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ESSENTIAL COMPONENTS OF THE SOLUTION SET FOR
MULTICLASS MULTICRITERIA TRAFFIC EQUILIBRIUM
PROBLEMS

Xiao-Jun YU?, Hui YANG?

In this paper, we study multiclass multicriteria traffic equilibrium (MMTE)
problem in the fixed demand case and investigate relations between vector
variational inequality and weak vector equilibrium flows. We show that there exists
at least one essential components of the solution set for each MMTE problem.
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1. Introduction

Wardrop [1] introduced the famous user equilibrium principle for traffic
network, which is a scalar equilibrium principle. Smith [2] investigated that a
Wardrop's user equilibrium flow is equivalent to the solution of a class of
variational inequalities when the travel cost function is a scalar function.
Recently, many researchers have proposed equilibrium models based on
multicriteria consideration or vector-valued cost functions. Chen and Yen [3] first
proposed (weak) vector equilibrium principle for a vector traffic network without
capacity constraints, which is a generalization of the classic Wardrop's user
equilibrium principle. In [4], Yang and Goh investigated equivalent relations
between vector variational inequalities and vector equilibrium flows based on
vector equilibrium principle. Daniele et al. [5, 6] studied a traffic equilibrium
problem with capacity constraints in dynamic case and obtained sufficient and
necessary conditions for a traffic equilibrium flow. Lin [7] extended weak vector
equilibrium principle to the case of capacity constraints of arcs and showed that
there exists at least one essential components of the solution set for traffic
equilibrium problems with capacity constraints of arcs. However, all the
researches mentioned above assumed that the users in the traffic network are
homogenous. In reality, we have to group users in different classes due to their
differences in the income, age, gender, education, travel destination, and so on.
Nagurney [8], Nagurney and Dong [9] discussed MMTE problem without
capacity constraints with fixed demand and elastic demand, respectively, and
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obtained the equivalent relations between equilibrium flows and variational
inequalities. Raciti [10] derived the relations between vector variational inequality
and MMTE problems with path constraints. For other results of MMTE problems,
we refer to [11-15], and for other results of essential components relating to
equilibrium problems, we refer to [16-19] and the references therein.

In this study, we investigate MMTE problems when demands are fixed.
First, we derive a sufficient condition of weak vector equilibrium flows based on
the weak vector equilibrium principle. Then, we obtain an existence result of
MMTE problem. Finally, we show that there exists at least one essential
components of the solution set for each MMTE problem.

2. MMTE problems models

Let G = ( N, E) denote a transportation network, with a finite set of nodes

N and a finite set of directed links E (|E|is the number of all directed links in
the network). Let W be the set of all Origin-Destination (OD) pairs and P be the
set of all paths in network (n, =|P| is the number of all paths in the network). Let
P, be the set of all paths between OD pair weW . Assume that there are M
classes of users in the network with a typical class denoted by m. The other
notations used throughout this paper are as follows: d;; is the demand of class m
between OD pair weW , which is assumed to be constant ;v is the flow of user
class m onlink a€ E; v, is the aggregate flow on link a € E; the vector of link

Loyt coyMoyM
all 1a1E‘1 lall !a‘E‘

flow is v=(v ); f" is the flow of class m on path

;
peP,; f"‘:(fp”;,m, fp”n‘ ) eR™ is the vector flow of the class m , where

Puoes Py, denote n,  distinct paths in the network G ;

Cr(f)=(cj (f))T eR',j=12,--1 is the vector cost of class m on path p;
o, =1 if path p traverses link ae E, and J,, =0 otherwise.

Therefore, the following relationship must be satisfied, i.e.
Ch(f)=>.ChL ()5, YpeP,, weW,m=1--- M, j=1--,1.

ackE

The link flow and the path flow have relation as follows:
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vi=> > f'5,,VvaecEm=12- M.

p Tap’
weW pePR,

We denote the feasible path flow set
A:{f |f = Ran | Z fpm :dVT,VWEW,m :1,2,...’M;

peR,
fr>0,vpePR,weW,m=12,.--,M}
Clearly, A is convex and compact. We introduce matrix-valued functions
C"(m=1---,M) from A to R"™ and a matrix-valued function C from A to
R""™ as follows:
Cin (f) - Cln;np (f)
(Cf;l(f)’...,cf;np (f)): m=12,--M.
cp(f) - cp (f)

Ipn,

c"(f)

and C(f)=(C'(f),---,C" (f)).
Now, we introduce following definitions.

