
U.P.B. Sci. Bull., Series D, Vol. 84, Iss. 4, 2022                                                    ISSN 1454-2358 

MODELING AND VIBRATION CHARACTERISTICS OF A 
DMF BASED ON EQUIVALENT LINEARIZATION METHOD 

Langwu WU1, Liping ZENG2*, Zihao WAN3, Jieliang LIU4 

To analyze the vibration characteristics of a dual mass flywheel (DMF) 
under the influence of variable stiffness and frictional contact in the structure, the 
mechanical analysis of the contact among friction block, pressure plate, and 
secondary flywheel in the DMF was carried out through discretization. The internal 
forces and torques relationship of the friction block, the pressure plate, and the 
secondary flywheel under the contact actions were deduced. The dynamic analysis 
model of the DMF and the corresponding nonlinear torsional vibration differential 
equation were established. The nonlinear vibration frequency characteristics, 
equivalent stiffness, and equivalent damping of the DMF at different input torque 
amplitudes were analyzed by applying equivalent linearization method. By 
comparing the results of numerical method and equivalent linearization method, the 
effectiveness of the theoretical model is verified. The results show that when the first 
and second stage stiffness of the DMF act simultaneously, the system response has 
obvious nonlinear frequency characteristics. The amplitude-frequency characteristic 
curve turns to right, and the frequency response curve will jump. With the increase 
of excitation frequency, the equivalent stiffness of the DMF increases gradually, 
while the equivalent damping decreases gradually. 
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1. Introduction 

To reduce the torsional vibration in automobile transmission systems, the 
German company LuK first proposed Dual Mass Flywheel (DMF) in the 1980s. 
After continuous development and refinement, the vibration reduction 
performance of DMF has greatly improved. More and more vehicles powered by 
fuel engines are now equipped with DMF [1]. DMF can reduce the first-order 
natural frequency of the automobile transmission system, which makes the system 
can run at a lower idle speed [2–4]. And DMF can also effectively alleviate the 
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impact between the transmission components of vehicle powertrain, such as gear 
pairs, and improve the structural fatigue strength. Many researchers have 
conducted studies on DMF. Tang et al. [5] analyzed the influence of DMF on the 
torsional vibration characteristics of hybrid power trains. Berbyuk [6] optimized 
the DMF for the transmission system of heavy trucks. To make a DMF with 
piecewise variable stiffness has continuous variable stiffness, Song et al. [7] 
improved the structure by introducing a torque compensation device. Chen et al. 
[8,9] studied the nonlinear vibration characteristics of DMF with variable 
stiffness. 

According to the principle of equivalent damping of frictions bettween 
relatively moving objects attenuate vibration, a friction block was introduced into 
a DMF in Ref [10]. There will be friction and contact between the added friction 
block structure, the pressure plate, and the secondary flywheel. The vibration of a 
mechanical system with friction and contact usually has complex nonlinear 
characteristics [11]. And friction and contact effects have a certain influences on 
vibration [12, 14]. Until now, there are few reports on the detailed modeling 
methods and analysis considering the friction and contact of the friction block in 
DMF. In addition, to meet the requirements of vibration reduction, DMF usually 
has multi-stage equivalent stiffness. That is, the stiffness of DMF will change at 
different relative angles, which also has nonlinearity. Wang et al. [15] studied the 
dynamic parameter matching of a multi-stage torsional stiffness DMF based on 
torsional vibration control by using a numerical analysis method, given the design 
method, and verified it through vehicle tests. Shi et al. [16] proposed an 
innovative arrangement of vibration absorber elements for a DMF to have multi-
stage step stiffness. For matching with a vehicle under starting conditions, He et 
al. [17] studied the influence of a five-stages variable stiffness DMF dynamic 
parameters on the torsional vibration of the transmission system during engine 
starting. In current literatures, the influence of the friction block on vibration 
reduction characteristics of DMF was not thoroughly analyzed. In this work, with 
the consideration of the friction and contact between the friction block, the 
pressure plate, and the secondary flywheel, the mechanical analysis of the contact 
process is carried out through discretization. Then the dynamic analysis model of 
segmented variable stiffness DMF is established. And the nonlinear vibration 
frequency characteristics of DMF are analyzed by equivalent linearization 
method. 

