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DYNAMICAL BEHAVIOR OF RANDOM FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATION VIA HILFER
FRACTIONAL DERIVATIVE

Sumbel Begum®, Akbar Zada!, Shahid Saifullah! and Ioan-Lucian Popa 3

This article deals with the study of the random Hilfer fractional
integro-differential equation with integral boundary condition. Using Banach
and Schauder’s fized point theorems we show that for the aforesaid model the
solution exists, is unique and is at least one. Also, Pachpatte’s inequality
is used in order to provide Hyers—Ulam and Hyers—Ulam—Rassias stability
results for the mentioned equation. Finally, an example is provided to verify
our results.
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1. Introduction

Fractional derivatives (FD) are the generalized forms of integer order
derivatives. The idea about FID was introduced at the end of sixteenth cen-
tury (1695), when Leibniz used the notation d”gc—nn for n'* order derivative. By
writing a letter to him, L’Hospital asked what we can say about n = %? Leib-
niz answered in such words, “An apparent Paradox, a day will come to get
benefits of this notion” and this question becomes the foundation of fractional
calculus (FC). In that time many mathematicians like Fourier and Laplace
contributed to the development of FC. After that when Riemann and Liou-
ville introduced Riemann-Liouville (R — £) derivative which is a fundamental
concept in FC, then FC became an important area for researchers. In 1891 it
was introduced Hadamard FDs and in 1997 Caputo presented a new FDs. FD
is a global operator, which is used as a tool for modelling different processes
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and physical phenomena like mathematical biology [19], electro-chemistry [11],
control theory [18], dynamical process [15], image and signal processing [14]
etc. For more applications of fractional differential equations (FDE)s, we refer
the reader to [1, 2, 6, 9, 13, 21, 22, 23, 24, 25, 26].

Recently, considerable attention has been given to the existence of so-
lutions of initial and boundary value problems for FDEs with different FDs.
Several mathematicians have been working on different random fractional dif-
ferential equations (RFDE)s with different random effects. In [4], El- Sayed
et al. introduced the existing theory and stability for the RFDE using Ca-
puto FD with non-local boundary condition. Vu et al. in [17] for the RFDE
with impulses proved existence and uniqueness (EU) of the solution by using
Banach and Schauder fixed point theorem. In [5] Harikrishnan et al. investi-
gated stability and dynamical behavior of RFDEs involving W- Hilfer FID. For
the class of implicit RFDEs with non-local and impulsive conditions involving
Hilfer FD Jarad et al. in [7] studied EU of the solution and stability. Dong et
al. [3] showed the EU and Ulam stability for the following random fractional
integro-differential equation (RFIDE) by using mean square sense Caputo FD

DEX(t) = F(t,X(t)) + /tG(t, r, X(r))dr, t,rel.

From the literature, it has been observed that in most of the time to
prove the exact solution of nonlinear differential equations is a tough job. To
overcome this difficulty different approximation techniques were introduced.
The difference between exact and approximate solutions is nowadays dealing
with the help of Ulam-Hyers (UH) stability, which was first initiated in 1940
by Ulam [16] and then extended by Hyers in the next year, in the context
of Banach spaces. Many researchers investigated both UH and Ulam—Hyers—
Rassias (UHR) stabilities for different problems with different approaches (see
[10, 20, 27, 28, 29, 30].)

Based on the motivation stated in the works of Dong et al. [3] in this
paper we study the existence and uniqueness of the solution for RFIDE via
Hilfer FDD, using Banach and Schauder fixed point technique. UHR stability
and UH stability for RFIDE are also proved.

The rest of manuscript is organized as follows. Section 2 contains some
weighted and non weighted spaces, important definitions. In Section 3 by using
Banach fixed point theorems we derive the existence of at least one solution
of RFIDE (1), which is unique. In Section 4, using Pachpatte’s inequality we
study UH and UHR stability of RFIDE (1). Finally, in Section 5 we provide

an example to verify our results.

2. Notation and auxiliary results

Here, we define some spaces, definitions, which will be used throughout
this paper. These definitions and results are taken from [8, 12].
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Assume that (Q, F,P) is a probabilistic space. Let n(u,w) := {n(u),u €
Jd = [0,T] and w € Q}, T > 0 be a second-order stochastic process, i.e.,
E(n*(u)) < oo and L(€2) represents the Banach space of random variables
n : 2 — R. Consider the following model:

Diin(u) = F(u,n(u)) + /Ou G(u,ryn(r))dr, u,r €

Jl_“n(u,w)|u:0 = U, (1)

where D is Hilfer FD of order p € (0,1) and type ¢ € [0,1], I is the
R — L fractional integral of order 1 — v where v = p + ¢ — pg. In addition,
p:J — Ly(2) is the random variable with E(u?) < co. Let F,G be two m.s.
continuous functions such that F : J x Ly(2) — Lo(2) and G : J x Lo(£2) —
Ly(€2), where J = {(u,r) € J x Jsuch thatr < u}.