Definition 2.1. (Weak vector equilibrium principle) A flow f € A is said
to be in weak vector equilibrium if for each class m, for all OD pairs w and for

any path p,qe PR, such that C7) (f)-C{' (f)eintR] = f) =0,where intR] is the
interior of R!.

f is said to be a weak vector equilibrium flow. A MMTE problem is
usually denoted by T ={G, A, C} (in brief,{C} ). f is said to be a solution of I if

f is a weak vector equilibrium flow of T".
Definition 2.2. Let X,Y are two Hausdorff topological vector space and

K is a nonempty subset of X, and H:K = 2" is a set-valued mapping, where

2" denotes the family of all nonempty subset of Y , then
(1) H is said to be upper semicontinuous at x € K, if for each open set U

in Y with U > H(x), there exists an open neighborhood O(x) of x such that
U > H(X') for any x'eO(x); and upper semicontinuous on K if it is upper

semicontinuous at each point of K.
(2) H is said to be lower semicontinuous at x € K, if for each open set U

in Y with UNH (x)=¢, there exists an open neighborhood O(x) of x such

that U nH(X')#= ¢ for any x'e O(x); and lower semicontinuous on K if it is
lower semicontinuous at each point of K.
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(3) H is said to be continuous at x € K if it is upper semicontinuous and
lower semicontinuous at x € K ; and continuous on K if it is continuous at each
point of K.

(4) His an usco mapping, if H is upper semicontinuous on K, and for
each x e K,H(x) is compact.

Definition 2.3. Let X,Y are two Hausdorff topological vector space and
K is a nonempty subset of X and g:K Y is a vector-valued function, and C
is a nonempty closed, convex and pointed cone in Y with intC = ¢. g is said to
be C -continuous at X, € K, if for any open set V of the zero element 8 in Y,

there exists an open neighborhood O(x,) of x, in K , for all
xeO(%,),9(x)eg(x)+V+C; and C-continuous on K if it is C -continuous

at every point of K.
The following result is a particular form of a maximal element theorem for
a family of set-valued mapping due to Deguire et al. (see [20], Theorem 1).
Lemma 2.1. Let K be a nonempty compact convex subset of a Hausdorff

topological vector space X . Suppose that H:K — 2* u{¢} is a set-valued

mapping with following conditions:
0) for each xe K, x ¢ H(x);

(i)  foreach xe K,H(x) is convex;
(i)  foreach yeK,H™(y)={xeK:yeH(x)} isopenin K.
Then there exists X € K such that H(X)=¢.

3. Existence of weak vector equilibrium flows for MMTE problem

First, we establish a sufficient condition for a weak vector equilibrium
flow as follows:

Theorem 3.1. The flow f" € A is in weak vector equilibrium if f* solves
the following vector variational inequality problem: find f* € A such that

(C(f).f-f)e—intR. ,vieA.

Proof: Suppose that f* € A satisfy above vector variational inequality but
it is not a weak vector equilibrium flow. Then there exist 1<m" <M ,w" eW and

q.r P, suchthat C' (f')-Cy" (") e int Rl( fq*)m >0.
Construct a path flow vector f to be as follows: If m=m" f" =(f*)m,

otherwise, the components of f" is
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f;)m*, p#Q,r;
; pP=q
fq*)m +(fr*)m , p=r.
It is easy to verify that f € A . So, we have
M m - - w\m’ .
<C(f*)’f_f*>=mz=;;<cﬁ(f*)’ fr;n _(fp*) >:<C’r” (f )_Cq (f )’(fq ) >€_mtRl+

which is a contradiction. The proof is complete.
The following theorem is our existence result.

Theorem 3.2. Consider a MMTE problem I" = {C} .Assume that for each
i(l<i<n,) , m(l<m<M) and each heA , Cj(f)(h7—fr) is —R!
continuous on A, then I' has a solution.

Proof: Define the set-valued mapping S: A — 2" U{g} by

S(f)={heA:C(f)(h-f)e-intRl}.

(1) Itis easy to verify that for each f e A, f ¢ S(f).

(2) Foreach fe A, let h;,h, € S(f), then C(f)(h,-f)e—intR! and
C(f)(h,-f)e—intR' . Since —intR! is convex, we obtain that for any
A €[0,1] AC(f)(h,-f)+(1-2)C(f)(h,-f)e—intR!.Thus,

C(f)(4h, +(1-2)h,-f)=AC(f)(h,-f)+(1-2)C(f)(h,-f) e —intR].
Therefore, the set S(f) is convex.

(3) If heS(f), then C(f)(h-f)e—intR], which implies that there is an
open neighborhood V of the zero element 6 such that C(f)(h-f)+V < —intR].
Thus, there is an open neighborhood O(f) of f such that, for each '€ O(f),

c(r)(h-)=3: X[ cp () (1, )"

m=1 p;eP

eiZ%MWW%WVF%;“}

m=1 p;eP

p

(
f' =<0
(

cC(f)(h-f)+V -R] c—intR; - R, = —intR]
which implies that O(f) S‘l(h):{f e A:C(f)(h-f)e—int Rl} ,ie, S7(h)is
open. By lemma 2.1, the result follows and our proof is finished.
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4. Essential components of weak vector equilibrium flows

By theorem 3.2, it is easy to obtain the following corollary:

Corollary 4.1. Consider a MMTE problem I" = {C} .Suppose that for each
i(1<i<n,) m(1<m<M), CJ (-)is continuous on A, then T has a solution.

Assume that © is the collection of all MMTE problems I'={C}
satisfying the conditions of corollary 4.1.
For each fz{é},fz{é} € ®, define

Ch (1)-Ch ()

Clearly, (©, p) is a metric space. For each I' e ®, denote by F(I") the solution

set of I'. Then F defines a set-valued mapping form ® into A and, by corollary
41, F(I)#¢ forany T € ®.