2. Structure of the DMF 

The structure of the circumferential short spring DMF studied in this work 
is shown in Fig.1. One spring is installed between two spring seats, and several 
these assembled parts are placed in the inner cavity of the primary flywheel. The 
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primary flywheel in the DMF structure rotates under the action of a starting motor 
or engine. For shape constraints between the primary flywheel, spring seat, and 
secondary flywheel, power and rotating motion passed through springs are 
transferred to secondary flywheel and the driving part behind. In addition, the 
pressure plate, which wedges with friction blocks, is connected with the primary 
flywheel by bolts and in contact with the secondary flywheel through the axial 
preload to generate friction torque. 

SpringSpring seat

The primary 
flywheel

The secondary 
flywheel

Friction 
block

Pressure 
plate

 

Fig.1. Structural diagram of the DMF 

3. Contact analysis of the pressure plate, friction block, and secondary 
flywheel 

The classical Hertz contact theory plays imporant role in solving elastic 
contact problems in practical engineering, especially for point contact [18]. But it 
is not suitable for the elastic deformation of point contact and finite long line 
contact. For problems similar to the limited length contact of friction block in this 
paper, the Palmgren formula is often used [19]. Assuming that the elastic modulus 
of the two contacting objects are E1 and E2, and the Poisson's ratio is υ1 and υ2, 
respectively. According to the Palmgren formula, the elastic approaching quantity 
δ at the contact point is: 

0.9

*0.9 0.81.36 F
E h

δ =                                                 (1) 

where, 
2 2
1 2

*
1 2

1 11
E E E

υ υ− −
= + , F is the normal load, and h is the contact thickness in 

the axial direction. 
Compared with the pressure plate and the secondary flywheel (steel), the 

elastic modulus of the friction block (Pa66) is much smaller. Thus only the 
deformation of the friction block is considered here. As shown in Fig. 2, the 
contact shape between the pressure plate 3 and the friction block 2, friction block 
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2, and the secondary flywheel 1 are arc curves. A rectangular coordinate system 
Oxy is established. The contact curve between the pressure plate and friction 
block is an arc with O1 as the center, and the eccentric distance lOO1=rb. The 
profile of the contact surface between the friction block and the secondary 
flywheel is an arc centered on point O. The deformation when the two parts 
interact is ignored. Assuming A is a contact point on the contact region between 
the pressure plate and the friction block when the DMF is working. The rotational 
angle of the pressure plate relative to the friction block is α under the action of 
torque. The interaction line between the pressure plate and the friction block, i.e., 
the arc with O1 as the center (dotted line η1), moves to the arc centered on O2 
(solid line η2). At this time, the elastic deformation of the friction block at point A 
is δi=lAB. 
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Fig. 2. Contact deformation of the friction block 

 
The equations for the contact lines η1 and η2 are:  

( )
( ) ( )

22 2
1

2 2 2
2

:

: sin cos
b

b b

x y r r

x r y r r

η

η α α

 + − =


− + − =
                            (2) 

The coordinates of contact point A before deformation are: (rsinφi，
rcosφi). And the equation of line O1A is: y=xcotφi+rb. The deformation of the 
friction block at point A in the normal direction can be obtained:  

( )( ) ( )( )22 2 sin sin cos cosAB i ib b i il r r r rϕ α ϕ ϕ α ϕ= − − − + − − −          (3) 

For approximate calculation, after the first three terms of the Taylor series 
of Equation (3) at α=0 are conducted, the following expression can be obtained: 

2

sin cos sin
2AB i i i

b
b b b

rrl r r
r

αα ϕ ϕ α ϕ ≈ − + ≈ 
 

                      (4) 