Let C(d, L2(2)) be the Banach space of all continuous functions from
d x £ into R with norm

1
2

1nlle = mazueglln(w)ll2, where |In(u)llz = (£(7*(u)))>.

Definition 2.1. [8] The stochastic m.s. fractional integral of order p > 0 is
defined as
1

WM@:fglfu—@%w@m&

Definition 2.2. [8] Let p € (0,1), q € [0,1] and w € Q2. The Hilfer fractional
derivative of order p and type q is defined as;

d

(Dg,qn)(s) _ (jg(l—P)Ej((Jl—P)(l—Q)n>(8)

Properties: Let p € (0,1), ¢ € [0,1] and v = p + g — pgq.
(1) The operator (D§n)(s) can be written as;

(D37m)(5) = (350 596 (5) = (91 Dgn) (5). (2)

(2) The generalization of (2) for ¢ = 0, coincides with the R — £ derivative
Dh? = DPand ¢ = 1 with Caputo fractional derivative D5 =¢ DE.
(3) If (D90-P)p) exists, then

(D%5m) (s) = (98" D5 ) (5)
(4) If (D¥n) exists, then

(50%0) 6) = (3528 6) = nte) — T o
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3. Main results

In this section, the existence of the solutions to Eq. (1) is presented. In
the sequel, we need the following hypotheses:
(H;) There exist positive constants A and B, such that

[[ECu,m) = F(w,0)]|, < Al[n = 6]

and
|G (u.r,m) = Clu, 7. 0)]], < Bl |n — 0],
(Hs) There exist positive constant D such that

max{[[F(u, 0)[, [|G(u, 7,0)[]} < D.
(Hs) For functions F and G, we have that
[1F (s m)ll2 < sup{f(w)or([Inle)}

and

G (u, 5,n)ll2 < sup{g(u, s)@2(lnlle)},
where f, g, ¢ and ¢, lies in Ce(d, L2(2)) are non-decreasing on J.

Lemma 3.1. A function n(u) is the solution of (1), if and only if n(u) satisfied
the random integral equation

nu) = Pty L / C(u— PR (s, m(s))ds

[(v) I'(p)
1 /u B S
+ = u—spl/Gs,r,nr drds. 3
o) s (u—s) i (s,mn(r)) (3)
Theorem 3.1. Assume that hypothesis (Hy) and (Hs) are satisfied. If
I'(1+p) (p+ DI'(p)

then (1) has a unique solution.

Proof. We divide the proof of this theorem in two steps.
Step:1 Define the operator Q : C(d, L2(2)) — C(d, L2(2)). Hence, n(u) is the
solution of (1), where the equivalent integral equation (3) can be written in
the operator form

1

O R RUS O)

i [ = [ s 5)
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Set B, = {n € La(Q) : |In]le < a}. Now, we will prove that 9B, C B,, for
any n € C(d, Ly(2)). We have that

H@mxmuzgHfﬁswhh+féyéﬂu—sw*w@nx@yw

+ﬁ /0 N st /0 Gl ron(r))drds|],

< ‘i’fﬂf““‘l * ﬁ s p‘l(m@ () = F(s,0)||, + [ [F(s. 0[] ) ds
L s |G mon(r) = G(s,7,0) ||, +[|G(s, 7, 0)|| ,drds

o H I, [l

el ooy L u— g)P 1 s s

<, *r@%ﬁ< )7 (Allnl]s) + |[F(s, 0)||»d
i [ ([ Bl + 16 0l ) s
lllz o L% o

“T{v)" +F@L£( Al e

Mallz o1, (Aa+D)u?  (Ba + Djur™!

~I(v) 1+p)l()  A+pTp)

From the estimation, we have

ulle vy  (Aa+D)TP (Ba+ D)TPH
An)(u)l]e < u’
1l = ooy e T e
This proves that Q transform the ball B, = {n € C(d, L2(2)) : ||n||e(d, L2(Q)) <
a} into itself, that is Q(B,) C B,.

Step:2 In this step, we are going to show that Q is contractive. For any
n,60 € B,, we get

11(9Qn) (u) — (Q0)(u)]|2 =

= Hﬁ/o (u — )P 'F(s,n(s ))ds—l—F )/ (u—s)p_l/o G(s,r,n(r))drds
! ' p-1 —L (u— s)P~? ) s,r,0(r))drds

_@/o(“ )P F(s,0(s) T ) /OG(,,H())ddH2

SIQOA(U—Q”|WSWQD—F@ﬁ@ML%

=, Yu€el{.

