a12a23a31.

Using the Routh-Hurwitz criterion, E5 is asymptotically stable iff A1A2 > A3,
A1 > 0 and A3 > 0. The first two inequalities are satisfied if y5 >

1−d
2 or equivalent,

a22 < 0.

A1A2 −A3 = a11a13a31 + a22a23a32 + a12a23a31 − a11a22(a11 + a22) (10)

Note also that A3 > 0 iff the condition f ′(y5) > 0 holds, or equivalently h′(y5) < 0,
where f and h are given by (4) and (7), respectivelly. So we proved the following
result:

Theorem 2.3. If the system (3) admits an interior equilibrium ( for d > d0, the
condition is β2 > β22), then E5(x5, y5, z5) is locally asymptotically stable iff A1 > 0,
h′(y5) < 0 and A1A2 − A3 given by (10) is strictly positive. A suficient condition
for its local attractivity is y5 >

1−d
2 and h′(y5) < 0.
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3. The bifurcation analysis

We consider β2, the maximum growth rate of the parasite as a control parame-
ter. First, we determine its values for static bifurcation, i.e. when β2 passes through
these values, the number of equilibria and their stability properties change. In
R3
+×{β2 > 0}, the branches of equilibria E2 and E4 intersect for β2 = β02 = (d+1)µ.

For β2 < β02 , E2 has xOy = W s the stable manifold and for β2 > β02 , W s is of dimen-
sion 1. So in β2 = β02 there is a change of stability and this is a static bifurcation.
For β2 = β22 , the branches of the boundary equilibrium E3 and the interior equili-
brium E5 intersect. E3 changes from a stable node for β2 < β22 , into a saddle with
dimW s = 2 for β2 > β22 , where as E5 is physical only for β2 > β22 . We find the
second point of static bifurcation.

We return to the characteristic equation for an interior equilibrium (9).

Theorem 3.1. If there exist y ∈ (0, 1) and β2 > β22 such that

β2 = h(y), (11)

h′(y) = 0, A1, A2 6= 0,

then for these values of β2, saddle-node bifurcations take place. If (E5, β
3
2) is such

a point in R3
+ × {β2 > 0} with y5 = y, the branches of the interior equilibria in the

vicinity of this point remain on one side of β2 = β32 , and no interior equilibria on
the other side. (see fig. 5 with the bifurcation diagram for a numerical simulation)

Proof. An interior equilibrium E5 has its second coordinate y5 which verifies equa-
tion (4) or equivalently (7), β2 = h(y5). If h′(y5) = 0, we saw in the proposition
(2.2) that β2 = h(y) has a double solution and one, distinct. On the other hand,
h′(y5) = 0⇐⇒ A3 = 0 from the characteristic equation, hence the jacobian matrix
evaluated at E5 has one eigenvalue, λ1 = 0. Since A1, A2 6= 0, there is no other
eigenvalue with zero real part. Let (y5, β

3
2) be a solution of the system (11). We

write the system (3) in the form v′ = F (v, β2), v = (x, y, z). The matrix(
DF

Dv

∣∣∣∣ ∂F∂β2
)∣∣∣∣

(E5,β3
2)

=

 a11 a12 a13 0
0 a22 a23 0

a31 a32 0 y5(1−y5)
β1

 (12)

has the rank 3 because a11 6= 0, since y5 >
dµ

β2−µ .

Hence rank
(
DF
Dv |

∂F
∂β2

)
for E5 at the critical parameter value, is different from the

rank of the Jacobian matrix. This is the nondegeneracy condition for the saddle-node
bifurcation.(see [7], pg.71) �

We investigate also the bifurcation from an equilibrium of a limit cycle, i.e.
the appearance of a periodic solution. Only the equilibria E4 and E5 may experience
Hopf bifurcation, because these are the equilibrium points that can have a pair of
purely imaginary eigenvalues.

Let us consider again the characteristic equation for an interior equilibrium
E5(x5, y5, z5) and its coefficients given by (9),(10).