The force at point A can be calculated by substituting Equation (4) into 
Equation (1). 
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4. Dynamic model of the DMF 

During the DMF working, the pressure plate and the primary flywheel 
rotate together. And the secondary flywheel and the primary flywheel interact 
through the spring seat-spring-spring seat structure arranged on the inner cavity of 
the primary flywheel (as shown in Fig. 1). For the interaction between the 
pressure plate and the friction block, the force on the contact surface of the 
pressure plate and the friction block is discretized into n component forces Fi (i=1, 
2,..., n). It is assumed that the equivalent moment of inertia of the primary 
flywheel and the pressure plate is J1, and the corresponding angular displacement 
is θ1 The moment of inertia of the friction block is J2, and the corresponding 
angular displacement θ2. k and c are the equivalent stiffness and damping of the 
DMF, respectively. The coefficient of friction is expressed as µ, and the engine 
output torque is denoted by T, as shown in Fig. 3. For the pressure plate, there 
following torsional vibration differential equation is given: 

( ) ( )( )1 1 1 1 1
1

3sign sin cos
n

i b i b i
i

J c k F r r r Tθ θ θ θ ϕ µ ϕ
=

+ + + + + =∑             (5) 

where 'sign' is a symbolic function. 
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Fig.3. Force analysis of the pressure plate      Fig.4. Force analysis of the friction block 

 
As shown in Fig.4, N and Ff are the forces between the friction block and 

the secondary flywheel in normal and tangential directions, respectively. And the 
friction block is balanced in the radial direction due to shape constraints. Thus, 

( )2
2 2

1
cos sin 0

n

i i i i
i

m l F F Nθ ϕ µ ϕ
=

+ − − =∑                            (6) 

where l is the distance from the friction block center to the point O, and m2 is the 

friction block mass. 
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For the friction block, the following torsional vibration differential 
equation is given: 

( )( ) ( ) ( )( )2 2 2 1
1

sign 3sign sin cos 0
n

fa i b i b i
i

J NR M F r r rθ θ µ θ ϕ µ ϕ
=

+ + − + + =∑     (7) 

where Mf is the axial friction torque. 
By eliminating the terms containing N and Fi from Equations (5)–(7), the 

vibration differential equation of the single degree of freedom system is simplified 
as follows: 

( ) ( )

( ) ( ) ( )
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1 2 1 1 1 1 2 1
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1
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sgin f
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                (8) 

where, 
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Fig. 5 shows the torque characteristics of the DMF. The equivalent 
stiffness of the DMF, which consists of two stages, can be expressed as : 

1 1

2 1 1or
k

k
k

β θ β
β θ θ β
− < <

=  < < −   
                                 (10) 

where β is the relative angle corresponding to the change in stiffness. 
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Fig. 5. Torque characteristics of the DMF 
The output torque of a engine after it starting is constantly changing for 

the cyclical change of the engine cylinder pressure and the inertial force generated 
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by the reciprocating motion of the crank-link mechanism in internal combustion 
engines. According to Ref [20], the output torque of a engine can be expressed in 
the following formula: 

( )0
1

sinr r
r

T T T r tω ψ
∞

=

= + +∑                               (11)  

where T0 is the average torque, r is the number of simple harmonics, Tr is the 

amplitude of the r-order simple harmonic torque, ψr is the corresponding initial 

phase, ω is the crank angular velocity, and t is time. 
Simplify the output torque of a engine to be: T=T΄sinωt, where T΄ is a 

constant. Assume that the differential equation of vibration (8) has the following 
form of solution: ( )1 sin sinA t Aθ ω γ ϑ= − = , where A is the amplitude and γ is the 
phase difference. And here let:  

( ) ( ) ( )
( ) ( )
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 
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              (12) 

According to the equivalent linearization method [21], only the first 
harmonic response of the system is considered here, and the higher harmonic 
response is ignored. ( )1 1 1, ,f θ θ θ   is expanded using the Fourier transform into the 
following form: 