I 1 [°
+W/0 (u—s) i |G (s, 7, n(r)) — G(s,r,0(r))]||,drds
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AuP B up+1 up+1
< n—0le+ - .y
“ta+p e F(p)< P p+1>”77 e

< ATP N BTPH )H |
“\T+p) " p+yrp/" e

. . +1
Therefore, by assumption (4), we imply that Ffﬁ;) + (;ﬁ;}(p) < 1. Therefore,
we deduced that Q is a contraction. Finally, applying Banach contraction
theorem we deduce that there exists a unique solution of the problem (1). The

proof is completed. l

Theorem 3.2. Assume that the hypothesis from (Hy), (Hz) and (H3) are sa-
tisfied. Then the problem (1) has at least one solution.

Proof. By hypothesis (Hs), the functions F and G are continuous. So, we can
find constants L; and L, such that

I, )2 < sup{won(linlle)} = L
and
16,5,z < sup{g(u, $)6s(|[nlle)} = L.
Consider the operator, P : Bg — By given by

(Pn)(u) = %uv—l 4 ﬁ /Ou(u - S)P—1<F(s,n(s))ds + /08 G(s,r,n(r))dr)ds,

where
B :={n € C(3, L2(2)) : [In — ull2 < B},

LiuP Loup+!
such that g > p(llﬂ,) + (1sz)F(p)'

Firstly, we see that the operator P maps into itself. For this we take any
u € [0,7] and n € Bg, we get

alle oos L uu_sp—l s (s s
Pl < 2+ s [ (= 9P s (o)

1 w b1 s
—l-@/o (u—s) /OHG(SJ”:T](T))sz'r’dS

< [lpllz, o1 L L Lou?*!
I'(v) I(1+p)  (1+p)I(p)
Llup Lgup+1

I'(1+p) " (1+p)T(p)

<lull2 +

Thus, we have

Llup Lguerl
1P0) =l < s + iy < 6

That is, P(Bg) is uniformly bounded. This proves that P(Bsz) C Bg.
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Now, we shall show that the operator P satisfies all the conditions of
Schauder’s theorem. The following are the steps of Schauder’s theorem.
Step 1: P is continuous.
Let 7n,, be a sequence such that 1, — nin Bgs.

[1((Prn) () = (Pr)(w))]]2 < ﬁ /Ou(u — s)"H[E (s, 1(5)) — F(s,n(s))|l2ds
1

+m/0 (u—s)P~ /0 G (s, 7,m0(1)) — G(s,7,n(r))||2drds.

Since, F, G are continuous functions, by the the Lebesgue dominated conver-
gence theorem, we get

|(Pn)(u) — (Pn)(u)]] = 0 as n — oo.

Hence, P is continuous in Bg.
Step 2: P(Bg) is uniformly bounded. This is clear since P(Bg) C Bjs is
bounded.

Step 8: For any uy,us € [0,T] uy < uz, we have
[1(Pn) (uz) — (Pn)(ur)l]2 =

Hﬁ /Ouz (u— s)P~* (IF(S, n(s))ds + /08 G(s, r,n(r))dr) ds
- (ﬁ /O " (0= 5 (s, m(s))ds + ﬁ /0 Y= s

° Ll(u2p - Ulp) Lz(u27’+1 - U1p+1)
/0 (G(S’T’n(r))drdswz ST ) 0+ oI
As uy — uy, the right hand side of of Eq (6) tends to zero, i.e.,

[|(Pn)(uz) = (Pn)(ur)]] — 0.

This means that (Pn)(u) is equi-continuous on [0, U] and completely continu-
ous. So, by Schauder’s theorem together with the steps 1—3 we obtain that the
operator P has at least one fixed point in Bgz. This completes the proof. [

(6)

4. Ulam- Hyers stability

In this section of the manuscript, we will present the stability results for
the problem (1);

Definition 4.1. A system is UH stable, if there exists a real number Cy such
that for each € and for each solution n € C(J, L2(Q2)) of the following inequality

Do n(w) — F(u, n(u)) — /Ou G(u,r,n(r))dr|lz <e, (7)

there ezists a solution 6 € C(J, L2(2)), with ||n — 0|2 < Cye.
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Definition 4.2. The problem (1) is UHR stable, if there exists a real number
Cy such that for each € and for each solution n € C(d, L2(2)) of the following
inequality

1D n(u) = F(u, n(u) — /OUG(uﬂ”,'fz('f’))drllz < e(u), (8)

there exists a solution 6 € C(J, La2(Q2)), with ||n — 0|2 < Coeth(u).