Theorem 3.2. The point (E5, β
H
2 ) is a Hopf bifurcation point for an interior equi-

librium iff the pair (y5, β2 = βH2 ) verifies the system

A1A2 −A3 = 0; βH2 = h(y5) (13)
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together with the conditions

b(d+ y5)
2

β1y5
+

dβH2
y5(βH2 − µ)− dµ

>
r(1− d− 2y5)

θ(1− y5)
(14)

∂

∂β2
[A1A2 −A3]

∣∣∣β2=βH
2
6= 0 (15)

s
def
= βH2 −

θ(1− y5)
r

+
(d+ y5)(rµ− θy5)

ry5
6= 0 (16)

The bifurcation takes place on a 2-dimensional manifold, namely the center manifold.
If s > 0, the manifold is attracting and if s < 0, the center manifold is repelling. If
d > d0, then βH2 > β22 .

Proof. The characteristic equation (9) for an interior equilibrium E5 has the roots
λ1,2 = ±iω iff A1A2 = A3 and A2 > 0. The inequality takes the form (14).
Suppose λ1,2(β2) = ν(β2) ± iω(β2) is the analytic continuation of the imaginary
eigenvalues near the critical parameter value β2 = βH2 .
The nondegeneracy condition for Hopf bifurcation is λ3(β

H
2 ) 6= 0. We get

λ3(β
H
2 ) = −A1 and sgn(s) = sgn(A1), so the condition is written in the form (16).

For the transversality condition ν ′(βH2 ) 6= 0, simple algebra gives that ν(β2) verifies
the equation

8ν3 + 8ν2A1 + 2(A2 +A2
1)ν +A1A2 −A3 = 0

on a small neighborhood of β2 = βH2 . We obtain

ν ′(βH2 ) =
∂

∂β2
[A3 −A1A2]

1

2(A2 +A2
1)

∣∣∣βH
2
,

so the transversality condition is equivalent to (15). From [4] theorems 5.2 and 5.4,
we deduce that there exists a parameter dependent, local 2-dimensional invariant
manifold (the center manifold) where a limit cycle bifurcates from the interior equi-
librium, for β2 near βH2 . Due to the sign of λ3 at βH2 , the manifold is attracting for
the system, iff s > 0 . �

The direction and type of bifurcation will be investigated with numerical me-
thods.

Remark 3.1. If d < 1, the pair
(
E4, β

1
2

)
is also a Hopf bifurcation point because the

characteristic polynomial for E4 has λ2,3 = ±iω iff β2 = µ(1+d)
1−d

def
= β12 and d < 1.

For β2 in a neighborhood of β12 , let the analytic continuation of the pair of
imaginary eigenvalues be λ2,3(β2) = ν(β2)± iω(β2). The transversality condition is

ν ′(β12) 6= 0 and we get ν ′(β12) = 1
2(λ2 + λ3)

′(β12) = (1−d)3
8µd > 0.

Note that λ1 > 0 at the critical parameter value, so the central manifold where the
bifurcation takes place is repelling for the system. Numerical simulations in the next
section will show that this manifold where the bifurcation takes place is the plane
x = 0.
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4. Numerical simulations

We considered β2 as a control parameter.
First, the fixed parameters are a = 0.6; b = 0.8; c = 0.5; d = 0.1;µ = 0.2; θ =

0.4;β1 = 0.3; r = 2. It verifies d > d0 = 0.0329 and d < d1 = 0.7058.
We plot the curve β2 = h(y) given by (7) for y ∈ (0, 1) and we find that for

each value of β2, the equation has only one solution (proposition 2.2, when h is
strictly decreasing on (0, 1)). The values of β2 when the topological structure of the
phase portrait changes are the static bifurcation values β02 = 0.22;β22 = 0.748 and we
found also Hopf bifurcation point for the equilibrium E4 at the critical parameter
value β12 = 0.244. For the interior equilibrium E5, we applied theorem 3.2. We
solved numerically the system (13) which gives the pair (y5, β

H
2 ) = (0.34104; 1.0393)

and the nondegeneracy and the transversality conditions are verified.
Then we represented the phase portrait for each stratum in the control pa-

rameter’s space to illustrate our theoretical findings.
For β2 ∈ (β02 , β

1
2), we took β2 = 0.23 and with a programe in MATLAB, we

obtained representative orbits.