( ) ( )1 1 1 0 1 2, , , cos sinf f A a a aθ θ θ ϑ ϑ ϑ= = + +                        (13) 

where, 
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                             (14) 

Based on Equations (10), (12), (13) and (14), the following equivalent 
equation can be obtained by simplifying Equation (8): 

'
1 1 1 sine e eJ c k T tθ θ θ ω+ + = 

                             (15) 

where, Je=J1+3J2. ke and ce are equivalent stiffness and damping, respectively, 

which can be calculated as Equations (16) and (17). 
(1) When A<β 
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(2) When A≥β 
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The amplitude A, phase γ, and the excitation frequency ω have the 
following nonlinear relationship: 

( ) ( )

'

2 22

2arctan

e e e

e

e e
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k J c

c
k J

ω ω

ωγ
ω


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 − +

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= −

                                (18) 

The approximate analytical solution of amplitude A and phase γ can be 
obtained by solving the system of nonlinear Equations (15), (16), (17), and (18). 

5. Result and analysis 

The main parameters of the DMF studied in this work are as follows: r=60 
mm, R=92.5 mm, J1=0.15 kg·m2, J2=0.17×10-3 kg·m2, m2=0.083 kg, l=70.9 mm, 
Mf=5 N·m, µ=0.06, rb=16 mm, h=10 mm, c=0.1N·m·s/°. The angle φ formed by 
the contact area between the pressure plate and the friction block in the 
circumferential direction is 30°~60°. The first stage torsional stiffness of the DMF 
(the range of the torsional angle is: –16°~16°) is k1=10 N·m/°, and the second 
stage stiffness is k2=30 N·m/°. Table 1 shows the main material properties of the 
friction block, secondary flywheel, and pressure plate.  

Table 1 
The material properties 

 Secondary flywheel Friction block Pressure plate 

Material steel Pa66 steel 

Elastic modulus/GPa 206 8.3 206 

Poisson's ratio 0.3 0.28 0.3 
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The DMF frequency characteristics are obtained through calculation and 
analysis with the amplitude of the input torque T' was set as 50 N·m, 100 N·m, 
150 N·m, and 200 N·m, respectively, as shown in Fig. 6 and 7. When the input 
torque is small, the torsional angle of the DMF does not exceed 16°. At this time, 
only the first stage stiffness works, and the frequency characteristics have linear 
characteristics. Besides, the DMF frequency (amplitude-frequency, phase-
frequency) characteristics curves are continuous and smooth changing. The 
response vibration amplitude increases with the addition of the input torque. 
When the input torque is large, the torsional angle of DMF will exceed 16°, and 
the first and second stages stiffness of the DMF act simultaneously. In addition, 
the system has nonlinear frequency characteristics, the amplitude-frequency 
characteristic curve curves to the right, and there will be a jump on the frequency 
(amplitude-frequency, phase-frequency) response curve, which are unstable. 
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Fig. 6. Amplitude-frequency characteristic         Fig. 7. Phase-frequency characteristic 

 
The equivalent torsional stiffness of the DMF is shown in Fig. 8. It can be 

concluded that the equivalent stiffness will gradually turn larger when the 
excitation frequency increases. And when the stiffness of the elastic component is 
in the variable stage, the equivalent stiffness of DMF will produce a significant 
jump in the frequency region where the amplitude-frequency characteristics jump. 
If only the first stage stiffness of the elastic component works, the equivalent 
stiffness varies with the excitation frequency are basically the same under 
different torques. 