Theorem 4.1. Under the hypotheses (Hy), (Hs) and (Hs) we have that RFIDE
(1) is UH stable

Proof. Let n(u) be a solution of the inequality
I 0(u) ~ Busn(w)) = [ Glusrn(r))drle < . )
Let O(u) be the solution of the following equation
DEIG(u) = F(u,O(u)) + /Ou G(u,r,0(r))dr (10)

and

Jé’”n(u)}uzo = and J57"0(u)] A

Using Lemma 3.1 we obtain

u=0 -

o(u) :%U)(u)“_l + ﬁ /0 “(u— 5 1E (s, 0(s))ds
+ ﬁ /Ou(u — 5Pt OSG(S, r, 6(r))drds.
By integration of (10), we have
‘ PP () — J{;(F(u,n(u)) + /DSG(S,T,U(T))dr> ‘2 < P = m“i s

On the other hand we obtain

[n(u) = 0(w)|l2

< Hn(u) — MI%L(;)U - ﬁ /Op(u - s)p_1<]F(u,9(u)) + /08 G(s,r,@(r))dr)du‘ ‘2
<[~ e = 75 | = 9 (B + [ Geranmar)

+ H’?(:) + %p) /O = 5y (B () + /0 8G(u,r,17(r))dr>H2

s =i | e (o) + [ G|
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which implies that

- “ ) ot — 0(u)l||ds
1—|—p)+r(p)/0<u_8) |[n(u) — 0(u)||d

+/Ou(u—s)p_1%/0u§||n(r)—0(7“)||drdu. (11)

[In(u) = 0(u)]]2 ST

Now, using Pachpatte’s inequality (see [12]), we get

[[n(u) = 0(u)l|

eu? “A (A »1, B
S—F(l—kp) [1+/0 m(u—s)p (/O (W(u—s) +7L)ds>du}
uP AuP AuP Bu
< T | ) (e )
< Cye,

This provides that

C, =

uP AuP AuP Bu
I'(1+p) [ ) (r(1 o 7)]

Finally, this implies that
[In(u) = 6(u)]] < Ce.
Thus, we may conclude that (1) is UH stable. O

Theorem 4.2. Under the hypotheses (Hy), (Ha) and (Hs) there exists a con-
stant oy > 0 such that

/“ (u—s)P""P(u)
0 ['(p)

where 1 is non decreasing. Then (1) is UHR stable.

du < oytp(u),

Proof. Let n(u) be a solution for

1D n(u) = F(u, n(w) — /Ou Gu, r,n(r))dr|lz < e(u). (12)

Let O(u) be a unique solution of the equation
DE0(u) = F(u, 0(u)) +/ G(u,r,0(r))dr. (13)
0

and

Jé_”n(u)‘uzo =p and J57"0(u)| A

u=0 -
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So, by using Lemma 3.1, we obtain

O(u) = < (w1 4 —— /0 “(u— 5)P R (s, 0(s))ds

['(v) I'(p)
1 [ o [
+ m/o (u—s) /o G(s,r,0(r))drds.

By integration of (9), we have

D) = B (P + [ Gura(e)ar)[| < Heog

< e/u (=) "y (u) du < eoyt)(u)
0

- '(p)
Following the same procedure used in Theorem 4.1, we have

[In(u) = 0(u)l| <eoyip(u) + % /Ou(u — )" HIn(u,w) — 0(u,w)||ds

+ /Ou(u _ @p*%/j%mm — () |drdu.

Now, using Pachpatte’s inequality (see [12]), we obtain

|[n(u) = 0(u)|| <eoytp(u) [1 +

()

+
2(p)\L(1+p) A
AuP AuP Bu
< 1 —
—%[ ) (F(l T A ﬂew(“)
§C26¢(u)7
where,
AuP AuP Bu
— oyl k|
t %[ T (F(l ) A ﬂ
Therefore, the equation (1) is UHR stable. O
5. Example

In this section, we provide an illustrative example to show the consistency
and validity of our results.

Example 5.1. In accordance with Equation (1), we design a RFIDE in the
following form

1 tan(s4)y4ef25fs s 6sin(s)(l + 1/2)
72 — d
+ (S> V4 + sin(s) + 1 (S) +/(; 1 + 625 U(T) T,

7' 6n(s,w)] g = nlw). (14)

I8

D

O w

From RFIDE (14), we see that p = %, qg= % and v = %. Also, for s € [0,1]
and n € Ly(Q), we can easily find A = B = € = €y = 2. From Theorem
8.1, we see that inequalities A < T'(3) and B < 2I'(2) are satisfied. Hence



Dynamical behavior of random fractional integro-differential equation via Hilfer fractional derivative 147

(14) has a unique solution. Model (14) also satisfy the conditions of Theorem
3.2, so (14) has at least one solution.

Conclusion

In this manuscript, we focus on the solution of RFIDE (1) and using
Banach contraction theorem we prove that it has a unique solution. With the
use of Schauder’s theorem we derived that at least one solution of (1) exists.
Next, Pachpatte’s inequality is used for the results of UH types stabilities of
the proposed model. We also verify our results through an example and proved
UH stability.
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