Figure 1. The phase portrait for a = 0.6; b = 0.8; c = 0.5; d =
0.1;µ = 0.2; θ = 0.4;β1 = 0.3; r = 2. The control parameter is
β2 = 0.23 ∈ (β02 , β

1
2). There is no interior equilibrium. The equili-

brium E3(1.2; 1; 0) is globally asymptotically stable for (R∗+)3 where
the red orbits initiate. E1(1, 0, 0) has y = 0 its stable manifold.
E4(0; 0.6666; 0.8518) captures for t → ∞ all trajectories from the
plane x = 0.

More than the statement of the theorem 2.2, 5), the numerical simulations
which we performed, lead to the idea that the parasit-free equilibrium E3(1.2; 1; 0)
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is globally asymptotically stable for the interior of the first octant, so any trajectory
which starts with x(0), y(0) 6= 0, tends to E3 for t→∞. (see fig. 1 the red orbits)

We also depicted trajectories with x(0) = 0 and verified that the commen-
sal-free equilibrium E4 has the stable manifold x = 0, where as solutions with
x(0) > 0 very small have a fast growth on the x(t)-component. Thus, the commensal-
population, even if it is small at the begining, it multiplies in time.

Figure 2. Two limit cycles, one of them (the ω-limit of the blue
trajectories) with W s = {x = 0}, the other one is globally asympto-
tically stable for the interior of the first octant. The fixed parameters
are the same, β2 = 1.1 > βH2 .

Figure 3. The time evolution of one of the solutions from the pre-
vious phase portrait, which approaches the interior limit cycle for
t→∞. The initial conditions are (0.2; 0.52; 2.098).
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For β2 > βH2 , for example β2 = 1.1, we depicted trajectories (see figure 2-the
blue ones) which start with x(0) = 0 and tend to a limit cycle (see remark 3.1
for the Hopf bifurcation from the equilibrium E4). We have β2 > β12 . Numerical
simulations showed that the stable manifold for this limit cycle is the plane x = 0.

Also, any trajectory which begins with x(0) 6= 0 very small or greater than 1
and y(0) 6= 0, it comes in the vicinity of the saddle connection E1 → E3 and tends
to a stable limit cycle. (theorem 3.2 with s = 1.077 > 0) One orbit initiated in a
neighborhood of the interior equilibrium E5(1.4421; 0.2404; 0.8619) spirals towards
the limit cycle, so E5 is unstable. For a wide range of initial conditions, it appears
that this limit cycle is globally asymptotically stable for the interior of R3

+.

For β2 ∈ (β22 , β
H
2 ), for instance β2 = 0.9, there is a unique interior equilibrium

E5(1.478; 0.727; 0.751) and it verifies the condition for local stability (theorem 2.3).
Numerical simulations for a wide range of initial conditions suggests that E5 is
globaly asymptotically stable for (R∗+)3. In consequance, (E5, β

H
2 ) is a point of

supercritical Hopf bifurcation, because when β2 varies and passes the critical value,
from a stable equilibrium E5 for β2 < βH2 , a unique and stable limit cycle appears
for each β2 > βH2 , while E5 losses its stability.

Furthermore, the fixed parameters are a = 0.6; b = 0.6; c = 0.6; d = 0.1;µ =
0.2; θ = 0.4;β1 = 0.04; r = 0.8. It verifies d > d0 = 0.0114.

For β2 > β22 = 0.8662, we are in the conditions of theorem 3.1. We solve
numerically the system (11) and we find two values for the control parameter where
a saddle-node bifurcation takes place, β32 = 3.7119 and β42 = 3.736, so the values

Figure 4. The phase portrait when a = 0.6; b = 0.6; c = 0.6;
d = 0.1;µ = 0.2; θ = 0.4;β1 = 0.04; r = 0.8 and β2 = 3.72 ∈ (β32 , β

4
2).