Lemma4.2 F:® — 2" is an usco mapping.
Proof: Since A is compact, by Theorem 7.1.16 of [21], it suffices to show
that F is a closed mapping, i.e., the graph Graph(F) of F is closed in ©®xA ,

where Graph(F)={(I',f)e®xA:f e F(I)}.

Let {(F”,f”)}ner be an arbitrary net in Graph(F) with
(I, ") > (I",f")e©xA, where I"={C"},I"={C"} and f"eF(I"). Next
we need to prove that f" < F(T"). Suppose that f"¢F(I"), then there exist

1<m<M 1< <l

p(T.T)= max

1Si£np,feA

1<m <M,w eW,qreP. such that (C,)" (f')-(C)" (f')eintR and

q r

(fq*)m* >0, which implies that there is an open neighborhood V of the zero

*

element @ in R' such that (C;)m’( (f*)—(Cr)mt (f")+V e intR.. Moreover, since

C" > C',f" > f, there exist N, € Z* such that, forany n> N,
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e(C) (f)=(C)" (F)+V eintR!
and ( f; )m* >0, which is a contradiction. Therefore, (I",f") e Graph(F), and
thus Graph(F) is closed. The proof is complete.

For each I'e ®, the component of a point f € F(T') is the union of all
connected subsets of F(I") containing f . Note that each component of F(T') is
connected closed subset of F(I") (see [22], p.356), thereby a connected compact
subset as well. The connected components of two distinct points of F(F) are
either superposition or no-intersection. So F(I") can be decompounded a family

of each other non-intersection summation set, i.e., F(I')= U F,(T"), where | is
ael

index set, for each o el,F, (I') is a nonempty connected compact subset of
F(T) andforany o, fel,a# f,F,(T)nF,(I)=¢.

Definition 4.3. Let I'e® and Z is a nonempty closed subset of F(I'),
Z is said to be an essential set of F () if, for any open set O > Z , there exists
& >0 such that for any I'" e ® with p(I',T")<6,F(I")nO#¢. If a component
F,(I') of F(I') is an essential set, then F, (') is said to be an essential

component of F(I"). An essential set Z of F(I") is said to be a minimal essential

set of F(I') if Z is a minimal element of the family sets in F(I") ordered by set

inclusion.
In order to prove the following theorem, we firstly present the following

condition (c): Let (X,d),(Y,p) are two metric spaces, H: X —2" is a set-
valued mapping. There exists b >0 such that for any two nonempty closed sets
K., K, inY with p(K,,K,)>0, there exists a>0 such that for any x,x, € X

with d(x,%,)<aH(x)NK, =¢, H(x,)nK,=¢, there is x'e X satisfying
d(x',x)<bd(x,x,),d(x,x,)<bd(x,x,) and H(X)n[K,UK,]=4¢.
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The following lemma is Theorem 2.1 in [23].

Lemma 4.4. Let H:X —2" be an usco mapping, and condition (c)
holds. Then,

(1) forany x e X , there is at least one minimal essential set of H (x), and
every minimal essential set must be connected;
(2) forany xe X , there is at least one essential component of H (x).

Theorem 4.5. For any I'e® , there exists at least one essential
component of F(T').

Proof: Since F is an usco mapping, by lemma 4.4, we only need to verify
the condition (c) holds. Let b =1, for any two nonempty closed subsets K, K, of

A with d(K,K,)>0 and any T,['e® with p(f,f)<a:1 such that
F(T)nK, :¢,F(f)m K, =¢. We construct f:{é}: for each 1<i<n l<m
<M andeach feA,C] (f)=A(f)CV (f)+,u(f)é: (f) Where
d(f,K,) d(f,K,)
=) rarr) “ = aE K ) ra (f.k,)
Note that A(f), «(f) are continuous and for any f e A, A(f)>0, u(f)>0,
A(f)+ u(f)=1. It can be easily checked that I € ©. We have

1<m<M 1< j<I

p(F.T)= max

1£i£np,feA

Ch (F)=CF, (f)

P

1<m<M 1< j<l

= max (f)

1<i<n, feh
Sp(f,l:)
Similarly, p(f,f)Sp(f,f).
If f eK,, then A(f)=1 u(f)=0,C(f)=C(f). Since f ¢ F(T), we have
feF (). If feK,, then A(f)=0,u(f)=1C(f)=C(f). Since f¢F(I), we
¢

0
have f ¢ F(I). Hence, F(T)n[K,UK,]=¢ . Thus condition (c) holds. The
proof is complete.

A~

Ch, (F)-C, (7)
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5. Conclusions

This paper studies the stability of MMTE problem with fixed demand. A
sufficient condition of weak vector equilibrium flows of MMTE problem is
obtained. Thus, an existence result of MMTE problem is derived and the stability
of the solution set for MMTE problem is investigated.

Future work aims at the existence result and stability of MMTE problem
with elastic demand.
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