As shown in Fig. 9, the equivalent damping of DMF is large in the low-
frequency region, especially when the excitation frequency is below 10 rad/s. At 
this time, the corresponding speed of the engine is also relatively low, which 
means that at low speed, such as the engine start condition, the DMF has large 
equivalent damping. As a result, the impact and torsional vibration in the system 
can be reduced at this time. With the rise of engine speed, the equivalent damping 
of DMF will gradually decrease with the increase of the corresponding excitation 
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frequency, especially since the damping is small under the high-frequency 
torsional vibration of normal driving. Thus, the power and energy consumption 
generated by the small damping is reduced. In addition, if the amplitude of the 
excitation torque becomes larger, the equivalent damping will also increase. 
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Fig. 8. Equivalent stiffness of DMF             Fig. 9. Equivalent damping of DMF 
In order to verify the effectiveness of the theoretical model and 

approximate solution, the Runge Kutta numerical integration method is used to 
analyze the forced vibration response of the system. The amplitude of the 
excitation torque is taken as 200 N·m, and the excitation frequencies are 40 rad/s, 
80 rad/s, and 120 rad/s, respectively. According to the torsional vibration 
differential equation (8) of the system, the time history of the relative angular 
displacement of the DMF is obtained and compared with the approximate 
analytical solution (18) of the steady-state forced vibration of the system. 

When the excitation frequency is ω=40 rad/s, as shown in Fig. 10, the 
overall amplitude of θ1 solved by approximate analytical and numerical methods 
is 16.3° and 17.8°, respectively. Through the spectrum analysis of the numerical 
solution, the time history of the numerical solution can be divided into several 
different frequencies (ω, 3ω, and 5ω). In addition, the frequency of the term that 
plays a major role is ω. The amplitude at frequency ω is 14.78°. When the 
excitation frequency ω is at 80 rad/s, the time history and spectrum of θ1 solved 
by the approximate analytical and numerical methods are shown in Fig. 11. The 
amplitude obtained by approximate analytical solution is 18.7°. The time history 
can also be divided into several different frequencies (ω, 3ω, and 5ω). And the 
frequency of the main simple harmonic motion term is ω with an amplitude of 
18.67°. When the excitation frequency ω is increase to 120 rad/s, the overall 
amplitude of the time history of θ1 solved by approximate analytical and 
numerical methods is 7.3° and 6.5°, respectively, as shown in Fig. 12. 

Therefore, the nonlinear approximate analytical solution of the DMF 
obtained by the equivalent linearization method is similar to the result obtained by 
the Runge Kutta numerical integration method when the system reaches steady-
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state, which shows the effectiveness of the analytical solution for this kind of 
problems. 
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Fig.10. Time history and spectrum of θ1 when ω=40 rad/s 
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Fig. 11. Time history and spectrum of θ1 when ω=80 rad/s 
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Fig. 12. Time history and spectrum of θ1 when ω=120 rad/s 
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6. Conclusions 

In this paper, to analyze the vibration characteristics of a dual mass 
flywheel (DMF) under the influence of variable stiffness and frictional contact in 
the structure, the dynamic analysis model of the DMF and the corresponding 
nonlinear torsional vibration differential equation were established. The nonlinear 
vibration frequency characteristics, equivalent stiffness, and equivalent damping 
of the DMF at different input torque amplitudes were analyzed by applying 
equivalent linearization method. By comparing the results of numerical method 
and equivalent linearization method, the effectiveness of the theoretical model is 
verified. The following conclusions can be obtained: 

(1) The response amplitude of system vibration will become larger with 
the increase of the input torque. When the input torque is small and only the first-
stage stiffness of the DMF works, its frequency characteristics have linear 
characteristics. 

(2) When the input torque of the engine is so large that the first and second 
stage stiffness of the DMF act simultaneously, the system has nonlinear frequency 
characteristics, the amplitude-frequency characteristic curve is inclined to the 
right, and there will be a jump on the frequency response curve.  

(3) With the increase of the excitation frequency, the equivalent stiffness 
gradually becomes larger. When the stiffness of the elastic component is in the 
change stage, the equivalent stiffness of the DMF will produce an abrupt variation 
in the frequency region where the amplitude-frequency characteristics jump. If the 
stiffness of the elastic component does not change, the equivalent stiffness under 
different torques is basically the same as the excitation frequency changes. 

(4) The DMF has large equivalent damping at low speeds, while it will 
gradually decrease with the increase of the excitation frequency. 
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