There are three interior equilibria E1
5(5.4727; 0.1795; 5.7333),

E2
5(6.1484; 0.2507; 6.5698), E3

5(6.8945; 0.388; 7.4665). The blue tra-
jectories tend to E1

5 for t → ∞, the red ones to E3
5 . One trajectory

comes close to E2
5 and then tends to E3

5 .
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of β2 from proposition 2.2 which ensures the existence of three interior equilibria
(Ei5, i = 1, 3) are the interval (β32 , β

4
2). For all other values of β2, there exists a

unique E5. Numerical explorations for different sets of fixed parameters showed
that {β2|β2 = h(y), h′(y) > 0} is one interval.

We took β2 = 3.72 ∈ (β32 , β
4
2). In the phase space, we performed simulations

and we found that this a situation of bistability, namely E1
5 and E3

5 are asympto-
tically stable and the only attractors for the interior of the first octant. (see fig. 4)
Indeed, only these equilibria verify theorem 2.3 of stability.

The blue trajectories tend to E1
5 for t→∞, the red ones to E3

5 .
For the same fixed parameters, plot of the projection of the bifurcation diagram

into the plane (β2, y) for β2 > β22 is showen in fig. 5.
The branch of the equilibrium E2

5 is from A to B. While β2 crosses for example
the value β32 from right to left, the branches E1

5 and E2
5 collide, forming at β2 = β32 an

equilibrium with λ = 0 and then dissapear. The solid and broken lines correspond to
the stable and unstable equilibria. The interval (β32 , β

4
2) is an interval of bistability.

Figure 5. Plot of the projection of the bifurcation diagram into
the plane (β2, y) for β2 > β22 . a = 0.6; b = 0.6; c = 0.6; d = 0.1;
µ = 0.2; θ = 0.4;β1 = 0.04; r = 0.8. The curve β2 = h(y)
represents the interior equilibria. (β32 , y) = (3.7119, 0.2087) and
(β42 , y) = (3.736, 0.3279) are saddle-node bifurcation points.

5. Conclusions

Our analysis of the model, the study of local bifurcations of codimension 1
under the variation of one parameter and the numerical simulations, lead us to
establish the important types of dynamics. The control parameter that we take is
β2, the maximum growth rate of the parasite.

If β2 ∈ (β02 ,max(β12 , β
2
2)) and d > d0 (i.e. the half saturation rate d of the

parasite is not too low), then for any initial conditions with x(0) 6= 0 (i.e. there
exists initially a commensal population even very small) and y(0) 6= 0, the system
evolves to the parasite-free state E3 for t → ∞. Notice that when the system
tends to this state, x(t)→ x3 and x3 > 1, meaning that the commensal population
advances to a number greater than its environmental carrying capacity k1 in the
absence of y and z-populations. Also, y(t)→ 1 for t→∞, i.e. the host population
tends to its carrying capacity k2. Our analysis revealed that the system with initial



64 Cristina Bercia

populations not zero can’t evoluate to the extinction of any population, other than
the parasite’s.

If β2 > β22 , in the conditions of theorem 2.3 and proposition 2.2, the system
tends to an interior equilibrium E5 and all the populations coexist in a stable state,
namely x(t) → x5 for t → ∞ and x5 is greater than its environmental carrying
capacity k1, while y(t)→ y5 and y5 is less than k2.

If we are in the hypothesis of proposition 2.2, for β2 ∈ (β32 , β
4
2), interval found

in the numerical simulations, solutions may converge to one interior equilibrium E1
5

or to the interior equilibrium E3
5 , depending on the initial population levels, so there

are two possible states of coexistence.
We detected numerically a point of Hopf bifurcation, more precisely for

β2 > βH2 and near this value βH2 (theorem 3.2), a stable limit cycle appears, so
the populations of the system will start to oscillate, evolving in time to a periodic
solution which is also a stable state of coexistence. Investigation of codimension 2
bifurcations can improve the study of all possible dynamics of the system.
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